Andrzej KASPERSKI

Institute of Mathematics
Silesian University of Technology

REMARKS ON THE SOBOLEV TYPE SPACES OF MULTIFUNCTIONS

Summary. In this paper we introduce the spaces of multifunctions $\mathbf{S}_{X, p q}$ and $\mathbf{X}_{p q}$ which correspond with the Sobolev space $W_{p q}$ and the space of multifunctions $\mathbf{X}_{m k c, \varphi, k, Y}$ which correspond with the Orlicz-Sobolev space W_{φ}^{k}. We study completeness of them. Also we give some theorems.

UWAGI O PRZESTRZENIACH MULTIFUNKCJI TYPU SOBOLEVA

Streszczenie. W artykule wprowadzamy przestrzenie multifunkcji $\mathbf{S}_{X_{p q}}$ and $\mathbf{X}_{p q}$, które odpowiadają przestrzeni Soboleva $W_{p q}$, oraz przestrzeń multifunkcji $\mathbf{X}_{m k c, \varphi, k, Y}$, która odpowiada przestrzeni Orlicza-Soboleva W_{φ}^{k}. Badamy zupełność tych przestrzeni. Podajemy także pewne twierdzenia dotyczące tych przestrzeni.

[^0]
1. Introduction

The notion of differential of multifunction was introduced in many papers (see [3, Chapter 6, section 7]). In this paper we apply the De Blasi definition of differential of multifunction from [1], and the Martelli-Vignoli definition from [9]. In the Definition 1 we join the definitions of a derivative of multifunction from $[2,3,5,9]$. We introduce the multiderivatives $F^{\prime}, D^{\alpha} F$ and $D F$. We introduce also the spaces of multifunctions $\mathbf{S}_{X, p q}, \mathbf{X}_{p q}$ and $\mathbf{X}_{m k c, \varphi, k, Y}$ and we prove completeness of them. In the Section 3 we generalize some results from [6, 8]. Additionally we give some theorems. The space $W_{p q}$ and its applications was presented in [4]. The aim of this note is to obtain the generalization of the Sobolev space $W_{p q}$ on the multifunctions.

We use the definitions and theorems connected with multifunctions from [3].
Let Y be the real Banach space with the norm $\|\cdot\|$ and θ be the zero in Y. Let $T \subset R$, let 2^{Y} denote the set all subsets of Y and let

$$
\mathbf{X}=\left\{F: T \rightarrow 2^{Y}: F(t) \text { is nonempty for every } t \in T\right\}
$$

For all nonempty and compact $A, B \subset Y$ we introduce the famous Hausdorff distance by

$$
\operatorname{dist}(A, B)=\max \left(\max _{x \in A} \min _{y \in B}\|x-y\|, \max _{y \in B} \min _{x \in A}\|x-y\|\right)
$$

Denote

$$
\begin{aligned}
P_{c}(Y) & =\{A \subset Y: A \text { is nonempty and compact }\} \\
P_{k c}(Y) & =\{A \subset Y: A \text { is nonempty and convex and compact }\}
\end{aligned}
$$

We define

$$
\begin{aligned}
\mathbf{X}_{k c} & =\left\{F \in \mathbf{X}: F(t) \in P_{k c}(Y) \text { for a.e. } t \in T\right\}, \\
\mathbf{X}_{m k c} & =\left\{F \in \mathbf{X}_{k c}: F \text { is graph measurable }\right\} .
\end{aligned}
$$

(See [3, Chapter 2: Definition 1.1, Theorem 2.4, Proposition 5.3]).
Let $B \in P_{c}(Y)$. Denote $|B|=\operatorname{dist}(B,\{\theta\})$. Let $F \in \mathbf{X}_{m k c}$. Now we introduce the function $|F|$ by the formula

$$
|F|(t)=|F(t)| \quad \text { for every } t \in T
$$

Let $F, G \in \mathbf{X}, a \in R$. We define $F+G$ and $a F$ by the formulae

$$
\begin{aligned}
(F+G)(t) & =\{x+y: x \in F(t), y \in G(t)\}, \\
(a F)(t) & =\{a x: x \in F(t)\}
\end{aligned}
$$

for every $t \in T$.

2. On the spaces of differentiable multifunctions

Let now T be open.

Definition 1. We say that $F \in \mathbf{X}_{k c}$ is differentiable if there is $H_{F} \in \mathbf{X}_{k c}$ such that for a.e. $t \in T$ there is $\delta>0$ such that

$$
\operatorname{dist}\left(F(t+h)-h H_{F}(t), F(t)\right) \leqslant|h| A_{t}^{1}(h),
$$

or

$$
\operatorname{dist}\left(F(t+h), F(t)+h H_{F}(t)\right) \leqslant|h| A_{t}^{2}(h)
$$

for every $h \in(-\delta, \delta)$, where

$$
\lim _{h \rightarrow 0} A_{t}^{1}(h)=\lim _{h \rightarrow 0} A_{t}^{2}(h)=0
$$

If F is differentiable then we write $F^{\prime}=H_{F}$ and F^{\prime} should be called the multiderivative of F.

Let $F(t)=[0, t]$ for every $t \geqslant 0$ and $F(t)=[t, 0]$ for every $t<0$. We have $F^{\prime}(t)=[0,1]$ for every $t \in R$.

Let $p \geqslant 1, \frac{1}{p}+\frac{1}{q}=1$. We define

$$
\begin{gathered}
\mathbf{X}_{p}=\left\{F \in \mathbf{X}_{m k c}:|F| \in L^{p}(T, R)\right\} \\
\mathbf{S}_{X, p q}=\left\{F \in \mathbf{X}_{m k c}: F \in \mathbf{X}_{p}, F \text { is differentiable and } F^{\prime} \in \mathbf{X}_{q}\right\} .
\end{gathered}
$$

It is easy to see that \mathbf{X}_{p} is a linear subset of \mathbf{X} and $\mathbf{S}_{X, p q}$ is a linear subset of \mathbf{X}_{p}.
Let now $\mu(T)<\infty$. For $F, G \in \mathbf{X}_{p}$ we define

$$
D_{p}(F, G)=\left(\int_{T}(\operatorname{dist}(F(t), G(t)))^{p} d t\right)^{\frac{1}{p}} .
$$

We easily obtain (see [8, Theorem 4.1 and the proof of Theorem 4.3]).

Theorem 2. The set \mathbf{X}_{p} with the metric D_{p} is a complete metric space.

For $F, G \in \mathbf{S}_{X, p q}$ we define

$$
d_{S_{X, p q}}(F, G)=D_{p}(F, G)+D_{q}\left(F^{\prime}, G^{\prime}\right)
$$

Theorem 3. The set $\mathbf{S}_{X, p q}$ with metric $d_{S_{X, p q}}$ is a complete metric space.
Proof. Let $\left\{F_{n}\right\}$ be the Cauchy sequence in $\left(\mathbf{S}_{X, p q}, d_{S_{X, p q}}\right)$. So $\left\{F_{n}\right\}$ is the Cauchy sequence in $\left(\mathbf{X}_{p}, D_{p}\right),\left\{F_{n}^{\prime}\right\}$ is the Cauchy sequences in $\left(\mathbf{X}_{q}, D_{q}\right)$.

So there are $F \in \mathbf{X}_{p}, G \in \mathbf{X}_{q}$ such that $F_{n} \rightarrow F$ and $F_{n}^{\prime} \rightarrow G$, as $n \rightarrow \infty$. We must prove that G is a multiderivatives of F. We have for a.e. $t \in T$:
if

$$
\operatorname{dist}\left(F_{n}(t+h)-h F_{n}^{\prime}, F_{n}(t)\right) \leqslant|h| A_{n, t}^{1}(h)
$$

we have

$$
\begin{aligned}
& \operatorname{dist}(F(t+h)-h G(t), F(t)) \leqslant \operatorname{dist}\left(F(t+h)-h G(t), F_{n}(t+h)-h F_{n}^{\prime}(t)\right) \\
&+ \operatorname{dist}\left(F_{n}(t+h)-h F_{n}^{\prime}, F_{n}(t)\right)+\operatorname{dist}\left(F_{n}(t), F(t)\right) \\
& \leqslant \operatorname{dist}\left(F(t+h), F_{n}(t+h)\right)+|h| \operatorname{dist}\left(F_{n}^{\prime}(t), G(t)\right) \\
&+ \operatorname{dist}\left(F_{n}(t+h)-h F_{n}^{\prime}(t), F_{n}(t)\right)+\operatorname{dist}\left(F_{n}(t), F(t)\right) \\
& \leqslant \operatorname{dist}\left(F(t+h), F_{n}(t+h)\right)+|h| \operatorname{dist}\left(G(t), F_{n}^{\prime}(t)\right) \\
& \quad \quad+|h| A_{n, t}^{1}(h)+\operatorname{dist}\left(F_{n}(t), F(t)\right)=|h| A_{t}^{1}(h),
\end{aligned}
$$

where

$$
\lim _{h \rightarrow 0} A_{t}^{1}(h)=0
$$

The proof in the second case is analogous.
Let now Y be Hilbert space, $T=[0, b]$. Let $1<p, q<\infty, \frac{1}{p}+\frac{1}{q}=1$. We define

$$
W_{p q}(T, Y)=\left\{x \in L^{p}(T, Y): x^{\prime} \in L^{q}(T, Y)\right\}
$$

where x^{\prime} is understood in the sense of vector-valued distribution,

$$
\|x\|_{W_{p q}(T, Y)}=\left(\|x\|_{L^{p}(T, Y)}^{2}+\left\|x^{\prime}\right\|_{L^{q}(T, Y)}^{2}\right)^{\frac{1}{2}}
$$

for every $x \in W_{p q}(T, Y)$.
Let $F \in \mathbf{X}_{p}$, we define

$$
\begin{gathered}
K_{F, p q}=\left\{f_{F}: f_{F}(t) \in F(t),\left\|f_{F}(t)\right\|=|F(t)| \text { a.e. and } f_{F} \in W_{p q}(T, Y)\right\} \\
\mathbf{X}_{p q}=\left\{F \in X_{p}: K_{F, p q} \neq \emptyset\right\}
\end{gathered}
$$

For $F, G \in \mathbf{X}_{p q}$ we define

$$
\rho(F, G)=D_{p}(F, G)+\operatorname{dist}\left(K_{F, p q}, K_{G, p q}\right)+\||F|-|G|\|_{L^{p}(T, R)}
$$

where

$$
\begin{gathered}
\operatorname{dist}\left(K_{F, p q}, K_{G, p q}\right)= \\
=\max \left(\sup _{a \in K_{F, p q}} \inf _{b \in K_{G, p q}}\|a-b\|_{W_{p q}(T, Y)}, \sup _{b \in K_{G, p q}} \inf _{a \in K_{F, p q}}\|a-b\|_{W_{p q}(T, Y)}\right) .
\end{gathered}
$$

We obtain

Theorem 4. The set $\mathbf{X}_{p q}$ with metric ρ is a linear complete metric space.
Proof. Let $\left\{F_{n}\right\}$ be a Cauchy sequence in $\left(\mathbf{X}_{p q}, \rho\right)$. So $\left\{F_{n}\right\}$ is a Cauchy sequence in $\left(\mathbf{X}_{p}, D_{p}\right)$ hence there is $F \in \mathbf{X}_{p}$ such that $D_{p}\left(F_{n}, F\right) \rightarrow 0$ as $n \rightarrow \infty$. Also $\left\{\left|F_{n}\right|\right\}$ is a Cauchy sequence in $L^{p}(T, R)$, so there is $a \in L^{p}(T, R)$ such that $\left\|\left|F_{n}\right|-a\right\|_{L^{p}(T, R)} \rightarrow 0$ as $n \rightarrow \infty$. Next there are $f_{F_{n}} \in K_{F_{n}, p q}$ such that $\left\{f_{F_{n}}\right\}$ is the Cauchy sequence in $W_{p q}(T, Y)$, so there is $h \in W_{p q}(T, Y)$ such that $\| f_{F_{n}}-$ $h \|_{W_{p q}(T, Y)} \rightarrow 0$ as $n \rightarrow \infty$. Then $f_{F_{n}} \rightarrow h$ in measure, hence $h(t) \in F(t)$ and $\|h(t)\|=|F(t)|$ a.e.

3. Generalized Orlicz-Sobolev spaces of multifunctions

Let now φ be a locally integrable, convex φ-function, let φ fulfils the Δ_{2} condition and let

$$
\inf _{t \in T} \varphi(t, 1)>0
$$

Let $W_{\varphi}^{k}(T)$ denotes the generalized Orlicz-Sobolev space (see [10, p. 66-68]), let $\|\cdot\|_{\varphi}^{k}$ denotes the norm in $W_{\varphi}^{k}(T),\|\cdot\|_{\varphi}$ denotes the Luksemburg norm in $L^{\varphi}(T)$ and $Y=R$. Let $\mathcal{D}^{a} x$ denotes the generalized derivatives of orders $a \leqslant k$ of $x \in W_{\varphi}^{k}(T)$. Let

$$
\mathbf{X}_{m k c, \varphi}=\left\{F \in \mathbf{X}_{m k c}: F(t)=s(t)+r(t)[-1,1] \text { for every } t \in T, \quad s, r \in L^{\varphi}(T)\right\}
$$

$$
\mathbf{X}_{m k c, \varphi, k}=\left\{F \in \mathbf{X}_{m k c}: F(t)=s(t)+r(t)[-1,1] \text { for every } t \in T, s, r \in W_{\varphi}^{k}(T)\right\}
$$

It is easy to see that $\mathbf{X}_{m k c, \varphi}$ and $\mathbf{X}_{m k c, \varphi, k}$ are the linear subsets of \mathbf{X} and we will be call $\mathbf{X}_{m k c, \varphi, k}$ the generalized Orlicz-Sobolev space of multifunctions.

If $F \in \mathbf{X}_{m k c, \varphi, k}$, then we define the generalized derivatives of order $a \leqslant k$ of F by

$$
D^{a} F(t)=\mathcal{D}^{a} s(t)+\mathcal{D}^{a} r(t)[-1,1] \quad \text { for every } t \in T
$$

Let $F_{1}, F_{2} \in \mathbf{X}_{m k c, \varphi, k}$ and

$$
F_{1}(t)=f_{1}(t)+g_{1}(t)[-1,1], \quad F_{2}(t)=f_{2}(t)+g_{2}(t)[-1,1]
$$

for every $t \in T$. We define

$$
\rho_{1}\left(F_{1}, F_{2}\right)=\left\|f_{1}-f_{2}\right\|_{\varphi}^{k}+\left\|g_{1}-g_{2}\right\|_{\varphi}^{k}
$$

It is easy to see that ρ_{1} is the metric in $\mathbf{X}_{m k c, \varphi, k}$ and $\left(\mathbf{X}_{m k c, \varphi, k}, \rho_{1}\right)$ is a complete linear metric space.

Let now $Y=R^{n}$. We define

$$
\mathbf{X}_{m k c, \varphi, Y}=\left\{F \in \mathbf{X}_{m k c}:|F| \in L^{\varphi}(T, R)\right\}
$$

It is easy to see that $\mathbf{X}_{m k c, \varphi, Y}$ is a linear space. Let $F \in \mathbf{X}_{m k c, \varphi, Y}$ we define

$$
K_{F, \varphi}=\left\{f_{F}: f_{F}(t) \in F(t) \text { and }\|f(t)\|=|F(t)| \text { a.e. }\right\} .
$$

It is easy to see that if $g \in K_{F, \varphi}$, then $g \in L^{\varphi}(T, Y)$.
We define

$$
\mathbf{X}_{m k c, \varphi, k, Y}=\left\{F \in \mathbf{X}_{m k c, \varphi, Y}:|F| \in W_{\varphi}^{k}(T)\right\}
$$

Let $F, G \in \mathbf{X}_{m k c, \varphi, k, Y}$, we define

$$
\rho_{2}(F, G)=\|\operatorname{dist}(F(\cdot), G(\cdot))\|_{\varphi}+\||F|-|G|\|_{\varphi}^{k}+\operatorname{dist}\left(K_{F, \varphi}, K_{G, \varphi}\right),
$$

where
$\operatorname{dist}\left(K_{F, \varphi}, K_{G, \varphi}\right)=\max \left(\sup _{a \in K_{F, \varphi}} \inf _{b \in K_{G, \varphi}}\|a-b\|_{L^{\varphi}(T, Y)}, \sup _{b \in K_{G, \varphi}} \inf _{a \in K_{F, \varphi}}\|a-b\|_{L^{\varphi}(T, Y)}\right)$.
Theorem 5. $\left(\mathbf{X}_{m k c, \varphi, k, Y}, \rho_{2}\right)$ is a complete metric space.
Proof. Let $\left\{F_{n}\right\}$ be a Cauchy sequence in $\left(\mathbf{X}_{m k c, \varphi, k, Y}, \rho_{2}\right)$, then (see [7, Corollary 1]) there is $F \in \mathbf{X}_{m k c, \varphi}$ such that

$$
\left\|\operatorname{dist}\left(F_{n}(t), F(t)\right)\right\|_{\varphi} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Also

$$
\operatorname{dist}\left(F_{n}(t), F(t)\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

in measure. So there is subsequence $\left\{F_{n_{k}}\right\}$ of the sequence $\left\{F_{n}\right\}$ such that

$$
\operatorname{dist}\left(F_{n_{k}}(t), F(t)\right) \rightarrow 0 \quad \text { a.e. }
$$

Also there are $f_{F_{n}} \in K_{F_{n}, \varphi}$ such that $\left\{f_{F_{n}}\right\}$ is a Cauchy sequence in $L^{\varphi}(T, Y)$, so there is $h \in L^{\varphi}(T, Y)$ such that

$$
\left\|f_{F_{n}}-h\right\|_{\varphi} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

We must prove that $h \in K_{F, \varphi}$ and $h \in W_{\varphi}^{k}(T)$. It is easy to see that $h(t) \in F(t)$ a.e. because $F_{n}(t)$ and $F(t)$ are convex and compact. Also we have

$$
\operatorname{dist}(F(t),\{\theta\}) \leqslant \operatorname{dist}\left(F(t), F_{n}(t)\right)+\operatorname{dist}\left(F_{n}(t),\{\theta\}\right)
$$

and

$$
\operatorname{dist}\left(\left(F_{n}(t),\{\theta\}\right) \leqslant \operatorname{dist}\left(F_{n}(t), F(t)\right)+\operatorname{dist}(F(t),\{\theta\})\right.
$$

so we have $h \in K_{F, \varphi}$. It is easy to see that $|F| \in W_{\varphi}^{k}(T)$.
We define

$$
S_{F}^{\varphi}=\left\{f \in L^{\varphi}(T, Y): f(t) \in F(t) \text { a.e. }\right\} .
$$

Let $F \in \mathbf{X}_{m k c, \varphi, 1, Y}$. By Theorem 3 and Remark 1 from [7] we define the generalized derivative of F by the formula

$$
D F=\left\{\mathcal{D} x: x \in W_{\varphi}^{1}(T), x \in S_{F}^{\varphi}\right\} .
$$

Let $F_{1}, F_{2} \in \mathbf{X}_{m k c, \varphi, 1, Y}$, let $S_{F_{1}}^{\varphi}, S_{F_{2}}^{\varphi} \neq \emptyset$ and let $F(t)=F_{1}(t)+F_{2}(t)$ for a.e. $t \in T$. By Theorem 4 and Remark 1 from $[7] S_{F_{1}}^{\varphi}+S_{F_{2}}^{\varphi} \subset S_{F}^{\varphi}$, so if $D F_{1}, D F_{2} \neq \emptyset$, then

$$
D F_{1}+D F_{2} \subset D F
$$

References

1. De Blasi S.: On differentiability of multifunctions. Pacific J. Math. 66 (1976), 67-81.
2. Gorokhovik V., Zabreiko P.: On Fréchet differentiability of multifunctions. Optimization 54 (2005), 391-409.
3. Hu S., Papageorgiu N.S.: Handbook of Multivalued Analysis, vol. I: Theory. Kluwer Academic Publ., Dordrecht 1997.
4. Hu S., Papageorgiu N.S.: Handbook of Multivalued Analysis, vol. II: Applications. Kluwer Academic Publ., Dordrecht 2000.
5. Hukuhara P.M.: Intégration des applications mesurables dont la valuer est un compact convexe. Funkc. Ekvac. 10 (1967), 205-223.
6. Kasperski A.: On multidistributions and X-distributions. Function Spaces: The Fifth Conference, Hudzik H., Skrzypcazk L. (eds.), Lecture Notes in Pure and Appl. Math. 213, Marcel Dekker, New York 2000, 247-254.
7. Kasperski A.: Decomposable sets and Musielak-Orlicz spaces of multifunctions. Banach Center Publ. 68 (2005), 71-77.
8. Kasperski A.: Remarks on the spaces of differentiable multifunctions. Banach Center Publ. 92 (2011), 167-175.
9. Martelli M., Vignioli A.: On differentiability of multivalued maps. Boll. UMI 10 (1974), 701-712.
10. Musielak J.: Orlicz Spaces and Modular Spaces. LNM 1034, Springer, Berlin 1983.

[^0]: 2010 Mathematics Subject Classification: 28B05, 26A24, 46F99, 47E99.
 Keywords: Musielak-Orlicz space of multifunctions, linear functional, De Blasi differential of multifunction, Orlicz-Sobolev space, distribution, generalized derivative.
 Corresponding author: A. Kasperski (andrzej.kasperski@polsl.pl).
 Received: 28.08.2015.
 A part of the first version of this paper was presented on the Conference Function Spaces X at Poznań in 2012.

