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NOVEL CENTRALITY MEASURES AND

DISTANCE-RELATED TOPOLOGICAL

INDICES IN NETWORK DATA MINING

Abstract. The present work proposes two new Euclidean distance func-
tions, six new centrality measures as well as several new entropies definable
on any complex network. It is demonstrated on four spatial and two so-
cial real-world datasets that these concepts are applicable in network data
mining. Also, several new topological indices are introduced and their basic
computational properties are established.

1. Introduction

Since the beginning of the twenty-first century, network science, the discipline

whose main objective is to analyze network data, has become more and more

popular in diverse fields of science and engineering. Networks (or more formally

graphs) constitute a useful mathematical representation of a large variety of com-

plex systems, from large online social networks (like Facebook) to chemical (or

biochemical), ecological and infrastructural systems [17, 19, 33]. Roughly speak-

ing, researchers in the field of network data mining try to develop mathematical

models that discover patterns in interaction between different entities. They aim
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at scrutinizing and extracting information from complex relational data in order

to obtain a coherent description of physical/social reality or technological phe-

nomena.

Countless empirical evidences gathered from real data suggest that a large

amount of natural and human-made systems are organized under the form of

complex networks with many distictive topological properties. These macroscopic

features have been analyzed from the point of view of mathematics and statistical

physics [1]. For instance, many complex networks exhibit the scale-free property

and/or the small world property. Namely, A.-L. Barabási and R. Albert found

that the degree distribution of numerous real-world networks is far from normal.

In [3], they documented that the degree distribution of many natural networks

follows a power law, that is P (k) ∼ ak−γ where a is a constant and γ is positive

exponent (it was determined empirically that γ varies between 2 and 3 for the

majority of real networks). Here, P (k) is referred to the fraction of vertices

having degree equal to k. A complex network whose degree distribution follows

a power law is called scale-free. Such a network is characterized by the fact that

the owerwhelming majority of its nodes are connected to a relatively small number

of other nodes with the exception of the so-called hub vertices, that possess an

extremely high connectivity. In turn, a complex network with the small world

property is characterized by the fact that its average path length (〈l〉) is small

compared to the size of this network [7, 9, 33, 44].

It should be emphasized here that such complex systems as transportation net-

works, mobile phone networks, river networks, power grids and water distribution

networks are all instances of networks where space is relevant and topology alone

does not provide all the information needed for a proper understanding of the na-

ture of these objects. Consequently, it is possible to single out a separate class of

complex networks, namely spatial networks [4]. These networks are characterized

by the fact that their vertices occupy a precise position in two or three dimensional

Euclidean space and their links constitute real physical connections. An analysis

of the structure of such large spatial entities is important from a theoretical as

well as practical point of view. Many studies from such disciplines as geography or

urbanism are devoted to a deeper understanding of complex networks embedded

in the real space. Also, note that progress in network data mining is parallel to the

development of large virtual social networks. Roughly speaking, a social network

is a collection of people or groups of people with some pattern of interrelatedness

or links between them [33]. Such networks are scale-free and have the small world

property.
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It should also be highlighted that traditional data mining isuues (for instance,

association rule mining or classification) try to extract some informative patterns

based on individual data items. On the other hand, network data mining tries to

discover structured relationships between different data objects, thereby describing

emergent network patterns in complex relational datasets. This branch of data

analysis uses some conceptual tools borrowed from statistical physics in order to

extract knowledge from large numbers of individual datapoints [1].

The present paper introduces two new Euclidean distance functions definable

on any complex network. It will be demonstrated on four spatial and two social

networks that these novel notions are applicable in exploring real-world phenom-

ena.

This article is organized as follows. Section 2 introduces two novel distance

matrices describing complex networks. Section 3 introduces six new centrality

metrics. Section 4 defines several novel centrality-based network complexity mea-

sures. In turn, some useful definitions of several new distance-related network

invariants are included in Section 5. Sections 6 and 7 contain several methodolog-

ical hints and many numerical results of experiments conducted on six exemplary

and two randomly generated complex networks as well as on one dataset of all

exhaustively generated small networks possessing up to 7 nodes. Section 7 also

contains two examples of applications of the cencepts introduced in Sections 3, 4

and 5 in data mining. Section 8 contains some final remarks.

2. Two novel distance matrices associated with

a complex network

In this paper, it is assumed that all considered complex networks are mod-

elled by simple graphs of the general form G = (V (G) , E (G)) where V (G) =

{v1, v2, ..., vn} is the vertex set and |E (G)| = m is the edge set. The geodesic

(topological) distance between two vertices vi, vj ∈ V (G), denoted by dG (vi, vj),

is identified with the number of edges in any shortest path connecting them [25,43].

Note that it can be easily demonstrated that the shortest path distance does not

satisfy Euclid’s postulates [26]. For two nodes vi, vj ∈ V (G), vivj means that vi

and vj are adjacent, i.e., vivj ∈ E (G). The neighborhood of the vertex vi ∈ V (G),

denoted by NG (vi), is defined as NG (vi) = {w ∈ V (G) : wvi ∈ E (G)}. The sym-

bol ki denotes the degree of the vertex vi. Undoubtedly, ki = |NG (vi)|. Given

a complex network G with the vertex set |V (G)| = n, it is straightforward to
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build its adjacency matrix A (G) [25,43]. This network-theoretical object is iden-

tified with a real symmetric n× n two-dimensional array whose entries are given

by the term [A (G)]ij = 1 if vivj ∈ E (G) and [A (G)]ij = 0 if vivj /∈ E (G). In

turn, the (topological, geodesic) distance matrix associated with a complex network

G = (V (G) , E (G)), denoted by D (G), is a real symmetric n×n two-dimensional

array whose elements [D (G)]ij are defined as [D (G)]ij = dG (vi, vj) if vi 6= vj and

[D (G)]ij = 0 if vi = vj [25, 43].

In 2010 M. Randić et al. [37] have introduced the novel distance matrix for

networks. This two-dimensional array is referred to as the natural distance matrix

and is denoted by ND (G). Namely, for any complex network G = (V (G) , E (G))

where |V (G)| = n, it is possible to interprete the rows of its adjacency matrix as

points in the n−dimensional Euclidean space. Consequently, the natural distance

between two nodes vi, vj ∈ V (G), denoted by dNG (vi, vj), is given by

dNG (vi, vj) :=

{

n
∑

i=1

(

[A (G)]ik − [A (G)]jk

)2
}

1

2

.

The entries of ND (G) matrix are identified with the natural distances between

the points corresponding to nodes of G in the n−dimensional Euclidean space,

i.e., [ND (G)]ij = dNG (vi, vj) if vi 6= vj and [ND (G)]ij = 0 if vi = vj . Thus,

in this approach, the element [ND (G)]ij of the natural distance matrix is equal

to the Euclidean distance between two adjacency (row) vectors of A (G) in the

n−dimensional space. Also in [37], it was demonstrated that the matrix entry

[ND (G)]ij can be expressed as follows

[ND (G)]ij := [ki + kj − |NG (vi) ∩NG (vj)|]
1

2 .

Here, the term |NG (vi) ∩NG (vj)| is equal to the number of nodes adjacent to

both vertices vi and vj .

As mentioned previously, a complex network possessing n nodes can be rep-

resented by n points in the n−dimensional Euclidean space and can be described

by the natural distance matrix ND (G). In order to further generalize this geo-

metric approach, we propose here to treat the rows of the adjacency matrix A (G)

associated with any complex network G = (V (G) , E (G)) where |V (G)| = n as

points in some n−dimensional binary space {0, 1}n. In the present work, we will

confine ourselves to two novel distances (and two novel distance structures) that

can be defined on G. Thus, for any complex network G where |V (G)| = n, it

is possible to single out the Jaccard distance matrix, denoted by JD (D), whose
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elements [JD (G)]ij are equal to the Jaccard distance between the nodes vi and

vj if vi 6= vj and to 0 otherwise. The Jaccard distance between two vertices vi and

vj [21], denoted by dJG (vi, vj), is defined as follows

dJG (vi, vj) :=

[

1− |NG (vi) ∩NG (vj)|
ki + kj − |NG (vi) ∩NG (vj)|

]
1

2

.

In this approach, the vertices vi, vj ∈ V (G) are identified with their adjacency vec-

tors and the distance between them is given by the Jaccard distance between these

vectors in the binary space {0, 1}n. In turn, the cosine (or Ochiai) distance matrix,

denoted by cosD (G), associated with any complex network G = (V (G) , E (G))

where |V (G)| = n has entries [cosD (G)]ij equal to the cosine distance between

two nodes vi and vj if if vi 6= vj and to 0 otherwise. The cosine (or Ochiai) dis-

tance between two nodes vi and vj [21], denoted by dcosG (vi, vj), can be expressed

by the subsequent formula

dcosG (vi, vj) :=

[

1− |NG (vi) ∩NG (vj)|
√

kikj

]
1

2

.

Note that the term
|NG(vi)∩NG(vj)|√

kikj

is equivalent to the cosine of the angle between

two adjacency vectors corresponding to the nodes vi and vj . Also, in this case, two

vertices vi, vj ∈ V (G) are identified with their adjacency vectors and the distance

between them is equal to the cosine distance between these vectors in the binary

space {0, 1}n.

Fig. 1. Two sample networks G1 and G2
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For instance, for the small network G1 in Figure 1, the topological, natural,

Jaccard and cosine distance matrices have the following forms

D =















v1 v2 v3 v4

v1 0 1 2 2

v2 1 0 1 1

v3 2 1 0 1

v4 2 1 1 0















, ND =















v1 v2 v3 v4

v1 0 2 1 1

v2 2 0 1.732 1.732

v3 1 1.732 0 1.414

v4 1 1.732 1.414 0















,

JD =















v1 v2 v3 v4

v1 0 1 0.707 0.707

v2 1 0 0.866 0.866

v3 0.707 0.866 0 0.816

v4 0.707 0.866 0.816 0















,

cosD =















v1 v2 v3 v4

v1 0 1 0.541 0.541

v2 1 0 0.769 0.769

v3 0.541 0.769 0 0.707

v4 0.541 0.769 0.707 0















.

Note that both new distance functions defined on any complex network satisfy

the Euclidean axioms [21].

Based on these new distances and new distance matrices, it is possible to

define several novel centrality measures as well as several novel distance-related

topological indices.

3. New centrality measures

In this Section, after a short introduction, we will define six new vertex cen-

trality measures. For any complex network G = (V (G) , E (G)), a function

IG : V (G) → R is called a vertex invariant if for every v ∈ V (G) the follow-

ing condition is satisfied: ∀G′ ≃ G :=⇒ IG′ (v′) = IG (v) where v′ ∈ V (G′) and

v′ = ϕ (v). Here, the relation ≃ is an isomorphism between V (G) and V (G′) such

that if vivj ∈ E (G), then ϕ (vi)ϕ (vj) ∈ E (G′). However, if IG (vi) = IG′ (v′i) for

all vi ∈ V (G) and all v′i ∈ V (G′), then the networks G and G′ may or may not

be isomorphic. In turn, if IG (vi) 6= IG′ (v′i) for some vi ∈ V (G), then it can be
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categorically concluded that G and G′ are not isomorphic. For instance, almost all

considered in the literature network centrality measures are vertex invariants [28].

Note that many questions that might be asked about a node in any complex

network basically try to comprehend its “importance”. A measure that indicates

the relative importance of a node is known as the centrality. Such measures try

to identify the most important vertices within a complex network. Because the

term “importance” is ambiguous, a whole plethora of centrality measures has been

proposed [28]. These statistical tools have found many applications in such fields

as sociology, psychology, biology and computer science. Here, we will discuss

two such concepts, starting with the closeness centrality (CC) as first introduces

in sociology by A. Bavelas [6]. Note that Bavelas’ closeness centrality is one of

the most classical centrality measures in network data mining. It quantifies the

centrality of a node in any complex network G = (V (G) , E (G)) as the inverse of

the sum of the distances to the other vertices in G. Its formula can be expressed

as follows

CC (vi) :=
1

s (vi)
,

where s (vi) =
∑

vj∈V (G)

dG (vi, vj). The quantity s (vi) is known as the distance

sum of the vertex vi ∈ V (G) [43]. The closeness centrality is an indicator of the

proximity between a vertex vi and all other vertices in G. It quantitatively assesses

the extent to which vi is central to G. In this approach, the most important node

(in terms of being close to most other vertices in G) is the node with the highest

closeness centrality score. In turn, nodes with low closeness centrality scores are

regarded as remote. However, this centrality measure has two main defects. First,

it is well defined only for connected complex networks. Namely, any node that is

unreachable from some other node has the closeness centrality score equal to zero.

Second, even if the complex network is connected, the values of CC are dominated

by distant vertices. To overcome these shortcomings, Y. Rochat proposed to

use the harmonic mean of all shortest path distances [41]. This quantity is well

defined even when some nodes are not connected. For any complex network G =

(V (G) , E (G)) where |V (G)| = n, the so-called harmonic centrality is expressed

by the following formula

HC (vi) :=
1

n− 1

∑

vj∈V (G),vj 6=vi

1

dG (v1, vj)
.
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In the literature, the normalization term 1
n−1 is almost always omitted. In this

study, we also omit this term. Therefore, the harmonic centrality has the form

HC (vi) :=
∑

vj∈V (G),vj 6=vi

1

dG (v1, vj)
.

This centrality was implicitly present in [24] as the “reciprocal distance sum”.

Note that the closeness and harmonic centralities were introduced for the short-

est path distance. In the following part of this Section, we will generalize these two

notions to the natural, Jaccard and cosine distances. Thus, we will obtain three

novel closeness-type and three novel harmonic-type centrality measures which in

many cases exhibit better properties than their geodesic-based counterparts (cf.

Section 7).

In order to present three new closeness-type centralities, let us define for a com-

plex network G = (V (G) , E (G)) the following quantities

sN (vi) :=
∑

vj∈V (G)

dNG (vi, vj) =

n
∑

j=1

[ND (G)]ij ,

sJ (vi) :=
∑

vj∈V (G)

dJG (vi, vj) =
n
∑

j=1

[JD (G)]ij

and

scos (vi) :=
∑

vj∈V (G)

dcosG (vi, vj) =

n
∑

j=1

[cosD (G)]ij .

Here, sN (vi), s
J (vi) and scos (vi) denote the natural, Jaccard and cosine distance

sum corresponding to the vertex vi ∈ V (G), respectively. Then, the subsequent

expressions

NC (vi) :=
1

sN (vi)
,

JC (vi) :=
1

sJ (vi)

and

cosC (vi) :=
1

scos (vi)

can be understood as the natural, Jaccard and cosine closeness centrality corre-

sponding to the vertex vi ∈ V (G), respectively. Thus, based on the row sums of

the natural, Jaccard and cosine distance matrices, we obtained three new closeness-

type centrality measures.
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On the other hand, based on the general definition of the harmonic centrality,

it is possible to introduce for a complex network G three novel harmonic-type

measures. They are expressed by the following formulae

NHC (vi) :=
∑

vj∈V (G),vj 6=vi

1

dNG (vi, vj)
,

JHC (vi) :=
∑

vj∈V (G),vj 6=vi

1

dJG (vi, vj)

and

cosHC (vi) :=
∑

vj∈V (G),vj 6=vi

1

dcosG (vi, vj)
.

In this context, the quantities NHC (vi), JHC (vi) and cosHC (vi) denote the

natural, Jaccard and cosine harmonic centrality corresponding to the vertex vi ∈
V (G), respectively.

For instance, for the network G1 in Figure 1, the distance sums s (vi) and the

Jaccard distance sums sJ (vi) have the following values: s (v1) = 5, s (v2) = 3,

s (v3) = s (v4) = 4 and sJ (v1) ≈ 2.414, sJ (v2) ≈ 2.732, sJ (v3) = sJ (v4) ≈
2.389. Therefore, the values of CC and JC measures are as follows CC (v1) =

1
5 ,

CC (v2) = 1
3 , CC (v3) = CC (v4) = 1

4 and JC (v1) ≈ 0.4143, JC (v2) ≈ 0.366,

JC (v3) = JC (v4) ≈ 0.4186. The values of the harmonic centrality for the network

G1 are as follows HC (v1) = 2, HC (v2) = 3, HC (v3) = HC (v4) = 2.5 whereas

the values of JHC measure for this network are given by JHC (v1) ≈ 3.829,

JHC (v2) ≈ 3.309 and JHC (v3) = JHC (v4) ≈ 3.795.

In turn, the nodes of the G2 network in Figure 1 can not be distinguished

by the degree (DC), closeness (CC), harmonic (HC), betweenness (BC), eigen-

vector (EC) and PageRank (PRC) centrality measures. Namely, DC (vi) = 6,

CC (vi) = 0.1, HC (v1) = 7, BC (vi) = 1, EC (vi) = 1, PRC (vi) = 0.1111 (with

the damping factor equal to 0.85) for all vi ∈ V (G2). On the other hand, all

six newly introduced centralities divide the vertex set of the network G2 into two

equivalence classes V1 = {v1, v3, v5, v6, v8} and V2 = {v2, v4, v7, v9}. The values

of these centrality measures for the partitions V1 and V2 are contained in Table

1. More numerical results confirming the higher specificity of these six newly

introduced centrality measures are presented in Section 7.
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Table 1
The values of six newly introduced centrality measures defined on the

G2 network from Figure 1

Partition NC JC cosC NHC JHC cosHC

V1 0.0601 0.1739 0.2083 4.0472 11.4691 14.0199
V2 0.0606 0.1759 0.2101 4.1626 11.7362 14.4195

4. Some complexity measures associated with

centralities

The problem to quantitatively assess the complexity of a network appears in

varius scientific fields. This topic first appeared when investigating the complexity

of biological and chemical networks. When analyzing the notion of complexity, In-

formation Theory has been occupying the most noticeable position [14,43]. In this

approach, an important question is to quantitatively evaluate the so-called struc-

tural information content of complex networks by applying Shannon’s information

measure. Besides describing biological or chemical systems, this paradigm of re-

search was successfully applied in computer science, ecology, sociology, mathemat-

ical psychology, linguistics and physics (cf. [14] and the literature cited therein).

Historically speaking, N. Rashevsky, R.H. McArthur, E. Trucco were the first

who used Shannon’s formula in order to define an entropy of a complex network

(cf. [14, 43]). At present, there are many known complexity metrics based on

Shannon’s information measure. For instance, the topological information con-

tent developed by N. Rashevsky, the symmetry index for networks developed by

A. Mowshowitz, the chromatic information content also developed by A. Mow-

showitz, the magnitude-based information indices developed by D. Bonchev, the

vertex degree equality-based information index also developed by D. Bonchev and

the overall information indices also due to A. Bonchev (for all these measure

cf. [14,43]). In this Section, we are going to introduce several information-theoretic

network complexity measures based on the newly proposed centralities.

Note that any centrality measure C defined on a complex networkG =
(

V (G) ,

E (G)
)

induces some equivalence relation ≃ on the vertex set V (G) given by

the condition vi ≃ vj ←→ C (vi) = C (vj). Therefore, it is possible to obtain

a partitioning of the set V (G) where the resulting partitions are symbolized by

V1, V2, ..., Vk. In this context, the entities pi = |Vi|
|V | where 1 ≤ i ≤ k constitute

probabilities for each obtained partition Vi. Namely, it is apparent that 0 ≤ pi ≤ 1
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and
k
∑

i=1

pi = 1. Consequently, the vector P (G) = (p1, p2, ..., pk) can be understood

as a finite probability distribution of G and its Shannon’s entropy I is given by

I (p) := −
k
∑

i=1

pi log2 pi.

Thus, for any centrality measure C that induces a partition of the vertex set

V (G) into k many disjoint subsets of cardinality |Vi|, we obtain the following

information-theoretic complexity measure

IC (G) := −
k
∑

i=1

|Vi|
|V | log2

( |Vi|
|V |

)

.

Here, the quantity IC is termed the mean information content of the complex

network G with respect to the centrality measure C (for these measures cf. [14,43]

and the literature cited therein). Consequently, we have arrived at the definitions

of eight complexity measures: ICC , INC , IJC , IcosC , IHC , INHC , IJHC and

IcosHC . Such constructed invariants are known as partition-dependent complexity

measures of G.

In turn, the so-called partition-independent complexity measures of any com-

plex network G = (V (G) , E (G)) (where |V (G)| = n) with respect to some cen-

trality meaure C are defined as follows. Let C be an aribtrary centrality measure

imposed on V (G). Then, it is possible to define for every vertex vi ∈ V (G) the

following quantity

pC (vi) :=
C (vi)

n
∑

j=1

C (vj)
.

Because the subsequent equation pC (v1) + pC (v2) + ... + pC (vn) = 1 is a pri-

ori valid, the quantities pC (vi) can be understood as vertex probabilities. Con-

sequently, the vector P (G) =
(

pC (v1) , p
C (v2) , ..., p

C (vn)
)

constitutes a finite

probability distribution. Its entropy is given by the following expression

IC (G) := −
n
∑

i=1

C (vi)
n
∑

j=1

C (vj)
log2









C (vi)
n
∑

j=1

C (vj)









.
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Such defined complexity measures representing the so-called structural informa-

tion content of G are known as parametric network entropies [14, 43]. Note that

in this approach, instead of inducing partitions of the vertex set V (G) using some

equivalence relation, informtaion-theoretic complexity measures for complex net-

works are defined by assigning a probability value to each node of a network. In

our context, such probabilities values are given by using four closeness-type and

four harmonic-type centralities. Hence, we obtained eight network-level invariants:

ICC , INC , IJC , IcosC , IHC , INHC , IJHC and IcosHC .

For instance, for the network G1 in Figure 1, the closeness and Jaccard close-

ness centralities divide the vertex set V (G1) into 3 equivalence classes: V1 = {v1},
V2 = {v2} and V3 = {v3, v4}. Therefore,

ICC (G1) = IJC (G1) ≈

≈ −
((

1

4
log2

(

1

4

))

+

(

1

4
log2

(

1

4

))

+

(

2

4
log2

(

2

4

)))

≈ 1.5.

Several numerical results concerning eight partition-dependent as well as eight

partition-independent complexity measures evaluated on six real-world and two

randomly generated networks are included in Section 7. Also, their discriminatory

abilities are studied in Section 7.

5. New topological indices

Let G be the class of all networks. A function TI : G →R is termed a topological

index (or network invariant) if and only if the following condition is satisfied:

∀G′ ≃ G :=⇒ TI (G′) = TI (G) where G′, G ∈ G. Here, the relation ≃ is identified

with an isomorphism between G′ and G. Namely, it is a priori valid that if

two networks are topologically identical (i.e., isomorphic), then they also possess

identical values of all topological indices. Although, the reverse correspondence is

not universally true. This means that in general case TI (G) = TI (G′) does not

imply that G ≃ G′. A topological index TI is said to be complete if the identity

of TI (G) and TI (G′) implies that the networks G and G′ are isomorphic. On

the other hand, a topological index TI is said to be degenerate if there exists at

least two non-isomorphic networks G and G′ such that TI (G) = TI (G′). Up to

now, there is no known complete network invariant with respect to the class of all

networks G. This means that every topological index is degenerate to some extent.

However, when we consider some subclass of G, e.g., the set of all networks with n
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nodes, then it is possible to define a complete topological index for this subclass.

On the other hand, if TI (G) 6= TI (G′) for some topological index TI, then it can

be firmly stated that the networks G and G′ are not isomorphic [15, 16, 28, 43].

Topological indices (as well as vertex invariants) have many practical and the-

oretical applications in network data mining. For instance, they make the compu-

tation of isomorphism between two complex networks markedly easier. Recall that

the so-called network (graph) isomorphism problem (i.e., the problem of deciding

whether two given networks are topologically identical) is one of the classical top-

ics of Graph Theory with an unknown computational complexity. Namely, for

this problem there is no deterministic polynomial-time algorithm and simultane-

ously this problem has not been yet classified as NP-complete [32]. Nevertheless,

there are several heuristics enabling to determnine whether any two networks are

isomorphic or not. Unfortunately, these heuristics are time-consuming for large

networks. Accordingly, in order to reduce the search space, some “preprocessing”

methods can be applied to desicively classify certain pairs (or subsets) of networks

as non-isomorphic. Such precursor steps are usually based on different topological

indices or network centrality measures [32].

Note that apart from the network isomorphism problem, topological indices

are ubiquitous in network data mining. For instance, in Chemical Graph Theory

which is a subfield of mathematical chemistry dealing with network-theoretical

aspects of chemical compounds or chemical reactions, topological indices are used

in the so-called quntitative structure-property relationships (QSPR) or quantita-

tive structure-activity relationships (QSAR) studies [43]. In such investigations,

chemical molecules are modelled by the so-called chemical graphs (also known as

molecular graphs) in which nodes correspond to atoms and edges correspond to

chemical bonds (for instance, the network G1 in Figure 1 corresponds to methyl-

cyclopropane). The fundamental idea of Chemical Graph Theory is that physic-

ochemical properties and biological (pharmacological, toxicological) activities of

diverse molecules can be investigated by using the information encoded in their cor-

responding chemical graphs. Consequently, the main purpose of all QSPR/QSAR

studies is to relate the structure of a molecule to a defined quantitatively property

and/or activity. This kind of methodology can be mathematically expressed by

the following equation

Property/Activity = f (molecular structure) = f (topological indices) .

Ideally, a good topological index should exhibit a low degree of degeneracy and

a high degree of correlation with certain physicochemical properties (or biologi-
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cal activities). Therefore, it is of paramount importance for many practical and

theoretical applications to search for novel highly discriminating network invari-

ants [43].

In network data mining, there are many known topological indices based on the

distance matrix D (G) [25, 43]. Also, it is widely recognized that these invariants

can be easily computed using current computer techniques. The Wiener index

W (G) is the first distance-based network invariant introduced in 1947 by chemist

Harold Wiener. This index is widely used in QSPR/QSAR studies. Its definition

is as follows

W (G) :=
1

2

n
∑

i=1

n
∑

j=1

[D (G)]ij =
1

2

n
∑

i=1

s (vi) .

In [37], M. Randić et al. introduced the so-called natural Wiener index NW (G)

whose formal definition can be expressed as follows

NW (G) :=
1

2

n
∑

i=1

n
∑

j=1

[ND (G)]ij =
1

2

n
∑

i=1

sN (vi) .

Here, we propose to introduce the Jaccard-Wiener and cosine Wiener indices

(denoted by JW (G) and cosW (G), respectively) whose formal definitions are

given by

JW (G) :=
1

2

n
∑

i=1

n
∑

j=1

[JD (G)]ij =
1

2

n
∑

i=1

sJ (vi)

and

cosW (G) :=
1

2

n
∑

i=1

n
∑

j=1

[cosD (G)]ij =
1

2

n
∑

i=1

scos (vi) .

One of the recently proposed distance-based topological invariant is the so-

called hyper-Wiener index WW (G) [43]. Its formula is expressed as follows

WW (G) :=
1

4

n
∑

i=1

n
∑

j=1

(

[D (G)]2ij + [D (G)]ij

)

.

Note that the squared term, i.e, [D (G)]
2
ij provides comparatively more weight to

elongated networks. Consequently, the hyper-Wiener index should be well cor-

related with phenomena that are strongly dependent upon the topological size

of a complex network. Here, we propose to extend the definition of WW (G)

to other distance matrices. Thus, we obtain three new network invariants, i.e.,
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the hyper-natural Wiener (NWW (G)), hyper-Jaccard-Wiener (JWW (G)) and

hyper-cosine Wiener (cosWW (G)) indices. These topological invariants are de-

fined as follows

NWW (G) :=
1

4

n
∑

i=1

n
∑

j=1

(

[ND (G)]
2
ij + [ND (G)]ij

)

,

JWW (G) :=
1

4

n
∑

i=1

n
∑

j=1

(

[JD (G)]
2
ij + [JD (G)]ij

)

and

cosWW (G) :=
1

4

n
∑

i=1

n
∑

j=1

(

[cosD (G)]
2
ij + [cosD (G)]ij

)

.

If D (G) is the distance matrix connected with any complex network G =

(V (G) , E (G)) where |V (G)| = n, then its Harary matrix (also known as the recip-

rocal distance matrix ) is a real symmetric n×nmatrix, denoted by RD (G), whose

entries are given by the following condition [RD (G)]ij = 1
[D(G)]ij

if [D (G)]ij 6= 0

and [RD (G)]ij = 0 otherwise [24,25,43]. Then, the so-called Harary index H (G)

associated with G is defined as follows

H (G) =
1

2

n
∑

i=1

n
∑

j=1

[RD (G)]ij .

Here, we generalize the above definition to other distance matrices. The natural

Harary matrix (or reciprocal natural distance matrix ), denoted by RND (G), is

given by the condition [RND (G)]ij=
1

[ND(G)]ij
if [ND (G)]ij 6= 0 and [RND (G)]ij

= 0 otherwise, the Jaccard-Harary matrix (or reciprocal Jaccard distance ma-

trix ), denoted by RJD (G), is given by the condition [RJD (G)]ij = 1
[JD(G)]

ij
if

[JD (G)]ij 6= 0 and [RJD (G)]ij = 0 otherwise and the cosine Harary matrix (or

reciprocal cosine distance matrix ), denoted by R cosD (G), is defined as follows

[R cosD (G)]ij =
1

[cosD(G)]
ij

if [cosD (G)]ij 6= 0 and [R cosD (G)]ij = 0 otherwise.

In analogy to the Harary index, we introduce the natural, Jaccard and cosine

Harary indices. They are denoted by NH (G), JH (G) and cosH (D), respec-

tively. Their formal definitions are identified with the subsequent expressions

NH (G) =
1

2

n
∑

i=1

n
∑

j=1

[RND (G)]ij ,
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JH (G) =
1

2

n
∑

i=1

n
∑

j=1

[RJD (G)]ij

and

cosH (G) =
1

2

n
∑

i=1

n
∑

j=1

[R cosD (G)]ij .

One of the most discriminating topological indices is the Balaban index J (G)

[43]. For any complex network G = (V (G) , E (G)) where |V (G)| = n, this

invariant is given by the condition

J (G) :=
m

µ+ 1

∑

vivj∈E(G)

(s (vi) s (vj))
− 1

2 .

Here, m = |V (E)| and µ is the so-called cyclomatic number of G, i.e., µ = m−n+c

where c is the number of connected component included in G. Thus, µ is equal

to the smallest number of edges which must be deleted from G such that no cycle

remains. Note that the factor m
µ+1 from the defining formula of the Balaban index

brings about that the values of J (G) does not necessarily rise with increasing

number of nodes and cycles inG. In [37], M. Randić et al. introduced the “natural”

analogue of J (G) index, i.e, the natual Balaban index, denoted by NJ (G), and

expressed as follows

NJ (G) :=
m

µ+ 1

∑

vivj∈E(G)

(

sN (vi) s
N (vj)

)− 1

2 .

It seems desirable to introduce the Jaccard-Balaban (JJ (G)) and cosine Balaban

(cos J (G)) indices. Their formulae are as follows

JJ (G) :=
m

µ+ 1

∑

vivj∈E(G)

(

sJ (vi) s
J (vj)

)− 1

2

and

cosJ (G) :=
m

µ+ 1

∑

vivj∈E(G)

(scos (vi) s
cos (vj))

− 1

2 .
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For a complex network G = (V (G) , E (G)), H.P. Schultz et al. (cf. [43]) intro-

duced the PRS (G) index (or Product of Row Sums index ) which is defined as the

product of the distance sums s (vi)

PRS (G) :=

n
∏

i=1

s (vi) or log (PRS (G)) := log

(

n
∏

i=1

s (vi)

)

=

n
∑

i=1

log (s (vi)) ,

where log (·) denotes the natural logarithm. In almost all applications, the second

expression (i.e., log (PRS (G))) is advised due to the large values that can be

achieved by the PRS (G) index. Now, the generalization of the PRS (G) index to

other distance sums is straightforward. Thus, we obtained three novel topological

indices, defined as the product of the natural, Jaccard and cosine distance sums,

respectively. These new invariants are denoted by PRSN (G), PRSJ (G) and

PRScos (G), respectively. Their formulae are given by the following expressions

PRSN (G) :=
n
∏

i=1

sN (vi) or log
(

PRSN (G)
)

:=

= log

(

n
∏

i=1

sN (vi)

)

=

n
∑

i=1

log
(

sN (vi)
)

,

PRSJ (G) :=

n
∏

i=1

sJ (vi) or log
(

PRSJ (G)
)

:=

= log

(

n
∏

i=1

sJ (vi)

)

=

n
∑

i=1

log
(

sJ (vi)
)

and

PRScos (G) :=
n
∏

i=1

scos (vi) or log (PRScos (G)) :=

= log

(

n
∏

i=1

scos (vi)

)

=

n
∑

i=1

log (scos (vi)) .

As mentioned in Introduction, many complex networks are characterized by the

occurence of hubs and the small world property. Consequently, D. Bonchev in-

tegrated the information on the network adjacencies and distances into single

topological index [7,9]. The simplest manner to combine these two properties into
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one quantity is to calculate the proportion of the network total adjacency to the

network total distance. Thus, for any complex network G = (V (G) , E (G)), it is

possible to formulate the so-called first Bourgas index [7, 9], denoted by B1 (G),

whose formal definition is as follows

B1 (G) :=

n
∑

i=1

n
∑

j=1

[A (G)]ij

n
∑

i=1

n
∑

j=1

[D (G)]ij

.

This topological index (also understood as the network complexity measure) rises

with the increase of the cardinality of E (G) and with the more compressed kind of

topological arrangement. Therefore, the first Bourgas index can be used to quan-

titatively evaluate the “small-worldness” of a given complex network G. Three

generalization of this index to other distance structures are given by the following

conditions

NB1 (G) :=

n
∑

i=1

n
∑

j=1

[A (G)]ij

n
∑

i=1

n
∑

j=1

[ND (G)]ij

,

JB1 (G) :=

n
∑

i=1

n
∑

j=1

[A (G)]ij

n
∑

i=1

n
∑

j=1

[JD (G)]ij

and

cosB1 (G) :=

n
∑

i=1

n
∑

j=1

[A (G)]ij

n
∑

i=1

n
∑

j=1

[cosD (G)]ij

.

The invariants NB1, JB1 and cosB1 are termed as the first natural Bourgas,

first Jaccard Bourgas and first cosine Bourgas indices, respectively. On the other

hand, the second Bourgas index B2 (G) (also introduced by D. Bonchev [7, 9])

which quantifies the “compactness” of a complex network G = (V (G) , E (G))

where |V (G)| = n is given by the following formula

B2 (G) =

n
∑

i=1

ki
s (vi)

.
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In this case, the second natural Bourgas (NB2 (G)), second Jaccard Bourgas

(JB2 (G)) and second cosine Bourgas (cosB (G)) indices are expressed by the

subsequent formulae

NB2 (G) :=

n
∑

i=1

ki
sN (vi)

,

JB2 (G) :=

n
∑

i=1

ki
sJ (vi)

and

cosB2 (G) :=

n
∑

i=1

ki
scos (vi)

.

In network data mining, three most popular eigenvalue-based topological indices

derived from the distance matrixD (G) whereG = (V (G) , E (G)) and |V (G)| = n

are the distance spectral radius of G, the distance energy of G and the distance

Estrada index of G [19, 25, 43]. Note that for every undirected complex network

G, the matrix D (G) is real and symmetric. Therefore, the eigenvalues of D (G)

are also real and can be ordered in non-increasing order, ρ1 ≥ ρ2... ≥ ρn. Then,

the distance spectral radius, denoted by ρ (D (G)), is given by the condition

ρ (D (G)) := max {|ρ1| , |ρ2| , ..., |ρn|}

whereas the distance energy DE (G) of G is defined as

DE (G) :=

n
∑

i=1

|ρi| .

In turn, the distance Estrada index, denoted by DEE (G), for G is identified by

the subsequent expression

DEE (G) :=
n
∑

i=1

eρi .

The eigenvalues of the matrices ND (G), JD (G) and cosD (G) are also real and

can be ordered in non-increasing order. Denoting by ρNi , ρJi and ρcosi the eigen-

values of the natural, Jaccard and cosine distance matrix, respectively, we obtain

the following definitions

ρ (ND (G)) := max
{∣

∣ρN1
∣

∣ ,
∣

∣ρN2
∣

∣ , ...,
∣

∣ρNn
∣

∣

}

,
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ρ (JD (G)) := max
{∣

∣ρJ1
∣

∣ ,
∣

∣ρJ2
∣

∣ , ...,
∣

∣ρJn
∣

∣

}

,

ρ (cosD (G)) := max {|ρcos1 | , |ρcos2 | , ..., |ρcosn |} ,

NDE (G) :=
n
∑

i=1

∣

∣ρNi
∣

∣ ,

JDE (G) :=
n
∑

i=1

∣

∣ρJi
∣

∣ ,

cosDE (G) :=
n
∑

i=1

|ρcosi | ,

NDEE (G) :=

n
∑

i=1

eρ
N
i ,

JDEE (G) :=

n
∑

i=1

eρ
J
i

and

cosDEE (G) :=

n
∑

i=1

eρ
cos

i .

Here, ρ (ND (G)), ρ (JD (G)) and ρ (cosD (G)) stand for the natural, Jaccard

and cosine distance spectral radius of G, respectively, NDE (G), JDE (G) and

cosDE (G) for the natural, Jaccard and cosine distance energy of G, respectively.

In turn, NDEE (G), JDEE (G) and cosDEE (G) denote the natural, Jaccard

and cosine distance Estrada indices, respectively.

The distance polynomial, denoted by Ch (D), of any complex network G =

(V (G) , E (G)) where |V (G)| = n is identified with the characteristic polynomial

of its distance matrix D (G) [43], i.e.,

Ch (D) = det (xI−D) =
n
∑

k=0

ckx
n−k,

where I is the identity matrix and ck are the coefficients of this polynomial. It

seems justifiable to generalize the above definition to other distance matrices.

Thus, the natural, Jaccard and cosine distance polynomials of G (denoted by

Ch (ND), Ch (JD) and Ch(cosD), respectively) are given by the following for-

mulae

Ch (ND) = det (xI−ND) =
n
∑

k=0

cNk xn−k,
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Ch (JD) = det (xI− JD) =

n
∑

k=0

cJkx
n−k

and

Ch (cosD) = det (xI− cosD) =

n
∑

k=0

ccosk xn−k,

where cNk , cJk and ccosk are the coefficients of the natural, Jaccard and cosine dis-

tance polynomials, respectively. One of the characteristic polynomial-base topo-

logical indices is the Hosoya Z ′ index [43]. Namely, for any complex network

G = (V (G) , E (G)) where |V (G)| = n, this invariant is defined as follows

Z ′ (G) =

n
∑

k=0

|ck| ,

where |ck| are the absolute values of the coefficients of the distance polynomial

associated with G. In order to generalize this index to the newly proposed distance

polynomials, let us introduce the following definitions

NZ ′ (G) =

n
∑

k=0

∣

∣cNk
∣

∣ ,

JZ ′ (G) =

n
∑

k=0

∣

∣cJk
∣

∣

and

cosZ ′ (G) =

n
∑

k=0

|ccosk | ,

where
∣

∣cNk
∣

∣,
∣

∣cJk
∣

∣ and |ccosk | are the absolute values of the coefficients of the natural,

Jaccard and cosine distance polynomials. In this context, the quantities NZ ′, JZ ′

and cosZ ′ are termed as the natural, Jaccard and cosine Hosoya Z ′ indices.

Also, some information theory-based complexity measure for a complex net-

work G = (V (G) , E (G)) where |V (G)| = n was proposed by E.V. Konstantinova

et al. In [27], the vertex complexity index (denoted by HD (vi)) for any vertex

vi ∈ V (G) was introduced and defined as the entropy of its shortest distances

from all other vertices in G, i.e.,

HD (vi) := −
n
∑

j=1

dG (vi, vj)

s (vi)
log2

(

dG (vi, vj)

s (vi)

)

.
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Then, the global measure has the form

Hn
D (G) :=

n
∑

i=1

HD (vi) .

Here, Hn
D denotes the information distance index of G. Denoting by HN (vi),

HJ (vi) and Hcos (vi) the entropies of the natural, Jaccard and cosine distances

for vi ∈ V (G), we obtain the following expressions

HN (vi) := −
n
∑

j=1

dNG (vi, vj)

sN (vi)
log2

(

dNG (vi, vj)

sN (vi)

)

,

Hn
N (G) :=

n
∑

i=1

HN (vi) ,

HJ (vi) := −
n
∑

j=1

dJG (vi, vj)

sJ (vi)
log2

(

dJG (vi, vj)

sJ (vi)

)

,

Hn
J (G) :=

n
∑

i=1

HJ (vi) ,

Hcos (vi) := −
n
∑

j=1

dcosG (vi, vj)

scos (vi)
log2

(

dcosG (vi, vj)

scos (vi)

)

and

Hn
cos (G) :=

n
∑

i=1

Hcos (vi) .

The quantities Hn
N , Hn

J and Hn
cos stand for the information natural distance, in-

formation Jaccard distance and information cosine distance indices, respectively.

In Section 7, it will be demonstrated numerically that most of the newly iden-

tified topological invariants have a significantly reduced level of degeneracy.

6. Datasets and computational methods

All exemplary complex networks used in the present study are publically avail-

able. Four of the six networks used in this study are classified as spatial (they

are denoted by ptn1, ptn2, ptn3 and ptn4) while the other two are considered

as social (they are denoted by sn1 and sn2). The ptn1 network is the largest
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connected component of the graph USairports from [12]. This dataset is the net-

work of passenger flights between airports in the United States in 2010 December.

We removed all loops and multiple edges from this largest component. All edges

were treated as undirected. The ptn2 network is the dataset describing all air

connections between US states during 2014 (from the Bureau of Transportation

Statistics) downloaded from [20]. The ptn3 network is the largest connected com-

ponent of the graph of London metro downloaded from [38]. The ptn4 network is

the dataset of the Goettingen bus connections [31]. In our study, we treat all edges

of this network as undirected. The sn1 network is the dataset of frequent associ-

ations between 62 dolphins [29]. This network was downloaded from [5]. The sn2

network is the dataset UKfaculty from [12]. This dataset is the personal friendsip

network of a faculty of a UK university. In the present work, we treat all edges of

this dataset as undirected and unweighted. Thus, we used in our study six real-

world networks (four public transportation and two social networks). The basic

statistical characteristics of these six network datasets are contained in Table 2.

Table 2
The statistical parameters of six real-world complex networks

Index ptn1 ptn2 ptn3 ptn4 sn1 sn2

|V (G)| 745 53 318 257 62 81
|E (G)| 4618 1150 366 328 159 577
dens (G) 0.0167 0.8345 0.0073 0.0100 0.0841 0.1781
L (λ2) 0.0743 7.9652 0.0065 0.0085 0.1730 1.3261
Q (w) 0.3368 0.0182 0.7605 0.8046 0.4888 0.4317
Q (fg) 0.4310 0.0298 0.8249 0.8157 0.4955 0.4442
Q (le) 0.4096 0.0315 0.7922 0.7523 0.4912 0.3970
〈l〉 3.4472 1.1655 13.8241 11.8418 3.3570 2.0975

For a complex network G = (V (G) , E (G)) where V (G) = n and E (G) = m,

its density (dens (G)) is calculated according to the equation dens (G) = 2m
n(n−1) .

The algebraic connectivity (denoted by L (λ2)) of G is identified with the second

smallest eigenvalue of the Laplacian matrix L (G) [19]. The Laplacian matrix is

defined as L (G) = Deg (G) − A (G) where Deg (G) is the degree matrix for G

and A (G) is its adjacency matrix. The degree matrix is a n× n diagonal matrix

whose entries are defined as follows [Deg (G)]ij = ki if vi = vj and [Deg (G)]ij = 0

otherwise. The modularity Q of a complex network with respect to some divi-

sion of its vertex set V (G) is computed according to the subsequent equation

Q = 1
2m

∑

vi,vj

(

[A (G)]ij −
kikj

2m

)

δ (ci, cj) where ci is the type of vi, cj that of vj ,
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Table 3
The statistical parameters of two

network models

Index rand.ptn2 rand.sn2

|V (G)| 53 81
|E (G)| 1150 577
dens (G) 0.8345 0.1781
L (λ2) 35.5083 5.8150
Q (w) 0.0168 0.1761
Q (fg) 0.0291 0.1872
Q (le) 0.0291 0.1704
〈l〉 1.1655 1.8842

the summation is carried out over all vi and vj pairs of nodes and δ (ci, cj) = 1

if ci = cj and 0 otherwise [11]. In our study, we calculated the modularity of

six real-world networks (and two randomly generated models) subjected to three

different types of division of V (G). These divisions are identified with the follow-

ing algorithms: the walktrap community finding algorithm (Q (w)) [35], the fast

greedy modularity optimalization algorithm (Q (fg)) and the leading eigenvector

method (Q (le)) [11]. The average path length 〈l〉 of G is calculated according

to the equation 〈l〉 = 1
n(n−1)

∑

vi 6=vj

dG (vi, vj). Two random networks, denoted by

rand.ptn2 and rand.sn2, were generated according to the G (n,m) model where n

is the number of nodes and m is the number of edges [19,33]. These edges are cho-

sen uniformly randomly from the collection of all possible edges. Eight statistical

properties of these two models are summarized in Table 3. The results from this

Table as well as from Tables 6 and 9 are averages based on 200 simulation trials.

All discriminating tests were carried out on a synthetic dataset of all exhaus-

tively generated non-isomorphic, undirected and connected networks having up to

7 nodes with the exception of the unique network with |V (G)| = 1 and |E (G)| = 0.

This dataset, denoted by G, contains 995 small graphs (1 graph with |V (G)| = 2,

2 graphs with |V (G)| = 3, 6 graphs with |V (G)| = 4, 21 graphs |V (G)| = 5,

112 graphs with |V (G)| = 6 and 853 graphs with |V (G)| = 7). Note that these

quantities are in agreement with the Pólya enumeration theory [34]. All networks

from G are numbered from 1 (the network K2) to 995 (the network K7). Here,

the symbol Kn denotes the complete network with n nodes. In order to quantify

the uniqueness (i.e., the degree of degeneracy)of a particular topological index TI
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or centrality measure C, the sensitivity index S (TI/C) indtroduced by E.V. Kon-

stantinova was used [27]. This index is defined as

S (TI/C) =
|G| − |ndv (G)|

|G|

where |G| denotes the cardinality of a dataset G on which TI or C were tested

(in our case |G| = 995) and |ndv (G)| stands for the number of degeneracies of

TI or C within G. It is immediately apparent that when S (TI/C) = 1, then

the analyzed dataset G does not contain any pair (or subset) of non-isomorphic

networks with the same value of TI or with the same vector of centralities. Also,

it can be easily demonstrated that the sensitivity index S (TI/C) is dependent on

the selected decimal places. Consequently, in discriminating tests, all topological

indices and all centrality measures were calculated with an accuracy of 6 decimal

places.

In the present paper, all linear relationships between two variables were as-

sessed by the Pearson correlation coefficient r.

All simulations and computations included in the present work were conducted

in the R programming language [13, 18, 22, 40]. The source codes of several R

functions used in this paper are published in [45].

7. Numerical results and discussion

7.1. Correlations between the closeness-type and

harmonic-type centrality measures

In this Section, we will explore the linear correlations between four closeness-

type and four harmonic-type centrality measures defined on six real-world complex

networks and two random network models (cf. Table 4, 5, 6). J.R.F. Ronqui and

G. Travieso observed that complex networks can be characterized by some peculiar

pattern of linear correlations between centrality measurements [42]. They called

this phenomena as the centrality correlation profile of a given network. From Ta-

bles 4 and 5, it can be seen that the correlation profiles of the ptn1, ptn3, ptn4, sn1

and sn2 datasets with respect to the closeness-type and harmonic-type centrali-

ties are comparable. Namely, it can be spotted that two centralities based on the

natural distance, i.e, NC and NHC are (within the closeness-type or harmonic-

type, respectively) negatively correlated with all other centrality measures based
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on the geodesic, Jaccard and cosine distances. On the other hand, all closeness-

type and all harmonic-type centralities based on the geodesic, Jaccard and cosine

distances are (within the closeness-type or harmonic-type, respectively) positively

correlated. The measurements carried out on the artificial model rand.sn2 con-

firm this regularity. In turn, the correlation profile of the ptn2 network is different.

In this case, all closeness type and all harmonic-type centralities are (within the

closeness-type or harmonic-type, respectively) very strongly positively correlated

(in the first type r is always greater than 0.97 and in the second type r is above

0.94). Also, all closeness-type and all harmonic-type measures evaluated on the

rand.ptn2 model are (within the closeness-type or harmonic-type, respectively)

very strongly positively correlated. From Table 2, it can be seen that the ptn2

network is characterized (among all analyzed datasets) by its significantly higher

density (0.8345) and algebraic connectivity (7.9652). Also, the ptn2 network differs

from other studied datasets by its lower modularity in all three types of measure-

ments (i.e., Q (w) = 0.0182, Q (fg) = 0.0298 and Q (le) = 0.0315). Note that

the random model of this network, i.e., the rand.ptn2 model is also marked by

its high algebraic connectivity (35.5083) and its low modularity (Q (w) = 0.0168,

Q (fg) = 0.0291 and Q (le) = 0.0291).

Therefore, it can be hypothetized that the correlation profiles of complex net-

works with respect to four closeness-type and four harmonic-type centrality mea-

sures is determined by the density, algebraic connectivity and modularity of these

highly structured relational entities.

Table 4
The Pearson correlation coefficients between four closeness-type centrality mea-

sures defined on six real-world complex networks

Centralities ptn1 ptn2 ptn3 ptn4 sn1 sn2

CC/NC −0.6975 0.9723 −0.4805 −0.3827 −0.7277 −0.8509
CC/JC 0.8096 0.9832 0.5716 0.4575 0.5359 0.8432
CC/ cosC 0.8513 0.9827 0.6489 0.5171 0.5850 0.9065
NC/JC −0.7156 0.9979 −0.2962 −0.3187 −0.6008 −0.7437
NC/ cosC −0.7271 0.9985 −0.4259 −0.4358 −0.6300 −0.7708
JC/ cosC 0.9914 0.9998 0.9766 0.9735 0.9847 0.9841
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Table 5
The Pearson correlation coefficients between four harmonic-type centrality

measures defined on six real-world complex networks

Centralities ptn1 ptn2 ptn3 ptn4 sn1 sn2

HC/NHC −0.7189 0.9466 −0.5840 −0.5311 −0.8847 −0.9254
HC/JHC 0.8299 0.9459 0.5943 0.3731 0.7161 0.8366
HC/ cosHC 0.8731 0.9491 0.6378 0.4554 0.6781 0.8749
NHC/JHC −0.7733 0.9994 −0.3411 −0.3494 −0.7415 −0.7389
NHC/ cosHC −0.7317 0.9995 −0.3593 −0.3812 −0.6680 −0.7651
JHC/ cosHC 0.9862 0.9999 0.9801 0.9758 0.9739 0.9930

Table 6
The Pearson correlation coefficients between four closeness-type and four

harmonic-type centrality measures defined on two network models

Centralities rand.ptn2 rand.sn2 Centralities rand.ptn2 rand.sn2

CC/NC 0.9868 −0.9357 HC/NHC 0.9868 −0.9726
CC/JC 0.9920 0.8990 HC/JHC 0.9920 0.9002
CC/ cosC 0.9911 0.8991 HC/ cosHC 0.9911 0.8984
NC/JC 0.9993 −0.8266 NHC/JHC 0.9993 −0.8200
NC/ cosC 0.9993 −0.8281 NHC/ cosHC 0.9993 −0.8179
JC/ cosC 0.9999 0.9971 JHC/ cosHC 0.9999 0.9973

7.2. Compexity of six real-world networks

In Section 4, we have introduced eight partition-dependent entropy measures

(i.e., the so-called mean information content indices) as well as eight partition-

independent entropy measures (i.e., the so-called structural information content

indices). Table 7 presents the values of mean information content invariants eval-

uated on six real-world complex networks. In the case of all networks, it can be

seen that the mean information content corresponding to three closeness-type cen-

tralities (NC, JC and cosC) and three harmonic-type centralities (NHC, JHC

and cosHC) are pairwise equal. On the other hand, the mean information content

evaluated with respect to the “classical” closeness centrality and “classical” har-

monic centrality attains the same value only in the case of the ptn2 network. In all

other cases, the values of ICC and IHC are different. Also, the measurements of

this invariant performed on the artificial model rand.ptn2 produced the identical
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values of ICC and IHC (cf. Table 9). These same measurements carried out on the

rand.sn2 model gave different results. Also, it was observed that in the cases of the

datasets ptn1, ptn2, sn1 and sn2 the mean information content indices evaluated

with respect to the newly proposed centralities, i.e., NC, JC, cosC, NHC, JHC

and cosHC are equal. This same phenomenon can be seen in the case of measure-

ments done on the rand.ptn2 and rand.sn2 models. In the cases of the datasets

ptn1, ptn2, sn1 and sn2, the mean information content invariants assessed with

respect to “non-classical” centralities have the higher values than their analogues

based on “classical” closeness and “classical” harmonic centralities. Also, from Ta-

ble 7, it can be observed that the mean information content of the ptn2 network

evaluated with respect to all eight centrality measures is the smallest among all

analyzed datasets. Therefore, it can be speculated that the partition-dependent

entropy measures derived from four closeness-type and four harmonic-type cen-

trality measures enable to differentiate real-world complex networks with respect

to their correlation profiles.

Table 8 summarizes the values of structural information content indices eval-

uated with respect to four closeness-type and four harmonic-type centrality mea-

sures defined on six real-world complex networks. From this table, it can be

observed that the partition-independent entropies of the dataset ptn2 assessed

with respect to all eight centralities are the smallest among all studied networks.

Also, it can be infer from Table 8 that the values of structural information content

indices within a given dataset are very similar but not identical (with a few excep-

tions). The standard deviation of the values of IC where C ∈
{

CC,NC, JC, cosC,

HC,NHC, JHC, cosHC
}

evaluated on six real-world networks ranges from 0.005

(the sn2 dataset) to 0.0245 (the ptn1 dataset). In two artificial models rand.ptn2

and rand.sn2, the standard deviation for the measurement of IC is equal to

0.0008 and 0.0007, respectively (cf. Table 9). Also, it can be spotted that

in the case of ptn1, ptn3, ptn4, sn1 and sn2 datasets, the values of IC where

C ∈ {JC, cosC, JHC, cosHC} are slightly higher than the values of this invariant

evaluated with respect to other centrality measures. In the case of ptn2 network,

the reverse relationships is observed. The measurements performed on two artifi-

cial models rand.ptn2 and rand.sn2 confirmed this regularity.

In summary, it can be stated that the structural information content indices can

be used in order to differentiate complex networks with respect to their correlation

profiles.
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Table 7
The partition-dependent entropy measures defined on six real-
world complex networks evaluated with respect to four closeness-

type and four harmonic-type centralities

Entropy ptn1 ptn2 ptn3 ptn4 sn1 sn2

ICC 8.6268 4.1713 8.2123 7.9045 5.2725 5.5618
INC 9.2485 5.3294 5.8985 6.8870 5.8897 6.3399
IJC 9.2485 5.3294 5.8585 6.8484 5.8897 6.3399

IcosC 9.2485 5.3294 5.8881 6.9025 5.8897 6.3399

IHC 9.0022 4.1713 8.2814 7.9434 5.7606 5.9602
INHC 9.2485 5.3294 5.8985 6.8870 5.8897 6.3399

IJHC 9.2485 5.3294 5.8585 6.8484 5.8897 6.3399
IcosHC 9.2485 5.3294 5.8881 6.9025 5.8897 6.3399

Table 8
The partition-independent entropy measures defined on six real-
world complex networks evaluated with respect to four closeness-

type and four harmonic-type centralities

Entropy ptn1 ptn2 ptn3 ptn4 sn1 sn2

ICC 9.5205 5.7164 8.2716 7.9657 5.9334 6.3274
INC 9.4965 5.7104 8.3073 7.9999 5.9405 6.3333
IJC 9.5410 5.7064 8.3129 8.0056 5.9541 6.3393
IcosC 9.5407 5.7022 8.3129 8.0056 5.9539 6.3383
IHC 9.5134 5.7210 8.2603 7.9635 5.9314 6.3257
INHC 9.4701 5.7006 8.3070 7.9996 5.9370 6.3321
IJHC 9.5410 5.6950 8.3129 8.0056 5.9540 6.3391
IcosHC 9.5406 5.6884 8.3129 8.0056 5.9537 6.3376

7.3. Discriminating tests

As mentioned in Section 5, the so-called discriminatory power is one of the fun-

damental characteristics of any network invariant TI [43]. This property measures

its capability to distinguish among the non-isomorphic networks. Many studies in

network data mining are devoted to quantitative assessments of the degree of de-

generacy of diverse topological indices. For instance, D. Bonchev and N. Trinajstić
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evaluated the discriminatory abilities of information and topological invariants be-

tween 45 alkane trees [10]. C. Raychaudhury et al. also conducted their studies

on 45 alkane trees as well as on 19 monocyclic networks [39]. E.V. Konstantinova

et al. investigated the discriminating abilities of different invariants on 1443032

polycyclic networks and 3473141 network trees [27]. Also, M. Dehmer et al. quan-

tified the discriminatory power of many topological indices on several datasets of

all exhaustively generated networks possessing n nodes [15, 16].

Table 9
The partition-dependent and partition independent entropy mea-
sures defined on two network models evaluated with respect to four

closeness-type and four harmonic-type centralities

Entropy rand.ptn2 rand.sn2 Entropy rand.ptn2 rand.sn2

ICC 3.2112 4.4058 ICC 5.7266 6.3384
INC 5.7279 6.3399 INC 5.7261 6.3383

IJC 5.7279 6.3399 IJC 5.7257 6.3398
IcosC 5.7279 6.3399 IcosC 5.7249 6.3397
IHC 3.2112 5.0986 IHC 5.7274 6.3382
INHC 5.7279 6.3399 INHC 5.7260 6.3382

IJHC 5.7279 6.3399 IJHC 5.7256 6.3398
IcosHC 5.7279 6.3399 IcosHC 5.7247 6.3397

Here, we present our results evaluating the discriminatory abilities of the newly

introduced centralities and invariants carried out on the dataset of all exhaustively

generated small networks having up to 7 vertices. Table 4 includes the results of

twelve discriminating experiments performed on the dataset G. In these tests,

twelve centrality measures C were evaluated on all networks from G.

Table 10
The sensitivity index (S) of twelve centrality mea-

sures (C)

C S (C) C S (C) C S (C)

DC 0.1709 CC 0.4804 HC 0.5116
BC 0.9397 NC 0.9146 NHC 0.9146
EC 0.9196 JC 0.9940 JHC 0.9940
PRC 0.9508 cosC 0.9940 cosHC 0.9940
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Two networks from G are said to be indistinguishable with respect to C if

they possess the same vector (in the non-decreasing order) of this centrality. In

this case, the measure C is said to be degenerate. From Table 4, it can be seen

that all tested centrality measures are degenerate to some extent. The degree

centrality DC exhibits the lower level of uniqueness with respect to the dataset

G. On the other hand, four newly introduced centralities, i.e., JC, cosC, JHC

and cosHC are extremely sensitive with respect to G. These four measures have

only six degeneracies within the dataset G. Thus, in the case of two closeness-

type centralities based on the Jaccard and cosine distances, the improvement in

the specificity is equal to 98.84 % in comparison with the classical closeness cen-

trality. In turn, in the case of two harmonic-type centralities also based on these

newly proposed distances, the improvement in the specificity is equal to 98.77 %

compared to the classical harmonic centrality. The degrees of degeneracy of the

eigenvector EC, natural closeness NC and natural harmonic NHC centralities

are comparable.

Consequently, it can be uttered that calculations of the Jaccard and cosine

closeness centralities as well as the Jaccard and cosine harmonic centralities can

be used as some precursor steps in the network isomorphism problem in order to

categorically classify certain pairs (or subsets) of networks as non-isomorphic.

Table 5 contains the degrees of degeneracy of the newly introduced topological

indices as well as their analogues based on the shortest path distance evaluated

on the dataset G.

Table 11
The sensitivity index (S) of fourty eight TIs derived from the geodesic, natural,

Jaccard and cosine distance matrices

TI S (TI) TI S (TI) TI S (TI) TI S (TI)

W 0.0111 WW 0.0221 H 0.0432 J 0.8302
NW 0.6633 NWW 0.6633 NH 0.6633 NJ 0.9940
JW 0.9779 JWW 0.9779 JH 0.9759 JJ 0.9920
cosW 0.9759 cosWW 0.9779 cosH 0.9759 cos J 0.9920

PRS 0.4714 B1 0.0312 B2 0.4432 ρ (D) 0.9226
PRS (ND) 0.9146 NB1 0.8261 NB2 0.9839 ρ (ND) 0.9025
PRS (JD) 0.9940 JB1 0.9658 JB2 0.9839 ρ (JD) 0.9799
PRS (cosD) 0.9940 cosB1 0.9719 cosB2 0.9839 ρ (cosD) 0.9799

DE 0.9397 DEE 0.9779 Z′ 0.5126 Hn

D 0.5116
NDE 0.9025 NDEE 0.9126 NZ′ 0.9106 Hn

N 0.9146
JDE 0.9799 JDEE 0.9940 JZ′ 0.9899 Hn

J 0.9920
cosDE 0.9799 cosDEE 0.9940 cosZ′ 0.9899 Hn

cos
0.9940
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From this table, some regularities can be deduced. Namely, in the cases of topo-

logical indices based on the distance matrix (i.e., the Wiener-type, hyper-Wiener-

type, Harary-type, Balaban-type and product of row sums-type invariants), on

the distance and adjacency matrix (i.e., the first and second Bourgas-type in-

variants), on the characteristic polynomial (i.e., the Hosoya Z ′-type invariants)

and on Information Theory (i.e., the information distance-type invariants), it can

be observed that the indices derived from the natural, Jaccard and cosine dis-

tance matrices are overwhelmingly more specific with respect to the dataset G

than their “shortest path distance” analogues. On the other hand, in the cases of

eigenvalue-based indices (i.e., distance spectral radius-type, distance energy-type

and distance Estrada-type invariants), only indices derived from the Jaccard and

cosine distance structures are significantly more unique with respect to G than

their “geodesic distance” counterparts. The eigenvalue-based indices derived from

the natural distance matrix are more degenerate than their “classical” analogues.

Thus, in the cases of nine topological indices (i.e., NJ , JJ , cosJ , PRS (JD),

PRS (cosD), JDEE, cosDEE, Hn
J and Hn

cos), the sensitivity index is above

0.99. Hence, these invariants are extremely specific with respect to the dataset G.

In the cases of seventeen topological indices (i.e., JW , cosW , JWW , cosWW ,

JH , cosH , JB1, cosB1, NB2, JB2, cosB2, ρ (JD), ρ (cosD), JDE, cosDE,

JZ ′ and cosZ ′), the sensitivity index is greater than 0.96. Hence, these invariants

can be regarded as strongly unique with regard to G.

In summary, it can be asserted that the topological indices derived from the

natural, Jaccard and cosine matrices can be helpful in network data mining and

their computations can be used (for instance) in order to desicively classify some

complex networks as non-isomorphic.

Table 12
The sensitivity index (S) of eight partition-dependent and eight partition-
independent entropy measures evaluated with respect to closeness-type

and harmonic-type centralities

TI S (TI) TI S (TI) TI S (TI) TI S (TI)

ICC 0.002 IHC 0.002 ICC 0.4573 IHC 0.4905
INC 0.002 INHC 0.002 INC 0.8422 INHC 0.8452
IJC 0.003 IJHC 0.003 IJC 0.8030 IJHC 0.8794
IcosC 0.002 IcosHC 0.002 IcosC 0.8824 IcosHC 0.9176
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Table 12 presents the degrees of degeneracy of the mean information content-

type and the structural information content-type indices derived from four close-

ness-type and four harmonic-type centrality measures. All these invariants were

evaluated on the dataset G. From this Table, it can be observed that ICC , INC ,

IJC , IcosC , IHC , INHC , IJHC and IcosHC complexity measures are highly de-

generate. They uniquely identify only two or three networks within the dataset

G. On the other hand, eight partition-independent complexity measures are more

specific with respect to this dataset. Six structural information content indices

derived from six newly introduced centralities, i.e., INC , IJC , IcosC , INHC , IJHC

and IcosC are less degenerate than their counterparts derived from the “classical”

closeness and “classical” harmonic centralities, i.e., ICC and IHC .

7.4. The newly defined topological indices as cyclicity

measures

In this Subsection, we will apply the concepts introduced in Section 5 to the

class of all connected cyclic graphs with five vertices in order to study their cyclic-

ity. This octet of small networks is given in Figure 2.

Fig. 2. All connected cyclic graphs with five vertices

Molecular cyclicity is a structural property that has not yet been strictly de-

fined. Nevertheless, from an intuitive point of view, the notion of cyclicity is con-

ceptually linked to the number of cycles (i.e., closed paths) formed from a fixed

number of nodes. Consequently, it can be observed that the higher quantity of

closed paths, the higer cyclicity of a network. This notion is mainly studied in

Chemical Graph Theory.
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The set of all connected cyclic graphs with five vertices was studied in [2,30,36].

The topological indices from Section 5 evaluated on these eight small networks

produced the orders presented in Table 13.

Table 13
The orders of eight graphs from Figure 2 induced by fourty eight TIs

entry Order TI

I A < B < C < D < E < F < G < H JJ , cos J , NB1, JB1, cosB1, NB2,
JB2, cosB2

II H < G < F < E < D < C < B < A NW , JW , cosW , JWW , PRS(ND),
PRS(JD), PRS(cosD), ρ(D),
ρ(ND), ρ(JD), ρ(cosD), NDE,
JDE, cosDE, DEE, NDEE,
JDEE, cosDEE, cosZ′

III A < B < D < C < F < E < G < H J , B2, Hn

D

IV H < G < E < F < C < D < B < A NWW , cosWW , PRS

V A < B < C = D < E = F < G < H H, B1
V I H < G < F = E < D = C < B < A W , WW

V II H < G < F < E < C < D < B < A DE

V III H < G < F < E = D < C < B < A Z′

IX B < A < C < D < E < F < G < H NJ

X F < G < D < A < B < C < E < H NH

XI F < A < D < B < G < C < E < H JH, cosH
XII F < G < D < H < E < C < B < A NZ′

XIII F < G < H < D < E < C < B < A JZ′

XIV F < D < G < B < C < E < A < H Hn

N
, Hn

J
, Hn

cos

From this table, it can be observed that eight topological indices (i.e, JJ , cosJ ,

NB1, JB1, cosB1, NB2, JB2, cosB2 and cosB2) ordered eight cyclic networks

illustrated in Figure 2 according to their increased cyclicity. This means that the

lowest values are ascribed to the cycle C5 and the highest values to the complete

networkK5. The same order of this dataset was induced by the Wiener sum and re-

sistance Balaban indices in [2] as well as by the number of spanning trees invariant

in [30]. On the other hand, nineteen indices (NW , JW , cosW , JWW , PRS(ND),

PRS(JD), PRS(cosD), ρ(D), ρ(ND), ρ(JD), ρ(cosD), NDE, JDE, cosDE,

DEE, NDEE, JDEE, cosDEE and cosZ ′) produced the reverse order by as-

cribing the highest values to the cycle C5 and the smallest values to the complete

graph K5. Note that the same order was produced by the Kirchhoff and Kirch-

hoff sum indices in [2]. The above results are also in agreement with Randić’s

order of this octet of small networks. In [36], he used the Wiener sum indices (ob-

tained from the quotient matrix D/∆, where ∆ is the detour matrix) as cyclicity

measures.
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The indices J , B2 and Hn
D also ascribed the smallest values to the cycle C5

and the highest values to the complete graph K5. In addition, these invariants

produced two reversals (i.e., C ↔ D and E ↔ F ). In turn, the indices NWW ,

cosWW and PRS induced the reverse order, that is, the smallest values are

possessed by the K5 network and the highest values by the C5 network. These

invariants also produced two reversals (i.e., D ↔ C and F ↔ E). The indices H

and B1 also ascribed the smallest values to the cycle C5 and the highest values

to the complete graph K5. These invariants equally valuate the graphs C and D

as well as the graphs E and F . Note that the order induced by the indices H

and B1 is identical to the order given by the vertex-degree sums (or equivalently,

twice the number of edges, i.e., 2m) and by the cyclomatic number µ. On the

other hand, the indices W and WW produced the reverse order. These invariants

also equally valuate the graphs C and D as well as E and F . The distance energy

ascribed the lowest value to the complete graph K5 and the highest value to the

cycle C5. This invariant induced one reversal (i.e., D ↔ C). The Hosoya index

Z ′ also ascribed the lowest value to the network K5 and the highest value to the

network C5. This invariant equally valuates the graphs D and E.

To summarize the above results, it can be asserted that the orders I, III

and V from Table 13 are intuitively acceptable. Hence, the topological indices

inducing these orders can be used as cyclicity measures in the field of network

data mining. In turn, the reverse orders (i.e., the orders II, IV , V I, V II and

V III) can be simply changed to the correct orders by adding a minus sign to

the relevant topological indices. Therefore, the invariants inducing the reverse

orders can also be regarded as cyclicity measures. On the other hand, the indices

NJ , NH , JH , cosH , NZ ′, JZ ′, Hn
N , Hn

J and Hn
cos (similarly as the reciprocal

spanning-tree densities in [30]) produced an intuitively unacceptable orders and

they can not be applied as cyclicity measures.

All detailed numerical values of fourty eight topological indices evaluated on

the set of all connected cyclic graphs with five vertices are published in [45].

7.5. The newly defined centrality measures in QSPR studies

It can be easily observed that if C = {x1, x2, ..., xn} is any vector of centrality

measures then the quantities AM(C) (i.e., the arithmetic mean of C), GM(C)

(i.e., the geometric mean of C), HM(C) (i.e., the harmonic mean of C) and

‖C‖p (i.e., the p−norm of C) can be regarded as topological indices. Similarly

as two entropymeasures IC and IC , the quantities AM(C), GM(C), HM(C) and
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‖C‖p are network-level invariants derived from C. In this Subsection, we will

show numerically that many of these invariants can be used in QSPR studies of

saturated alkanes.

Saturated alkanes are considered as an especially attractive class of organic

compounds which are often used as a starting point for any QSPR studies. One

of the approaches often taken in such investigations is to choose a certain class

of alkanes (for instance, C8, C9 or C10 isomers) in order to obtain comparable

results and to avoid the so-called size effect. In the present work, we have used the

dataset of octane isomers. This benchmark dataset consists of 18 octane isomers

and contain 16 physicochemical properties of these compounds. International

Academy of Mathematical Chemistry advised to use this reference dataset for

any preliminary evaluation of modelling capabilities of newly proposed topological

indices. This dataset can be downloaded from [23]. For our study, we singled

out the subsequent properties of octanes: the boiling point (BP), the enthalpy

of formation (HFORM), the enthalpy of vaporization (HVAP) and the standard

enthalpy of vaporization (DHVAP). The rationale for selecting these properties is

that for this collection of physicochemical parameters at least one of the tested

invariants exhibits a relatively good linear correlation (i.e., |r| > 0.8).

Table 14
The Pearson correlation coefficients between four physico-
chemical properties of octanes and the central tendency-type
topological indices derived from four closeness-type centrality

measures; the values above |0.8| are in bold

TI BP HFORM HVAP DHVAP

AM(CC) −0.4911 −0.479 −0.7084 −0.7975
AM(NC) −0.8493 −0.8833 −0.9135 −0.9262
AM(JC) −0.8511 −0.883 −0.8821 −0.8843
AM(cosC) −0.8599 −0.8895 −0.9084 −0.9141
GM(CC) −0.5041 −0.4928 −0.7196 −0.8069
GM(NC) −0.8398 −0.8755 −0.9106 −0.9276
GM(JC) −0.8457 −0.8792 −0.8802 −0.8857
GM(cosC) −0.8495 −0.8831 −0.9039 −0.9142
HM(CC) −0.5163 −0.5059 −0.73 −0.8158
HM(NC) −0.8271 −0.8659 −0.9076 −0.9294
HM(JC) −0.8393 −0.8745 −0.8774 −0.8861
HM(cosC) −0.8363 −0.8746 −0.8971 −0.9122
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From Table 14, it can be observed that all central tendency-type topological

indices derived from the newly introduced centrality measures are satisfactorily

linearly correlated with four properties of octanes. Also, all central tendency-

type invariants derived from the natural, Jaccard and cosine centralities exhibit

significantly higher correlations than their counterparts derived from the “classi-

cal” closeness centrality.

On the other hand, our initial studies indicated that in almost all cases the cen-

tral tendency-type topological indices derived from the harmonic-type centralities

are not satisfactorily correlated with this set of properties (data not shown).

In this paper, the p−norm-type indices were computed for p = 2 and p = 3.

From Table 15, it can be spotted that all p−norm-type network invariants derived

from the newly introduced centrality measures exhibit |r| > 0.8. In all cases, they

are significantly better correlated with four physicochemical properties of octanes

than their counterparts based on “classical” closeness centrality.

On the other hand, the p−norm-type topological indices derived from the

harmonic-type centralities are weakly linearly correlated with this set of physico-

chemical properties (data not shown).

Table 15
The Pearson correlation coefficients between four physico-
chemical properties of octanes and the p-norm-type topo-
logical indices derived from four closeness-type centrality

measures; the values above |0.8| are in bold

TI BP HFORM HVAP DHVAP

‖CC‖2 −0.4779 −0.4654 −0.6972 −0.788
‖NC‖2 −0.8567 −0.8901 −0.9164 −0.9251
‖JC‖2 −0.8554 −0.8859 −0.8832 −0.8821
‖cosC‖2 −0.8675 −0.8941 −0.9109 −0.9125
‖CC‖3 −0.4648 −0.4525 −0.6864 −0.7788
‖NC‖3 −0.8626 −0.8957 −0.919 −0.9239
‖JC‖3 −0.8586 −0.8879 −0.8834 −0.8792
‖cosC‖3 −0.873 −0.8972 −0.9119 −0.9097

From Table 16, it can be observed that all partition-dependent entropy mea-

sures evaluated with respect to the newly defined centralities are significantly

better linearly correlated with BP, HFORM, HVAP and DHVAP than their ana-

logue based on the “classical” closeness centrality. Also, from this Table, it can be

seen that only one invariant (i.e., INC) is satisfactorily linearly correlated with the
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above properties of octanes. In turn, in almost all cases, the partition-independent

entropy measures derived from the newly introduced centralities exhibit higher

correlations with these properties than their analogue defined with respect to

“classical” closeness centrality. Only two indices (i.e., IJHC and IcosHC) are sat-

isfactorily correlated with this set of physicochemical properties of octanes.

The partition-dependent entropy measures evaluated with respect to the clo-

seness-type or harmonic-type centralities are weakly correlated with this set of

parameters.

Table 16
The Pearson correlation coefficients between four
physicochemical properties of octanes and the parti-
tion-independent entropy measures evaluated with re-
spect to four closeness-type and four harmonic-type

centralities; the values above |0.8| are in bold

TI BP HFORM HVAP DHVAP

ICC −0.2669 −0.3183 −0.0786 0.0445
INC 0.8938 0.9184 0.9115 0.8828
IJC 0.7803 0.7863 0.7554 0.7033
IcosC 0.7864 0.7605 0.7395 0.6749
IHC 0.3846 0.327 0.5857 0.6799
INHC 0.6846 0.5531 0.6044 0.507
IJHC 0.8394 0.8186 0.8425 0.8142
IcosHC 0.8938 0.8315 0.8895 0.8574

To sum up these results, it can be uttered that the newly introduced centrali-

ties and the network-level topological indices derived from these measures exhibit

better modelling abilities than their “classical” analogues. Consequently, it can

be speculated that these new invariants can be used as molecular descriptors (i.e.,

structurally meaningful numbers) in QSPR studies.

8. Conclusions

In this report, we have introduced two novel distance structures, i.e., the Jac-

card and cosine distance matrices. Both these two-dimensional arrays satisfy Eu-

clid’s postulates. From these matrices and the natural distance matrix introduced

by Randić et al. [37], we have derived six novel centrality measures as well as
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several novel topological indices. In the experiments carried out on six real-world

complex networks and two random models, we have determined that linear corre-

lations between four closeness-type and four harmonic-type measures are mainly

governed by the density, algebraic connectivity and modularity of the underly-

ing networks. We have also determined that the so-called correlation profile of

a complex network depends on its mean and structural information content. In

discriminating tests performed on the dataset of all axhaustively generated small

networks, we have established that the newly introduced centralities and topolog-

ical indices in almost all cases are more sensitive with respect to this dataset than

their “classical” analogues.

The last two Subsections have presented some applications of the concepts in-

troduced in this work to Chemical Graph Theory. Namely, it has been shown that

most of the newly introduced topological indices can be used as cyclicity mea-

sures. Molecular cyclicity is a parameter that influence the behavior of molecules.

As stated in [8] “[...] molecular cyclicity is expressed by a number of topological

patterns or structural transformations that allow one to compare the cyclic com-

plexity of structures”. Consequently, it is possible to single out different aspects of

molecular cyclicity. Undoubtedly, eight intuitively acceptable orders from Table

13 reveal diverse facets of this notion. In our opinion, it seems justifiable to assert

that the novel cyclicity measures proposed in this work will be very helpful in

elucidating different levels of molecular intricacy.

The second important practical achievement of this paper was to demonstrate

that the newly introduced network invariants can be used as molecular descriptors.

Recall that “[t]he molecular descriptor is the final result of a logic and mathemat-

ical procedure which transforms chemical information encoded within a symbolic

representation of a molecule into a useful number or the result of some stan-

dardized experiment” [43]. It is widely recognized that any molecular descriptor

must be invariant with regard to labelling and numbering of atoms and any spa-

tial translations of molecules. Also, any molecular descriptor must be defined by

a computable mathematical expression and its values must be in an acceptable nu-

merical range. A good molecular descriptor should also be correlated with at least

one experimentally measurable physicochemical property and/or biological (phar-

macological, toxicological) activity. In Subsection 7.5, it has been demonstrated

that several invariants derived from the newly proposed centrality measures are

satisfactorily correlated with four selected physicochemical properties of octanes.

In almost all cases, they have higher correlation abilities than their counterparts

based on the “classical” concepts of centrality. Therefore, it seems justifiable to ut-

ter that these novel notions are able to extract some pieces of chemical information
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from molecular graphs and can be regarded as “good” molecular descriptors. It

can be hypothesized that invariants derived from the natural, Jaccard and cosine

distance matrices will be used in molecular modelling.
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10. Bonchev D., Trinajstić N.: Information theory, distance matrix and molecular

branching. J. Chem. Phys. 67 (1977), 4517–4533.

11. Clauset A., Newman M.E.J., Moore C.: Finding community structure in very

large networks. Phys. Rev. E 70 (2004), 066111.



Novel centrality measures. . . 61

12. Csardi G.: igraphdata: A collection of network data sets for the ’igraph’ pack-

age. R package version 1.0.1, https://CRAN.R-project.org/package=igraph-

data.

13. Csardi G., Nepusz T.: The igraph software package for complex network re-

search. InterJournal Complex Syst. 1695 (2006), http://igraph.org.

14. Dehmer M.: Information theory of networks. Symmetry 3 (2011), 767–779.

15. Dehmer M., Grabner M., Furtula B.: Structural discrimination of networks

by using distance, degree and eigenvalue-based measures. PLoS ONE 7 (2012),

e38564.

16. Dehmer M., Grabner M., Varmuza K.: Information indices with high discrim-

inative power for graphs. PloS ONE 7 (2012), e31214.

17. Dorogovtsev S.N., Mendes J.F.F.: Evolution of Networks: From Biological

Networks to the Internet and WWW. Oxford University Press, Oxford 2003.

18. Dray S., Dufour A.B.: The ade4 package: implementing the duality diagram

for ecologists. J. Stat. Soft. 22 (2007), 1–20.

19. Estrada E.: The Structure of Complex Networks: Theory and Applications.

Oxford University Press, Oxford 2011.

20. Eubank N.: http://github.com/nickeubank/gis in r/blob/master/RGIS6 Data/.

21. Gower J.C., Legendre P.: Metric and Euclidean properties of dissimilarity

coefficients. J. Classification 3 (1986), 5–48.

22. Hausser J., Strimmer K.: Entropy inference and the James-Stein estimator,

with application to nonlinear gene association networks. J. Mach. Learn. Res.

10 (2009), 1469–1484.

23. International Academy of Mathematical Chemistry:

www.moleculardescriptors.eu.

24. Ivanciuc O., Balaban T.S., Balaban A.T.: Design of topological indices. Part

4*. Reciprocal distance matrix, related local vertex invariants and topological

indices. J. Math. Chem. 12 (1993), 309–318.
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