
Silesian J. Pure Appl. Math.

vol. 8, is. 1 (2018), 49–56

Tomasz JANUSZEK1, Mariusz PLESZCZYŃSKI2

1Faculty of Applied Mathematics, Silesian University of Technology, Gliwice,

Poland

2Institute of Mathematics, Silesian University of Technology, Gliwice, Poland

COMPARATIVE ANALYSIS OF THE

EFFICIENCY OF JULIA LANGUAGE

AGAINST THE OTHER CLASSIC

PROGRAMMING LANGUAGES

Abstract. In this paper we analyze the performance of five popular
programming languages. The efficiency analysis involves the comparison of
elapsed time needed for executing the same computations when the degree
of complexity rises. In this paper we compare C#, Python, R, Wolfram
and Julia programming languages.

1. Introduction

In present times every engineer or mathematician that applies the queen of

sciences for solving technical problems (as well as for verifying some theoretical

hypothesis) helps himself by using a computer. The degree of complexity of some

problems may be so high that even for a very efficient computing device it may take

weeks to solve a problem. Therefore it is necessary to choose suitable program-

ming language for a specific problem. The decision may depend on many factors,

one of them is the utility of the particular language. Some of the programming

2010 Mathematics Subject Classification: 6504, 6804, 68N15.
Keywords: computational complexity, programming languages, Julia language.
Corresponding author: M. Pleszczyński (mariusz.pleszczynski@polsl.pl).
Received: 20.09.2018.



50 T. Januszek, M. Pleszczyński

languages are dedicated for some specific type of problems, but their intensive

evolution causes that in recent times every engineering problem can be solved

with the aid of any such language. Therefore the language utility is not the most

important element any more (the selection of particular language depends more

on the programmer’s habit). The main criterion in choosing the programming

language became its efficiency. In this paper we will compare the time needed for

performing specific task in the specified language. We will divide the investigated

tasks into two categories:

a) concerning the speed of executing the arithmetic operations,

b) concerning the speed of executing the arithmetic operations connected with

the simultaneous memory read/write operations.

2. Languages characteristics

We shortly describe the main features and usage of languages used in our

paper.

2.1. C# language

C# language [1, 6] was made by Microsoft company in 2000. The purpose of

making the new programming language was a need to create the objective oriented

equivalent of C++ dedicated to Microsoft .NET platform. Anders Hejlsberg was

a leader of the development team and he stated that C# language was, in fact,

based on C++. However Java creators complained that it is a copy of their pro-

gramming language. Today C# is mainly used for creating desktop applications for

Windows systems using WPF subsystem, but it is increasingly used for web appli-

cations development using ASP.NET framework and mobile applications as well.

Characteristic feature of C# is LINQ (Language Integrated Query) framework,

which allows the programmers to create SQL queries and perform the operations

on data collections by using the built-in expressions. Because of incompatibility

of .NET framework with other systems, Microsoft created Core version of .NET

that allows the development of multi-platform applications. Due to fact that C#

and .NET are not open-source, Microsoft team created the open-source project

called Mono, which gained the appreciation from programmers from around the

world.



Comparative analysis of the efficiency of Julia language . . . 51

2.2. Julia language

Development of this programming language started in 2009. The team of

independent programmers: Jeff Bezanson, Stefan Karpinski, Viral B. Shah and

Alan Edelman worked for 3 years before announcing the first version of Julia in

2012 on their website [9].

The aim of creating new programming language was the necessity of merging

multi-purpose, high efficiency language for both numerical analysis and computa-

tional science. Nowadays this language is widely used for any purposes related to

data processing, calculations and mathematics in general. It combines dynamic

types, multiple dispatch, built-in package manager and possibility to call Python

and C-family languages functions freely. Although Julia is not so popular in

Poland, it is used worldwide by the well-known organizations e.g. Federal Reserve

Bank, Aviva or Celeste project [13].

From August 2018 the Julia version 1.0.0 is finally released, so we could use it

in this paper.

2.3. Wolfram language

Wolfram language in 1.0 version was announced in 1989 as a programming

language used in computing system Mathematica. It was conceived by English

physicist and mathematician Stephen Wolfram, the founder of Wolfram Research

company, which is in charge of Mathematica and Wolfram language development

till today. Its purpose is focused on symbolic computation, which is impossible to

maintain for most of the mathematical programs, and is fully controlled by the

specifying arguments like computation precision. Mathematica possesses a huge

base of mathematical algorithms and fully supports the paralleled calculations. It

also offers various methods of data visualization [8, 14].

2.4. Python language

Idea of creation such programming language came into being in 1980, but

emerged nine years later, in 1989. Creator of Python language, Guido van Rossum,

wanted to form a language capable of using many programming paradigms, as well

as dynamic programming. But the most important trait of this language was and

will be the clean code [5].

Nowadays we hear about Python in the context of machine learning [12] and

quantum computations. Immense community of programmers is developing many

packages [10] that makes coding easier and faster. The packages database contains



52 T. Januszek, M. Pleszczyński

over 130 000 packages for every known field of informatics e.g. database operating,

data analysis, networking or even applications development. Pros of this language

are: using any programming paradigm whilst coding, huge package repository,

ease of learning and code understanding, good code structuring.

The newest available Python version is 3.7.0 and this one is used in this paper.

2.5. R language

R language [2, 3] was conceived in 90s and its purpose was to provide free,

easy and versatile coding language for statistical computing. Its name originated

from the first letter of both creators first names: Robert Gentleman and Rossa

Ihake. They were researchers at the University of Auckland in New Zealand.

The high utility of R language led to its popularization, so in 1997 there were

nearly one hundred mathematicians and computer scientists that worked on its

improvements. In fact, R is an interpreted language and is based on thousands

of supporting packages, which help in its usage. If needed, one can call functions

from other programs libraries or create very complex and various charts.

R language exists in version 3.5.1 from July 2018, and this version is used in

this paper.

3. Comparison analysis

In this section we will study and compare the efficiency of all mentioned pro-

gramming languages by performing the operations described in introduction sec-

tion 1. As an environment we use 64-bit Windows 7, when both systems use

IntelrCoreTMi7-5820K and 16GB RAM.

3.1. Algorithm 1

In this particular task we do not use any built-in complex computation meth-

ods, only the nested loops and basic operations of arithmetic, that is the addition,

subtraction, multiplication and division.

The operations are done accordingly to the pseudocode presented below:

FOR i in bounds from 1 to n

FOR j in bounds from 1 to n

FOR k in bounds from 1 to n



Comparative analysis of the efficiency of Julia language . . . 53

COMPUTE (i - j) / (i + j)

ENDFOR

ENDFOR

ENDFOR

where for n we mean a given value e.g. n = 1, 2, 3, . . . , 100.

For languages that start the array indexing from 0, we shifted each index

by −1 and we add 2 in denominator. When operation occurs, we measure the

execution time by using the best built-in processor time measurement functions in

each language. Thus, we perform n3 additions, n3 subtractions and n3 divisions,

in total of 3n3 arithmetic operations. We collected the acquired data for different

n. The results can be seen in Figure 1.

0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ti
m
e[
s]

n

Wolfram

language R

Python

language C#

Julia

Fig. 1. Working times of programs in algorithm 1

3.2. Algorithm 2

In this task we multiply two square matrices A and B including n rows and

columns. To measure only the real execution time of multiplication, we do not

count any matrix generation as a part of this operation. Because of possibility that

random matrix numbers may have impact on multiplication time, we fill both A

and B matrices with one randomized value. Multiplication of matrices is executing

according to the definition. Let C be the resulting matrix of multiplying matrices

A and B. Then we can describe each element of matrix C by using the following

formula:



54 T. Januszek, M. Pleszczyński

cij =

n∑

k=1

aik · bkj ,

which will be summed up by using the loops for matrix rows and columns.

Therefore, we note that for each element of matrix C we need to execute n

multiplications and n − 1 additions. If A and B have got n rows and columns,

we need to execute n3 multiplications and n2(n − 1) additions, which gives in

total n2(2n−1) arithmetic operations. This means the polynomial computational

complexity of rank n3.

Similarly as for previous algorithm, we collected the acquired data for different

n and visualized the results in Figure 2.

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

ti
m
e[
s]

n

Wolfram

language R

Python

language C#

Julia

Fig. 2. Working times of programs in algorithm 2

Additionally, one should emphasize that in Figures 1 and 2 there are presented

the exemplary results obtained for one series of tests. Such tests were executed

many times and their averaged results do not significantly differ from the results

presented in this paper, which confirms again the determination of efficiency hi-

erarchy of the investigated programs. The standard deviations of results behave

similarly, that is their values decrease when the algorithm efficiency increases, and

this fact strengthens also the usefulness of the most efficient programs, especially

of the Julia program.



Comparative analysis of the efficiency of Julia language . . . 55

4. Conclusions

Our results show that the slowest programming language, from among the

ones taken into consideration, is Wolfram. In both examined cases it requires

more time to execute the specified operations than any other language. However,

low efficiency in case of these particular algorithms does not represent the overall

performance of Wolfram. It remains still one of the best languages designed for

symbolic computation.

We observe the better efficiency for R language, which managed significantly

better in performing both algorithms, but still much worse in comparison with

other programming languages. R is surely useful in data analysis and reaches

outstanding results in statistical computing, notwithstanding it would be recom-

mended to use other tools for tasks shown in this experiment.

Python appears to be included to the group of three leading languages. It is

much more efficient than Wolfram and R, but the algorithms are still performed

slower than by applying C# and Julia. The obtained results show that it is

reasonable to use Python as a tool for such operations and it works great at its

field.

Surprisingly, C# language was placed the second best language in this exper-

iment, although it was not designed for the purposes investigated here. It may

be caused by the close coupling between .NET Common Language Runtime and

Windows 7 system. However, as it performed very good in the discussed cases, it

may happen to get much worse results in more complex equations.

Concerning the whole set of investigated languages, the Julia language ap-

peared to be the fastest and the more efficient and it declasses the other languages.

The goal of this paper was to reveal the efficiency of this, still not to much popular,

programming language, which is confirmed by the results presented in this elabo-

ration, and to encourage the Readers to study and to apply this language. Some

further investigations followed the ones executed in works [4, 7, 11], as well as the

obtained results will be presented in the new paper which will be the continuation

and extension of the subject discussed in the current paper.



56 T. Januszek, M. Pleszczyński

References

1. Albahari J., Albahari B.: C# 7.0 in a Nutshell: The Definitive Reference.

O’Reilly Media, Sebastopol 2017.

2. Biecek P.: Survay for R package. Oficyna wydawnicza GiS, Wroc law 2014 (in

Polish).

3. Crawley M.J.: The R book, John Wiley & Sons, Chichester 2007.

4. Damas̆evic̆ius R., S̆tuikys V.: Metrics for evaluation of metaprogram complex-

ity, Comput. Sci. Inf. Sys. 7, no. 4 (2010) 770–787.

5. Dawson M.: Python Programming for the Absolute Beginner. Course Technol-

ogy, Boston 2010.

6. Evjen B., Hanselman S., Rader D.: Professional ASP.NET 4 in C# and VB.

Wiley Publ., Indianapolis 2010.

7. Falola O., Misra S., Adewumi A., Damas̆evic̆ius R.: Evaluation and com-

parison of metrics for XML schema languages. In: Frontiers in Artificial

Intelligence and Applications, Mizera-Pietraszko J. et al. (eds.), IOS Press,

Amsterdam 2017, 51–59.

8. Gliński H., Grzymkowski R., Kapusta A., S lota D.: Mathematica 8. Jacek

Skalmierski Computer Studio, Gliwice 2012 (in Polish).

9. https://julialang.org/blog/2012/02/why-we-created-julia.

10. McKinley W.: Python for Data Analysis: Data Wrangling with Pandas,

NumPy, and IPython. O’Reilly Media, Sebastopol 2018.

11. Misra S., Adewumi A., Fernandez-Sanz L., Damas̆evic̆ius R.: A suite of object

oriented cognitive complexity metrics. IEEE Access 6 (2018), 8782–8796.

12. Raschka S.: Python: Machine Learning. Packt Publ., Birmingham 2016.

13. Regier J., Pamnany K., Giordano R., Thomas R., Schlegel D., McAuliffe J.,

Prabhat: Learning an astronomical catalog of the visible universe through scal-

able Bayesian inference. arXiv:1611.03404.

14. Wolfram S.: The Mathematica Book, Fifth Edition, Wolfram Media, Cham-

paign 2003.


