Seria: MATEMATYKA STOSOWANA z. 5

Nr kol. 1945

Andrzej KASPERSKI

Institute of Mathematics Silesian University of Technology

REMARKS ON THE SOBOLEV TYPE SPACES OF MULTIFUNCTIONS

Summary. In this paper we introduce the spaces of multifunctions $\mathbf{S}_{X,pq}$ and \mathbf{X}_{pq} which correspond with the Sobolev space W_{pq} and the space of multifunctions $\mathbf{X}_{mkc,\varphi,k,Y}$ which correspond with the Orlicz-Sobolev space W_{φ}^{k} . We study completeness of them. Also we give some theorems.

UWAGI O PRZESTRZENIACH MULTIFUNKCJI TYPU SOBOLEVA

Streszczenie. W artykule wprowadzamy przestrzenie multifunkcji $\mathbf{S}_{X_{pq}}$ and \mathbf{X}_{pq} , które odpowiadają przestrzeni Soboleva W_{pq} , oraz przestrzeń multifunkcji $\mathbf{X}_{mkc,\varphi,k,Y}$, która odpowiada przestrzeni Orlicza-Soboleva W_{φ}^k . Badamy zupełność tych przestrzeni. Podajemy także pewne twierdzenia dotyczące tych przestrzeni.

²⁰¹⁰ Mathematics Subject Classification: 28B05, 26A24, 46F99, 47E99.

Keywords: Musielak-Orlicz space of multifunctions, linear functional, De Blasi differential of multifunction, Orlicz-Sobolev space, distribution, generalized derivative.

Corresponding author: A. Kasperski (andrzej.kasperski@polsl.pl). Received: 28.08.2015.

A part of the first version of this paper was presented on the Conference Function Spaces X at Poznań in 2012.

1. Introduction

The notion of differential of multifunction was introduced in many papers (see [3, Chapter 6, section 7]). In this paper we apply the De Blasi definition of differential of multifunction from [1], and the Martelli-Vignoli definition from [9]. In the Definition 1 we join the definitions of a derivative of multifunction from [2,3,5,9]. We introduce the multiderivatives F', $D^{\alpha}F$ and DF. We introduce also the spaces of multifunctions $\mathbf{S}_{X,pq}$, \mathbf{X}_{pq} and $\mathbf{X}_{mkc,\varphi,k,Y}$ and we prove completeness of them. In the Section 3 we generalize some results from [6,8]. Additionally we give some theorems. The space W_{pq} and its applications was presented in [4]. The aim of this note is to obtain the generalization of the Sobolev space W_{pq} on the multifunctions.

We use the definitions and theorems connected with multifunctions from [3].

Let Y be the real Banach space with the norm $\|\cdot\|$ and θ be the zero in Y. Let $T \subset R$, let 2^Y denote the set all subsets of Y and let

 $\mathbf{X} = \{F : T \to 2^Y : F(t) \text{ is nonempty for every } t \in T\}.$

For all nonempty and compact $A, B \subset Y$ we introduce the famous Hausdorff distance by

$$dist(A, B) = \max(\max_{x \in A} \min_{y \in B} ||x - y||, \max_{y \in B} \min_{x \in A} ||x - y||).$$

Denote

 $P_c(Y) = \{A \subset Y : A \text{ is nonempty and compact}\},$ $P_{kc}(Y) = \{A \subset Y : A \text{ is nonempty and convex and compact}\}.$

We define

$$\mathbf{X}_{kc} = \{ F \in \mathbf{X} : F(t) \in P_{kc}(Y) \text{ for a.e. } t \in T \},\$$
$$\mathbf{X}_{mkc} = \{ F \in \mathbf{X}_{kc} : F \text{ is graph measurable} \}.$$

(See [3, Chapter 2: Definition 1.1, Theorem 2.4, Proposition 5.3]).

Let $B \in P_c(Y)$. Denote $|B| = \text{dist}(B, \{\theta\})$. Let $F \in \mathbf{X}_{mkc}$. Now we introduce the function |F| by the formula

$$|F|(t) = |F(t)|$$
 for every $t \in T$.

Let $F, G \in \mathbf{X}$, $a \in R$. We define F + G and aF by the formulae

$$(F+G)(t) = \{x+y : x \in F(t), y \in G(t)\},\ (aF)(t) = \{ax : x \in F(t)\}$$

for every $t \in T$.

2. On the spaces of differentiable multifunctions

Let now T be open.

Definition 1. We say that $F \in \mathbf{X}_{kc}$ is differentiable if there is $H_F \in \mathbf{X}_{kc}$ such that for a.e. $t \in T$ there is $\delta > 0$ such that

$$\operatorname{dist}(F(t+h) - hH_F(t), F(t)) \leq |h| A_t^1(h).$$

or

$$\operatorname{dist}(F(t+h), F(t) + hH_F(t)) \leq |h| A_t^2(h)$$

for every $h \in (-\delta, \delta)$, where

$$\lim_{h \to 0} A_t^1(h) = \lim_{h \to 0} A_t^2(h) = 0.$$

If F is differentiable then we write $F' = H_F$ and F' should be called the multiderivative of F.

Let F(t) = [0, t] for every $t \ge 0$ and F(t) = [t, 0] for every t < 0. We have F'(t) = [0, 1] for every $t \in R$.

Let $p \ge 1$, $\frac{1}{p} + \frac{1}{q} = 1$. We define

$$\mathbf{X}_p = \{ F \in \mathbf{X}_{mkc} : |F| \in L^p(T, R) \},\$$

$$\mathbf{S}_{X,pq} = \{ F \in \mathbf{X}_{mkc} : F \in \mathbf{X}_p, F \text{ is differentiable and } F' \in \mathbf{X}_q \}.$$

It is easy to see that \mathbf{X}_p is a linear subset of \mathbf{X} and $\mathbf{S}_{X,pq}$ is a linear subset of \mathbf{X}_p . Let now $\mu(T) < \infty$. For $F, G \in \mathbf{X}_p$ we define

$$D_p(F,G) = \left(\int_T (\operatorname{dist}(F(t),G(t)))^p dt\right)^{\frac{1}{p}}$$

We easily obtain (see [8, Theorem 4.1 and the proof of Theorem 4.3]).

Theorem 2. The set \mathbf{X}_p with the metric D_p is a complete metric space.

For $F, G \in \mathbf{S}_{X,pq}$ we define

$$d_{S_{X,pq}}(F,G) = D_p(F,G) + D_q(F',G').$$

Theorem 3. The set $\mathbf{S}_{X,pq}$ with metric $d_{S_{X,pq}}$ is a complete metric space.

Proof. Let $\{F_n\}$ be the Cauchy sequence in $(\mathbf{S}_{X,pq}, d_{S_{X,pq}})$. So $\{F_n\}$ is the Cauchy sequence in $(\mathbf{X}_p, D_p), \{F'_n\}$ is the Cauchy sequences in (\mathbf{X}_q, D_q) .

So there are $F \in \mathbf{X}_p$, $G \in \mathbf{X}_q$ such that $F_n \to F$ and $F'_n \to G$, as $n \to \infty$. We must prove that G is a multiderivatives of F. We have for a.e. $t \in T$: if

$$\operatorname{dist}(F_n(t+h) - hF'_n, F_n(t)) \leq |h| A_{n,t}^1(h),$$

we have

$$dist(F(t+h) - hG(t), F(t)) \leq dist(F(t+h) - hG(t), F_n(t+h) - hF'_n(t)) + dist(F_n(t+h) - hF'_n, F_n(t)) + dist(F_n(t), F(t)) \leq dist(F(t+h), F_n(t+h)) + |h| dist(F'_n(t), G(t)) + dist(F_n(t+h) - hF'_n(t), F_n(t)) + dist(F_n(t), F(t)) \leq dist(F(t+h), F_n(t+h)) + |h| dist(G(t), F'_n(t)) + |h|A_{n,t}^1(h) + dist(F_n(t), F(t)) = |h|A_t^1(h),$$

where

$$\lim_{h \to 0} A_t^1(h) = 0.$$

The proof in the second case is analogous.

Let now Y be Hilbert space, T = [0, b]. Let $1 < p, q < \infty, \frac{1}{p} + \frac{1}{q} = 1$. We define

$$W_{pq}(T,Y) = \{ x \in L^p(T,Y) : x' \in L^q(T,Y) \},\$$

where x' is understood in the sense of vector-valued distribution,

$$||x||_{W_{pq}(T,Y)} = (||x||_{L^{p}(T,Y)}^{2} + ||x'||_{L^{q}(T,Y)}^{2})^{\frac{1}{2}}$$

for every $x \in W_{pq}(T, Y)$.

Let $F \in \mathbf{X}_p$, we define

$$K_{F,pq} = \{ f_F : f_F(t) \in F(t), ||f_F(t)|| = |F(t)| \text{ a.e. and } f_F \in W_{pq}(T, Y) \},\$$
$$\mathbf{X}_{pq} = \{ F \in X_p : K_{F,pq} \neq \emptyset \}.$$

For $F, G \in \mathbf{X}_{pq}$ we define

$$\rho(F,G) = D_p(F,G) + \operatorname{dist}(K_{F,pq}, K_{G,pq}) + ||F| - |G||_{L^p(T,R)}$$

where

$$dist(K_{F,pq}, K_{G,pq}) = \\ = \max(\sup_{a \in K_{F,pq}} \inf_{b \in K_{G,pq}} \|a - b\|_{W_{pq}(T,Y)}, \sup_{b \in K_{G,pq}} \inf_{a \in K_{F,pq}} \|a - b\|_{W_{pq}(T,Y)}).$$

We obtain

Theorem 4. The set \mathbf{X}_{pq} with metric ρ is a linear complete metric space.

Proof. Let $\{F_n\}$ be a Cauchy sequence in (\mathbf{X}_{pq}, ρ) . So $\{F_n\}$ is a Cauchy sequence in (\mathbf{X}_p, D_p) hence there is $F \in \mathbf{X}_p$ such that $D_p(F_n, F) \to 0$ as $n \to \infty$. Also $\{|F_n|\}$ is a Cauchy sequence in $L^p(T, R)$, so there is $a \in L^p(T, R)$ such that $||F_n| - a||_{L^p(T,R)} \to 0$ as $n \to \infty$. Next there are $f_{F_n} \in K_{F_n,pq}$ such that $\{f_{F_n}\}$ is the Cauchy sequence in $W_{pq}(T, Y)$, so there is $h \in W_{pq}(T, Y)$ such that $||f_{F_n} - h||_{W_{pq}(T,Y)} \to 0$ as $n \to \infty$. Then $f_{F_n} \to h$ in measure, hence $h(t) \in F(t)$ and ||h(t)|| = |F(t)| a.e.

3. Generalized Orlicz-Sobolev spaces of multifunctions

Let now φ be a locally integrable, convex φ -function, let φ fulfils the Δ_2 condition and let

$$\inf_{t \in T} \varphi(t, 1) > 0.$$

Let $W_{\varphi}^{k}(T)$ denotes the generalized Orlicz-Sobolev space (see [10, p. 66–68]), let $\|\cdot\|_{\varphi}^{k}$ denotes the norm in $W_{\varphi}^{k}(T)$, $\|\cdot\|_{\varphi}$ denotes the Luksemburg norm in $L^{\varphi}(T)$ and Y = R. Let $\mathcal{D}^{a}x$ denotes the generalized derivatives of orders $a \leq k$ of $x \in W_{\varphi}^{k}(T)$. Let

$$\mathbf{X}_{mkc,\varphi} = \{ F \in \mathbf{X}_{mkc} : F(t) = s(t) + r(t)[-1,1] \text{ for every } t \in T, s, r \in L^{\varphi}(T) \},\$$

 $\mathbf{X}_{mkc,\varphi,k} = \{ F \in \mathbf{X}_{mkc} : F(t) = s(t) + r(t)[-1,1] \text{ for every } t \in T, \ s, r \in W_{\varphi}^{k}(T) \}.$

It is easy to see that $\mathbf{X}_{mkc,\varphi}$ and $\mathbf{X}_{mkc,\varphi,k}$ are the linear subsets of \mathbf{X} and we will be call $\mathbf{X}_{mkc,\varphi,k}$ the generalized Orlicz-Sobolev space of multifunctions.

If $F \in \mathbf{X}_{mkc,\varphi,k}$, then we define the generalized derivatives of order $a \leq k$ of F by

$$D^a F(t) = \mathcal{D}^a s(t) + \mathcal{D}^a r(t)[-1,1]$$
 for every $t \in T$.

Let $F_1, F_2 \in \mathbf{X}_{mkc,\varphi,k}$ and

 $F_1(t) = f_1(t) + g_1(t)[-1,1], \qquad F_2(t) = f_2(t) + g_2(t)[-1,1]$

for every $t \in T$. We define

$$\rho_1(F_1, F_2) = \|f_1 - f_2\|_{\varphi}^k + \|g_1 - g_2\|_{\varphi}^k.$$

It is easy to see that ρ_1 is the metric in $\mathbf{X}_{mkc,\varphi,k}$ and $(\mathbf{X}_{mkc,\varphi,k}, \rho_1)$ is a complete linear metric space.

Let now $Y = \mathbb{R}^n$. We define

$$\mathbf{X}_{mkc,\varphi,Y} = \{ F \in \mathbf{X}_{mkc} : |F| \in L^{\varphi}(T,R) \}.$$

It is easy to see that $\mathbf{X}_{mkc,\varphi,Y}$ is a linear space. Let $F \in \mathbf{X}_{mkc,\varphi,Y}$ we define

$$K_{F,\varphi} = \{ f_F : f_F(t) \in F(t) \text{ and } ||f(t)|| = |F(t)| \text{ a.e.} \}$$

It is easy to see that if $g \in K_{F,\varphi}$, then $g \in L^{\varphi}(T,Y)$.

We define

$$\mathbf{X}_{mkc,\varphi,k,Y} = \{ F \in \mathbf{X}_{mkc,\varphi,Y} : |F| \in W_{\varphi}^{k}(T) \}.$$

Let $F, G \in \mathbf{X}_{mkc,\varphi,k,Y}$, we define

$$\rho_2(F,G) = \|\operatorname{dist}(F(\cdot),G(\cdot))\|_{\varphi} + \||F| - |G|\|_{\varphi}^k + \operatorname{dist}(K_{F,\varphi},K_{G,\varphi}),$$

where

$$dist(K_{F,\varphi}, K_{G,\varphi}) = \max(\sup_{a \in K_{F,\varphi}} \inf_{b \in K_{G,\varphi}} \|a - b\|_{L^{\varphi}(T,Y)}, \sup_{b \in K_{G,\varphi}} \inf_{a \in K_{F,\varphi}} \|a - b\|_{L^{\varphi}(T,Y)}).$$

Theorem 5. $(\mathbf{X}_{mkc,\varphi,k,Y}, \rho_2)$ is a complete metric space.

Proof. Let $\{F_n\}$ be a Cauchy sequence in $(\mathbf{X}_{mkc,\varphi,k,Y}, \rho_2)$, then (see [7, Corollary 1]) there is $F \in \mathbf{X}_{mkc,\varphi}$ such that

$$\|\operatorname{dist}(F_n(t), F(t))\|_{\varphi} \to 0 \quad \text{as } n \to \infty.$$

Also

$$dist(F_n(t), F(t)) \to 0$$
 as $n \to \infty$

in measure. So there is subsequence $\{F_{n_k}\}$ of the sequence $\{F_n\}$ such that

$$\operatorname{dist}(F_{n_k}(t), F(t)) \to 0$$
 a.e.

Also there are $f_{F_n} \in K_{F_n,\varphi}$ such that $\{f_{F_n}\}$ is a Cauchy sequence in $L^{\varphi}(T,Y)$, so there is $h \in L^{\varphi}(T,Y)$ such that

$$||f_{F_n} - h||_{\varphi} \to 0 \quad \text{as } n \to \infty.$$

We must prove that $h \in K_{F,\varphi}$ and $h \in W_{\varphi}^{k}(T)$. It is easy to see that $h(t) \in F(t)$ a.e. because $F_{n}(t)$ and F(t) are convex and compact. Also we have

$$\operatorname{dist}(F(t), \{\theta\}) \leq \operatorname{dist}(F(t), F_n(t)) + \operatorname{dist}(F_n(t), \{\theta\}),$$

and

$$\operatorname{dist}((F_n(t), \{\theta\}) \leq \operatorname{dist}(F_n(t), F(t)) + \operatorname{dist}(F(t), \{\theta\})$$

so we have $h \in K_{F,\varphi}$. It is easy to see that $|F| \in W^k_{\varphi}(T)$.

We define

$$S_F^{\varphi} = \{ f \in L^{\varphi}(T, Y) : f(t) \in F(t) \text{ a.e.} \}$$

Let $F \in \mathbf{X}_{mkc,\varphi,1,Y}$. By Theorem 3 and Remark 1 from [7] we define the generalized derivative of F by the formula

$$DF = \{\mathcal{D}x : x \in W^1_{\varphi}(T), x \in S^{\varphi}_F\}.$$

Let $F_1, F_2 \in \mathbf{X}_{mkc,\varphi,1,Y}$, let $S_{F_1}^{\varphi}, S_{F_2}^{\varphi} \neq \emptyset$ and let $F(t) = F_1(t) + F_2(t)$ for a.e. $t \in T$. By Theorem 4 and Remark 1 from [7] $S_{F_1}^{\varphi} + S_{F_2}^{\varphi} \subset S_F^{\varphi}$, so if $DF_1, DF_2 \neq \emptyset$, then

$$DF_1 + DF_2 \subset DF.$$

References

- De Blasi S.: On differentiability of multifunctions. Pacific J. Math. 66 (1976), 67-81.
- Gorokhovik V., Zabreiko P.: On Fréchet differentiability of multifunctions. Optimization 54 (2005), 391–409.
- Hu S., Papageorgiu N.S.: Handbook of Multivalued Analysis, vol. I: Theory. Kluwer Academic Publ., Dordrecht 1997.
- Hu S., Papageorgiu N.S.: Handbook of Multivalued Analysis, vol. II: Applications. Kluwer Academic Publ., Dordrecht 2000.
- Hukuhara P.M.: Intégration des applications mesurables dont la valuer est un compact convexe. Funkc. Ekvac. 10 (1967), 205–223.

- Kasperski A.: On multidistributions and X-distributions. Function Spaces: The Fifth Conference, Hudzik H., Skrzypcazk L. (eds.), Lecture Notes in Pure and Appl. Math. 213, Marcel Dekker, New York 2000, 247–254.
- Kasperski A.: Decomposable sets and Musielak-Orlicz spaces of multifunctions. Banach Center Publ. 68 (2005), 71–77.
- Kasperski A.: Remarks on the spaces of differentiable multifunctions. Banach Center Publ. 92 (2011), 167–175.
- Martelli M., Vignioli A.: On differentiability of multivalued maps. Boll. UMI 10 (1974), 701–712.
- Musielak J.: Orlicz Spaces and Modular Spaces. LNM 1034, Springer, Berlin 1983.