A NOTE ON INVOLUTIVE BASES OF SYLOW 2-SUBGROUPS OF SYMMETRIC GROUPS

Abstract

The involutive base of a Sylow 2-subgroup $P_{n}(2)$ of symmetric group $S_{2^{n}}$ is a minimal generating set of this subgroup consisting of elements which are involutions. The Cayley graphs of group $P_{n}(2)$ on involutive bases may be naturally considered as the undirected ones. The exact number of such bases is not known. In presented paper the necessary condition for base \mathfrak{B} of group $P_{n}(2)$ to be involutive is prooved.

1. Introduction

Over the past half-century, the theory of Sylow p-subgroups of symmetric and alternating groups has become a subject of extensive research in the field of group theory. It was specifically studied by L. Kaloujnine (e.g. [4,5]), V. Sushchanskyy (e.g. $[1,8]$) and their students (e.g. [3, 6, 7]).

The case of $p=2$ is particularly distinguished from the others Sylow p - subgroups of symmetric groups. The initial study of the subgroups proved that due to their specificity, they require a completely separate approach and research methods than the general case (in the early works on Sylow p-subgroups of symmetric groups, Kaloujnine assumed that $p \neq 2$). One of the most important aspects distinguishing this case is the fact that as of today, the group of automorphisms of this group has not yet been characterized (for $p \neq 2$ full characterization is known).

[^0]By base of the group we mean a minimal set of generators of this group. In this paper we are particullary interested in those bases of $P_{n}(2)$ in which every generator is an involution (an element of order 2). The special case of involutive bases - so called diagonal bases - were considered in the articles [6] and [7], where they were used to discuss the isomorphism problem of Cayley graph of groups $P_{n}(2)$. In [6] the exact number of different diagonal bases of $P_{n}(2)$ was established. The number of different involutive bases of such groups is not known. The results from this paper may be considered a first step towards the general characterisation of such bases.

The outline of this paper is as follows. In the Section 2 we remind basic facts and definitions about Sylow p-subgroups $P_{n}(p)$ of symmetric groups $S_{p^{n}}$ and the polynomial representation of such subgroups. In Section 3 the necessary condition for base of $P_{n}(2)$ to be involutive is proved and the list of involutive generators of $P_{n}(2)$ with the first coordinate equals to 1 for small values of n is presented.

2. Preliminaries

Let $P_{n}(p)$ be the Sylow p-subgroup of symmetric group $S_{p_{n}}$. It is well known that $P_{n}(p)$ is isomorphic to the wreath product of n cyclic permutation groups of order p (see, e.g. [2]):

$$
P_{n}(p) \cong \sum_{i=1}^{n} C_{p}^{(i)}
$$

Let X_{i} be the vector of variables $x_{1}, x_{2}, \ldots, x_{i}$.
In this paper we use polynomial (Kaloujnine) representation of groups $P_{n}(p)$ (see e.g. [5, 6, 8]). Every element f of such group can be represented by a sequence

$$
\begin{equation*}
f=\left[f_{1}, f_{2}\left(X_{1}\right), \ldots, f_{n}\left(X_{n}\right)\right], \tag{1}
\end{equation*}
$$

where $f_{1} \in \mathbb{Z}_{p}$ and $f_{i}: \mathbb{Z}_{p}^{i-1} \rightarrow \mathbb{Z}_{p}$ for $i=2, \ldots, n$ are reduced polynomials from the quotient ring $\mathbb{Z}_{p}\left[X_{i}\right] /\left\langle x_{1}^{p}-x_{1}, \ldots, x_{i}^{p}-x_{i}\right\rangle$. We call such element f as a tableau. By $[f]_{i}$ we denote the i-th coordinate of tableau f :

$$
[f]_{1}=f_{1} \text { and }[f]_{i}=f_{i}\left(X_{i-1}\right)
$$

for $i=2, \ldots, n$.

For tableaux $f, g \in P_{n}(p)$ where f have form (1) and

$$
g=\left[g_{1}, g_{2}\left(X_{1}\right), \ldots, g_{n}\left(X_{n-1}\right)\right]
$$

we have

$$
\begin{align*}
f g= & {\left[f_{1}+g_{1}, f_{2}\left(X_{1}\right)+g_{2}\left(x_{1}+f_{1}\right), \ldots,\right.} \\
& \left.f_{n}\left(X_{n-1}\right)+g_{n}\left(x_{1}+f_{1}, x_{2}+f_{2}\left(X_{1}\right), \ldots, x_{n-1}+f_{n-1}\left(X_{n-2}\right)\right)\right], \tag{2}
\end{align*}
$$

and

$$
\begin{aligned}
f^{-1}= & {\left[-f_{1},-f_{2}\left(x_{1}-f_{1}\right), \ldots,\right.} \\
& \left.-f_{n}\left(x_{1}-f_{1}, x_{2}-f_{2}\left(x_{1}-f_{1}\right), \ldots, x_{n-1}-f_{n-1}\left(x_{1}-f_{1}, \ldots\right)\right)\right] .
\end{aligned}
$$

The tableau $i d=[0,0, \ldots, 0]$ is the neutral element of the product (2).
The group $P_{n}(p)$ acts on the vector space \mathbb{Z}_{p}^{n} in a natural way

$$
u^{f}=\left[u_{1}+f_{1}, u_{2}+f_{2}\left(u_{1}\right), \ldots, u_{n}+f_{n}\left(u_{1}, u_{2}, \ldots, u_{n-1}\right)\right]
$$

where $u=\left[u_{1}, u_{2}, \ldots, u_{n}\right] \in \mathbb{Z}_{p}^{n}$ and f have form (1).
Let

$$
\overline{x_{n}}=x_{1} \cdot x_{2} \cdot \ldots \cdot x_{n}=\prod_{i=1}^{n} x_{i}
$$

and

$$
\overline{x_{n} / x_{k}}=x_{1} \cdot \ldots \cdot x_{k-1} \cdot x_{k+1} \cdot \ldots \cdot x_{n}=\prod_{i=1, i \neq k}^{n} x_{i}
$$

for every $k=1, \ldots, n$.
We define a natural epimorphism $\varphi: P_{n}(p) \rightarrow \mathbb{Z}_{p}^{k}$ in the following way

$$
[\varphi(f)]_{i}=c\left([f]_{i}\right),
$$

where $c(f)$ is a coefficient of the monomial $\overline{x_{i-1}}$ in the polynomial f. The vector $\varphi(f)$ we call a type of a tablaeu f.

It is known that every base of group $P_{n}(p)$ contains exactly n elements. Moreover, the set $\mathfrak{B}=\left\{B_{1}, \ldots, B_{n}\right\}$ is a base of group $P_{n}(p)$ if and only if the set $\left\{\varphi\left(B_{1}\right), \ldots, \varphi\left(B_{n}\right)\right\}$ is a basis of the linear space \mathbb{Z}_{p}^{k} over \mathbb{Z}_{p} (see [8] for details).

3. Main results

From now on we assume that $p=2$.
Let $I \subset\{1, \ldots, n\}$ be some set of indexes. From the definition of the product of tableaux (2) arise a natural way of the action of a group $P_{n}(2)$ on the set of monomials

$$
\begin{equation*}
\left(\prod_{i \in I} x_{i}\right)^{f}=\prod_{i \in I}\left(x_{i}+f_{i}\left(X_{i-1}\right)\right) \tag{3}
\end{equation*}
$$

where f have form (1).
Lemma 1. Let $f=\left[1, f_{2}\left(\underline{X_{1}}\right), \ldots, f_{n}\left(X_{n-1}\right)\right] \in P_{n}(2)$. Polynomial $\left(\overline{x_{n}}\right)^{f}$ contains a monomials $\overline{x_{n}}$ and $\overline{x_{n} / x_{1}}$.

Proof. By (3) we have

$$
\left(\overline{x_{n}}\right)^{f}=\prod_{i=1}^{n}\left(x_{i}+f_{i}\left(X_{i-1}\right)\right) .
$$

Of course the only way to obtain a monomial $\overline{x_{n}}$ from the above product is to multiply x_{i}-s from every component $\left(x_{i}+f_{i}\left(X_{i-1}\right)\right)$. On the other hand

$$
\begin{aligned}
\left(\overline{x_{n}}\right)^{f} & =\prod_{i=1}^{n}\left(x_{i}+f_{i}\left(X_{i-1}\right)\right)= \\
& =\left(x_{1}+1\right) \cdot \prod_{i=2}^{n}\left(x_{i}+f_{i}\left(X_{i-1}\right)\right)= \\
& =x_{1} \cdot \prod_{i=2}^{n}\left(x_{i}+f_{i}\left(X_{i-1}\right)\right)+\prod_{i=2}^{n}\left(x_{i}+f_{i}\left(X_{i-1}\right)\right) .
\end{aligned}
$$

We cannot obtain a monomial $\overline{x_{n} / x_{1}}$ from the polynomial

$$
x_{1} \cdot \prod_{i=2}^{n}\left(x_{i}+f_{i}\left(X_{i-1}\right)\right)
$$

so we have to investigate polynomial

$$
\prod_{i=2}^{n}\left(x_{i}+f_{i}\left(X_{i-1}\right)\right)
$$

Let us notice that

$$
\begin{aligned}
& \prod_{i=2}^{n}\left(x_{i}+f_{i}\left(X_{i-1}\right)\right)=\left(x_{n}+f_{n}\left(X_{n-1}\right)\right) \cdot \prod_{i=2}^{n-1}\left(x_{i}+f_{i}\left(X_{i-1}\right)\right)= \\
&=x_{n} \cdot \prod_{i=2}^{n-1}\left(x_{i}+f_{i}\left(X_{i-1}\right)\right)+f_{n}\left(X_{n-1}\right) \cdot \prod_{i=2}^{n-1}\left(x_{i}+f_{i}\left(X_{i-1}\right)\right) .
\end{aligned}
$$

The polynomial

$$
f_{n}\left(X_{n-1}\right) \cdot \prod_{i=2}^{n-1}\left(x_{i}+f_{i}\left(X_{i-1}\right)\right)
$$

does not contain a variable x_{n}, so the monomial $\overline{x_{n} / x_{1}}$ can occur only in the polynomial

$$
x_{n} \cdot \prod_{i=2}^{n-1}\left(x_{i}+f_{i}\left(X_{i-1}\right)\right)
$$

Similarly

$$
\begin{aligned}
x_{n} \cdot \prod_{i=2}^{n-1}\left(x_{i}+f_{i}\left(X_{i-1}\right)\right)= & x_{n} \cdot\left(x_{n-1}+f_{n-1}\left(X_{n-2}\right)\right) \cdot \prod_{i=2}^{n-2}\left(x_{i}+f_{i}\left(X_{i-1}\right)\right)= \\
= & x_{n} \cdot x_{n-1} \cdot \prod_{i=2}^{n-2}\left(x_{i}+f_{i}\left(X_{i-1}\right)\right)+ \\
& +x_{n} \cdot f_{n-1}\left(X_{n-2}\right) \cdot \prod_{i=2}^{n-2}\left(x_{i}+f_{i}\left(X_{i-1}\right)\right)
\end{aligned}
$$

where the polynomial

$$
x_{n} \cdot f_{n-1}\left(X_{n-2}\right) \cdot \prod_{i=2}^{n-2}\left(x_{i}+f_{i}\left(X_{i-1}\right)\right)
$$

does not contain a variable x_{n-1}.
By the induction we establish that in the polynomial $\left(\overline{x_{n}}\right)^{f}$, the monomial $\overline{x_{n} / x_{1}}$ can be uniquely obtain as a product of 1 from the component $\left(x_{1}+1\right)$ and x_{i}-s from the components $\left(x_{i}+f_{i}\left(X_{i-1}\right)\right)$ for $i=2, \ldots, n$.

Thus

$$
\left(\overline{x_{n}}\right)^{f}=\overline{x_{n}}+\overline{x_{n} / x_{1}}+v\left(X_{i-1}\right),
$$

where the polynomial v does not contain monolials $\overline{x_{n}}$ and $\overline{x_{n} / x_{1}}$.
From the proof of above lemma we can easily obtain the following
Corollary 2. Let $f=\left[1, f_{2}\left(X_{1}\right), \ldots, f_{n}\left(X_{n-1}\right)\right] \in P_{n}(2)$. Polynomial $\left(\overline{x_{n}} / x_{1}\right)^{f}$ contains a monomial $\overline{x_{n} / x_{1}}$.

Lemma 3. Let $f=\left[1, f_{2}\left(X_{1}\right), \ldots, f_{n}\left(X_{n-1}\right)\right] \in P_{n}(2)$. Let I be a proper subset of the set $\{1, \ldots, n\}$ such that $I \neq\{2,3, \ldots, n\}$. Polynomial $\left(\prod_{i \in I} x_{i}\right)^{f}$ does not contain a monomial $\overline{x_{n} / x_{1}}$.

Proof. Let us assume that k is the biggest integer from set $\{1, \ldots, n\}$ such that $k \notin I$. Thus $I=\left\{i_{1}, i_{2}, \ldots, i_{s}, k+1, k+2, \ldots, n\right\}$, where $i_{1}<i_{2}<\ldots<i_{s}<k$. By the induction (similarly to the induction in the proof of Lemma 1 we show that

$$
\left(\prod_{i \in I} x_{i}\right)^{f}=x_{n} \cdot x_{n-1} \cdot \ldots \cdot x_{k+1} \cdot \prod_{j=1}^{s}\left(x_{i_{j}}+f\left(X_{i_{j}-1}\right)\right)+v\left(X_{n-1}\right)
$$

where polynomial v does not contain a variable x_{n}. Thus polynomial v does not contain a monomial $\overline{x_{n} / x_{1}}$. On the other hand polynomial

$$
x_{n} \cdot x_{n-1} \cdot \ldots \cdot x_{k+1} \cdot \prod_{j=1}^{s}\left(x_{i_{j}}+f\left(X_{i_{j}-1}\right)\right)
$$

does not contain a variable x_{k}, so it also does not contain a monomial $\overline{x_{n} / x_{1}}$.
Now we can establish the Main Theorem of this paper:

Theorem 4. If the base $\mathfrak{B}=\left\{B_{1}, B_{2}, \ldots, B_{n}\right\}$ of group $P_{n}(2)$ is involutive then there exists unique generator $B \in \mathfrak{B}$ such that $[B]_{1}=1$. The type of this generator is $\varphi(B)=[1, \underbrace{0,0, \ldots, 0}_{n-1}]$.

Proof. Let us assume that there is a generator $B \in \mathfrak{B}$ such that $[B]_{1}=1$ and $[B]_{k}$ contains a monomial $\overline{x_{k-1}}$ for some $k \in\{2, \ldots, n\}$ (i.e. the type of this generator
have a property $[\varphi(B)]_{1}=1$ and $[\varphi(B)]_{k}=1$ for some $\left.k \in\{2, \ldots, n\}\right)$. Let

$$
B=\left[1, f_{2}\left(X_{1}\right), \ldots, f_{n}\left(X_{n-1}\right)\right]
$$

and

$$
f_{k}\left(X_{k-1}\right)=\overline{x_{k-1}}+\alpha \cdot \overline{x_{k-1} / x_{1}}+f_{k}^{\prime}\left(X_{k-1}\right),
$$

where $\alpha \in\{0,1\}$ and f does not contain monomials $\overline{x_{k-1}}$ nor $\overline{x_{k-1} / x_{1}}$. Thus

$$
\begin{align*}
{\left[B^{2}\right]_{k}=} & \overline{x_{k-1}}+\alpha \cdot \overline{x_{k-1} / x_{1}}+f_{k}^{\prime}\left(X_{k-1}\right)+ \\
& +\prod_{i=1}^{k-1}\left(x_{i}+f_{i}\left(X_{i-1}\right)\right)+\alpha \cdot \prod_{i=2}^{k-1}\left(x_{i}+f_{i}\left(X_{i-1}\right)\right)+f_{k}^{\prime}\left(X_{k-1}^{B}\right) . \tag{4}
\end{align*}
$$

From Lemma 1 and Colloray 2 we have

$$
\begin{aligned}
& \prod_{i=1}^{k-1}\left(x_{i}+f_{i}\left(X_{i-1}\right)\right)=\overline{x_{k-1}}+\overline{x_{k-1} / x_{1}}+v_{1}\left(X_{k-1}\right) \\
& \prod_{i=2}^{k-1}\left(x_{i}+f_{i}\left(X_{i-1}\right)\right)=\overline{x_{k-1} / x_{1}}+v_{2}\left(X_{k-1}\right)
\end{aligned}
$$

where polynomials v_{1} and v_{2} do not contain monomials $\overline{x_{k-1}}$ nor $\overline{x_{k-1} / x_{1}}$. From Lemma 3 we also know that $f_{k}^{\prime}\left(X_{k-1}^{B}\right)$ does not contain such monomials. Thus equation (4) can be written as

$$
\begin{aligned}
& {\left[B^{2}\right]_{k}=\overline{x_{k-1}}+\alpha \cdot \overline{x_{k-1} / x_{1}}+f_{k}^{\prime}\left(X_{k-1}\right)+} \\
& +\overline{x_{k-1}}+\overline{x_{k-1} / x_{1}}+v_{1}\left(X_{k-1}\right)+\alpha \cdot\left(\overline{x_{k-1} / x_{1}}+v_{2}\left(X_{k-1}\right)\right)+f_{k}^{\prime}\left(X_{k-1}^{B}\right)= \\
& \quad=\overline{x_{k-1} / x_{1}}+f_{k}^{\prime}\left(X_{k-1}\right)+v_{1}\left(X_{k-1}\right)+\alpha \cdot v_{2}\left(X_{k-1}\right)+f_{k}^{\prime}\left(X_{k-1}^{B}\right)= \\
& =\overline{x_{k-1} / x_{1}}+w\left(X_{k-1}\right)
\end{aligned}
$$

where polynomial w does not contain a monomial $\overline{x_{k-1} / x_{1}}$. Thus $\left[B^{2}\right]_{k} \neq i d$, so B is not an involution. We have shown that every involutive generator $B \in \mathfrak{B}$ with the property $[B]_{1}=1$ have type $\varphi(B)=[1,0, \ldots, 0]$.

To show the uniqueness of such generator, let us assume that there are two different generators $B, B^{\prime} \in \mathfrak{B}$ such that $\varphi(B)=\varphi\left(B^{\prime}\right)=[1,0, \ldots, 0]$. In this case
the set $\left\{\varphi\left(B_{1}\right), \ldots, \varphi\left(B_{n}\right)\right\}$ is not a basis of the linear space \mathbb{Z}_{2}^{k} over \mathbb{Z}_{2}, so the set \mathfrak{B} does not form a base of the group $P_{n}(2)$.

Let us notice that the inverse of Theorem 4 does not hold in general, i.e. not every tableau $f \in P_{n}(2)$ with the property $\varphi(f)=[1,0 \ldots, 0]$ is involutive.

Finally, for $n \leq 4$ let us consider the table of involutive elements f of $P_{n}(2)$ for which $\varphi(f)=[1,0, \ldots, 0]$. Let $\alpha, \beta, \gamma, \delta \in \mathbb{Z}_{2}$:

$[f]_{1}$	$[f]_{2}$	$[f]_{3}$	$[f]_{4}$
1		0	$\alpha x_{2} x_{3}+\beta x_{2}+\gamma x_{3}+\delta$
		1	$\alpha\left(x_{1} x_{2}+x_{2} x_{3}\right)+\beta\left(x_{1}+x_{3}\right)+\gamma x_{2}+\delta$
		x_{2}	$\alpha\left(x_{1} x_{2}+x_{3}\right)+\beta\left(x_{2} x_{3}+x_{3}\right)+\gamma x_{2}+\delta$
	1	$x_{2}+1$	$\alpha\left(x_{1} x_{2}+x_{1}+x_{3}\right)+\beta x_{2} x_{3}+\gamma x_{2}+\delta$
		0	$\alpha\left(x_{1} x_{3}+x_{2} x_{3}\right)+\beta\left(x_{1}+x_{2}\right)+\gamma x_{3}+\delta$
		1	$(\alpha+\beta+\gamma)\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right)+\alpha x_{1}+\beta x_{2}+\gamma x_{3}+\delta$
		$x_{1}+x_{2}$	$(\alpha+\beta+\gamma)\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right)+\alpha x_{1}+\beta x_{2}+\gamma\left(x_{1} x_{2}+x_{3}\right)+\delta$
	$x_{1}+x_{2}+1$	$\alpha\left(x_{1} x_{2}+x_{3}\right)+\beta\left(x_{1} x_{3}+x_{2} x_{3}\right)+\gamma\left(x_{1}+x_{2}\right)+\delta$	

References

1. Bier A., Sushchansky V.: Kaluzhnins representations of Sylow p-subgroups of automorphism groups of p-adic rooted trees. Algebra Discrete Math. 19, no. 1 (2015), 19-38.
2. Dixon J., Mortimer B.: Permutation Groups, Springer-Verlag, New York 1996.
3. Dmitruk Ju.V.: The structure of a Sylow 2-subgroup of the symmetric group of degree 2^{n}. Ukr. Math. Zhurn. 30, no. 2 (1978), 155-164 (in Russian).
4. Kaluzhnin L.: Sur les p-group de Sylow du groupe symetricque du degree p^{m}. C.R. Acad. Sci. Paris 221 (1945), 222-224 (in French).
5. Kaluzhnin L.: La structure des p-groupes de Sylow des groupes symetriques finis. Ann. Sci. l'Ecole Norm. Sup. 65 (1948), 239-272 (in French).
6. Pawlik B.: The action of Sylow 2-subgroups of symmetric groups on the set of bases and the problem of isomorphism of their Cayley graphs. Algebra Discrete Math. 21, no. 2 (2016), 264-281.
7. Pawlik B.: The Girth of Cayley graphs of Sylow 2-subgroups of symmetric groups $S_{2^{n}}$ on diagonal bases (under review).
8. Slupik A.J., Sushchansky V.I.: Minimal generating sets and Cayley graphs of Sylow p-subgroups of finite symmetric groups. Algebra Discrete Math. 8, no. 4 (2009), 167-184.

[^0]: 2010 Mathematics Subject Classification: 20B35, 20D20, 20 E 22.
 Keywords: Sylow p-subgroups, group base, wreath product of groups.
 Corresponding author: B. Pawlik (bartlomiej.pawlik@polsl.pl).
 Received: 02.10.2018.

