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A NOTE ON INVOLUTIVE BASES OF SYLOW

2-SUBGROUPS OF SYMMETRIC GROUPS

Abstract. The involutive base of a Sylow 2-subgroup Pn(2) of sym-
metric group S2n is a minimal generating set of this subgroup consisting of
elements which are involutions. The Cayley graphs of group Pn(2) on invo-
lutive bases may be naturally considered as the undirected ones. The exact
number of such bases is not known. In presented paper the necessary con-
dition for base B of group Pn(2) to be involutive is prooved.

1. Introduction

Over the past half-century, the theory of Sylow p-subgroups of symmetric and

alternating groups has become a subject of extensive research in the field of group

theory. It was specifically studied by L. Kaloujnine (e.g. [4, 5]), V. Sushchanskyy

(e.g. [1, 8]) and their students (e.g. [3, 6, 7]).

The case of p = 2 is particularly distinguished from the others Sylow p- sub-

groups of symmetric groups. The initial study of the subgroups proved that due to

their specificity, they require a completely separate approach and research meth-

ods than the general case (in the early works on Sylow p-subgroups of symmetric

groups, Kaloujnine assumed that p 6= 2). One of the most important aspects

distinguishing this case is the fact that as of today, the group of automorphisms

of this group has not yet been characterized (for p 6= 2 full characterization is

known).
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By base of the group we mean a minimal set of generators of this group. In

this paper we are particullary interested in those bases of Pn(2) in which every

generator is an involution (an element of order 2). The special case of involutive

bases – so called diagonal bases – were considered in the articles [6] and [7], where

they were used to discuss the isomorphism problem of Cayley graph of groups

Pn(2). In [6] the exact number of different diagonal bases of Pn(2) was established.

The number of different involutive bases of such groups is not known. The results

from this paper may be considered a first step towards the general characterisation

of such bases.

The outline of this paper is as follows. In the Section 2 we remind basic

facts and definitions about Sylow p-subgroups Pn(p) of symmetric groups Spn

and the polynomial representation of such subgroups. In Section 3 the necessary

condition for base of Pn(2) to be involutive is proved and the list of involutive

generators of Pn(2) with the first coordinate equals to 1 for small values of n is

presented.

2. Preliminaries

Let Pn(p) be the Sylow p-subgroup of symmetric group Spn
. It is well known

that Pn(p) is isomorphic to the wreath product of n cyclic permutation groups of

order p (see, e.g. [2]):

Pn(p) ∼=
n

≀
i=1

C(i)
p .

Let Xi be the vector of variables x1, x2, . . . , xi.

In this paper we use polynomial (Kaloujnine) representation of groups Pn(p)

(see e.g. [5,6,8]). Every element f of such group can be represented by a sequence

f = [f1, f2(X1), . . . , fn(Xn)], (1)

where f1 ∈ Zp and fi : Zi−1
p → Zp for i = 2, . . . , n are reduced polynomials from

the quotient ring Zp[Xi]/〈x
p
1−x1, . . . , x

p
i −xi〉. We call such element f as a tableau.

By [f ]i we denote the i-th coordinate of tableau f :

[f ]1 = f1 and [f ]i = fi(Xi−1)

for i = 2, . . . , n.
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For tableaux f, g ∈ Pn(p) where f have form (1) and

g = [g1, g2(X1), . . . , gn(Xn−1)]

we have

fg =
[
f1 + g1, f2(X1) + g2(x1 + f1), . . . ,

fn(Xn−1) + gn
(
x1 + f1, x2 + f2(X1), . . . , xn−1 + fn−1(Xn−2)

)]
,

(2)

and

f−1 =
[

−f1, −f2(x1 − f1), . . . ,

−fn
(
x1 − f1, x2 − f2(x1 − f1), . . . , xn−1 − fn−1(x1 − f1, . . .)

)]

.

The tableau id = [0, 0, . . . , 0] is the neutral element of the product (2).

The group Pn(p) acts on the vector space Z
n
p in a natural way

uf =
[
u1 + f1, u2 + f2(u1), . . . , un + fn(u1, u2, . . . , un−1)

]
,

where u = [u1, u2, . . . , un] ∈ Z
n
p and f have form (1).

Let

xn = x1 · x2 · . . . · xn =
n∏

i=1

xi

and

xn/xk = x1 · . . . · xk−1 · xk+1 · . . . · xn =

n∏

i=1,i6=k

xi

for every k = 1, . . . , n.

We define a natural epimorphism ϕ : Pn(p) → Z
k
p in the following way

[ϕ(f)]i = c([f ]i),

where c(f) is a coefficient of the monomial xi−1 in the polynomial f . The vector

ϕ(f) we call a type of a tablaeu f .

It is known that every base of group Pn(p) contains exactly n elements. More-

over, the set B = {B1, . . . , Bn} is a base of group Pn(p) if and only if the set

{ϕ(B1), . . . , ϕ(Bn)} is a basis of the linear space Z
k
p over Zp (see [8] for details).
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3.Main results

From now on we assume that p = 2.

Let I ⊂ {1, . . . , n} be some set of indexes. From the definition of the product

of tableaux (2) arise a natural way of the action of a group Pn(2) on the set of

monomials
(
∏

i∈I

xi

)f

=
∏

i∈I

(
xi + fi(Xi−1)

)
, (3)

where f have form (1).

Lemma 1. Let f = [1, f2(X1), . . . , fn(Xn−1)] ∈ Pn(2). Polynomial (xn)
f
con-

tains a monomials xn and xn/x1.

Proof. By (3) we have

(xn)
f

=

n∏

i=1

(

xi + fi(Xi−1)
)

.

Of course the only way to obtain a monomial xn from the above product is to

multiply xi-s from every component
(

xi + fi(Xi−1)
)

. On the other hand

(xn)
f

=

n∏

i=1

(

xi + fi(Xi−1)
)

=

= (x1 + 1) ·

n∏

i=2

(

xi + fi(Xi−1)
)

=

=x1 ·
n∏

i=2

(

xi + fi(Xi−1)
)

+
n∏

i=2

(

xi + fi(Xi−1)
)

.

We cannot obtain a monomial xn/x1 from the polynomial

x1 ·

n∏

i=2

(

xi + fi(Xi−1)
)

,

so we have to investigate polynomial

n∏

i=2

(

xi + fi(Xi−1)
)

.
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Let us notice that

n∏

i=2

(

xi + fi(Xi−1)
)

=
(

xn + fn(Xn−1)
)

·

n−1∏

i=2

(

xi + fi(Xi−1)
)

=

= xn ·

n−1∏

i=2

(

xi + fi(Xi−1)
)

+ fn(Xn−1) ·

n−1∏

i=2

(

xi + fi(Xi−1)
)

.

The polynomial

fn(Xn−1) ·
n−1∏

i=2

(

xi + fi(Xi−1)
)

does not contain a variable xn, so the monomial xn/x1 can occur only in the poly-

nomial

xn ·
n−1∏

i=2

(

xi + fi(Xi−1)
)

.

Similarly

xn ·

n−1∏

i=2

(

xi + fi(Xi−1)
)

= xn ·
(

xn−1 + fn−1(Xn−2)
)

·

n−2∏

i=2

(

xi + fi(Xi−1)
)

=

= xn · xn−1 ·

n−2∏

i=2

(

xi + fi(Xi−1)
)

+

+ xn · fn−1(Xn−2) ·

n−2∏

i=2

(

xi + fi(Xi−1)
)

,

where the polynomial

xn · fn−1(Xn−2) ·

n−2∏

i=2

(

xi + fi(Xi−1)
)

does not contain a variable xn−1.

By the induction we establish that in the polynomial (xn)f , the monomial

xn/x1 can be uniquely obtain as a product of 1 from the component (x1 + 1) and

xi-s from the components
(

xi + fi(Xi−1)
)

for i = 2, . . . , n.
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Thus

(xn)f = xn + xn/x1 + v(Xi−1),

where the polynomial v does not contain monolials xn and xn/x1. �

From the proof of above lemma we can easily obtain the following

Corollary 2. Let f = [1, f2(X1), . . . , fn(Xn−1)] ∈ Pn(2). Polynomial (xn/x1)
f

contains a monomial xn/x1.

Lemma 3. Let f = [1, f2(X1), . . . , fn(Xn−1)] ∈ Pn(2). Let I be a proper subset

of the set {1, . . . , n} such that I 6= {2, 3, . . . , n}. Polynomial
(∏

i∈I xi

)f
does not

contain a monomial xn/x1.

Proof. Let us assume that k is the biggest integer from set {1, . . . , n} such that

k 6∈ I. Thus I = {i1, i2, . . . , is, k + 1, k + 2, . . . , n}, where i1 < i2 < . . . < is < k.

By the induction (similarly to the induction in the proof of Lemma 1 we show

that

(
∏

i∈I

xi

)f

= xn · xn−1 · . . . · xk+1 ·

s∏

j=1

(

xij + f(Xij−1)
)

+ v(Xn−1),

where polynomial v does not contain a variable xn. Thus polynomial v does not

contain a monomial xn/x1. On the other hand polynomial

xn · xn−1 · . . . · xk+1 ·

s∏

j=1

(

xij + f(Xij−1)
)

does not contain a variable xk, so it also does not contain a monomial xn/x1. �

Now we can establish the Main Theorem of this paper:

Theorem 4. If the base B = {B1, B2, . . . , Bn} of group Pn(2) is involutive then

there exists unique generator B ∈ B such that [B]1 = 1. The type of this generator

is ϕ(B) = [1, 0, 0, . . . , 0
︸ ︷︷ ︸

n−1

].

Proof. Let us assume that there is a generator B ∈ B such that [B]1 = 1 and [B]k

contains a monomial xk−1 for some k ∈ {2, . . . , n} (i.e. the type of this generator
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have a property [ϕ(B)]1 = 1 and [ϕ(B)]k = 1 for some k ∈ {2, . . . , n}). Let

B = [1, f2(X1), . . . , fn(Xn−1)]

and

fk(Xk−1) = xk−1 + α · xk−1/x1 + f ′
k(Xk−1),

where α ∈ {0, 1} and f does not contain monomials xk−1 nor xk−1/x1. Thus

[B2]k = xk−1 + α · xk−1/x1 + f ′
k(Xk−1)+

+
k−1∏

i=1

(xi + fi(Xi−1)) + α ·
k−1∏

i=2

(xi + fi(Xi−1)) + f ′
k(XB

k−1).
(4)

From Lemma 1 and Colloray 2 we have

k−1∏

i=1

(xi + fi(Xi−1)) = xk−1 + xk−1/x1 + v1(Xk−1),

k−1∏

i=2

(xi + fi(Xi−1)) = xk−1/x1 + v2(Xk−1),

where polynomials v1 and v2 do not contain monomials xk−1 nor xk−1/x1. From

Lemma 3 we also know that f ′
k(XB

k−1) does not contain such monomials. Thus

equation (4) can be written as

[B2]k = xk−1 + α · xk−1/x1 + f ′
k(Xk−1)+

+ xk−1 + xk−1/x1 + v1(Xk−1) + α ·
(

xk−1/x1 + v2(Xk−1)
)

+ f ′
k(XB

k−1) =

= xk−1/x1 + f ′
k(Xk−1) + v1(Xk−1) + α · v2(Xk−1) + f ′

k(XB
k−1) =

= xk−1/x1 + w(Xk−1),

where polynomial w does not contain a monomial xk−1/x1. Thus [B2]k 6= id, so

B is not an involution. We have shown that every involutive generator B ∈ B

with the property [B]1 = 1 have type ϕ(B) = [1, 0, . . . , 0].

To show the uniqueness of such generator, let us assume that there are two

different generators B,B′ ∈ B such that ϕ(B) = ϕ(B′) = [1, 0, . . . , 0]. In this case
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the set {ϕ(B1), . . . , ϕ(Bn)} is not a basis of the linear space Z
k
2 over Z2, so the set

B does not form a base of the group Pn(2). �

Let us notice that the inverse of Theorem 4 does not hold in general, i.e. not

every tableau f ∈ Pn(2) with the property ϕ(f) = [1, 0 . . . , 0] is involutive.

Finally, for n ≤ 4 let us consider the table of involutive elements f of Pn(2)

for which ϕ(f) = [1, 0, . . . , 0]. Let α, β, γ, δ ∈ Z2:

[f ]1 [f ]2 [f ]3 [f ]4

1

0

0 αx2x3 + βx2 + γx3 + δ

1 α(x1x2 + x2x3) + β(x1 + x3) + γx2 + δ

x2 α(x1x2 + x3) + β(x2x3 + x3) + γx2 + δ

x2 + 1 α(x1x2 + x1 + x3) + βx2x3 + γx2 + δ

1

0 α(x1x3 + x2x3) + β(x1 + x2) + γx3 + δ

1 (α + β + γ)(x1x2 + x1x3 + x2x3) + αx1 + βx2 + γx3 + δ

x1 + x2 (α + β + γ)(x1x2 + x1x3 + x2x3) + αx1 + βx2 + γ(x1x2 + x3) + δ

x1 + x2 + 1 α(x1x2 + x3) + β(x1x3 + x2x3) + γ(x1 + x2) + δ
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