SOLUTION OF SOME PROBLEM ON THE DETERMINANT OF A SINE-TYPE MATRIX

Summary. In this paper we present the independent solution of problem E3178 posed in 1988 by G.A. Hively in American Mathematical Monthly. We also give a generalization of this problem together with the proof.

ROZWIĄZANIE PEWNEGO PROBLEMU DOTYCZĄCEGO WYZNACZNIKA MACIERZY SINUSÓW

Streszczenie. W artykule prezentujemy niezależne rozwiązanie problemu E3178 postawionego w 1988 r. przez G.A. Hively'ego w czasopiśmie American Mathematical Monthly. Podajemy również uogólnienie tego problemu wraz z dowodem.

[^0]During some research conducted with my supervisor, Professor Roman Wituła, a problem published in American Mathematical Monthly has fallen into my hands. This problem concerns the value of determinant of the sine-type matrix and has been posed in 1988 by G.A. Hively. Author of this problem formulated it in the following way:

Problem 1. Let x_{i}, y_{i} be any complex numbers and let S_{n} be a matrix of form $S_{n}=\left(\sin \left(x_{i}+y_{j}\right)\right)_{n \times n}$. It should be shown that for $n \geqslant 3$ the matrix S_{n} is singular.

Proof. At first we will prove that for $n=2$ the thesis of the above formulated problem is not satisfied. Let us take, for instance, $x_{1}=\frac{\pi}{4}, x_{2}=y_{1}=0, y_{2}=\frac{\pi}{4}$. Then we get

$$
\operatorname{det}\left(S_{2}\right)=\left|\begin{array}{cc}
\sin \left(x_{1}+y_{1}\right) & \sin \left(x_{1}+y_{2}\right) \\
\sin \left(x_{2}+y_{1}\right) & \sin \left(x_{2}+y_{2}\right)
\end{array}\right|=\left|\begin{array}{cc}
\frac{\sqrt{2}}{2} & 1 \\
0 & \frac{\sqrt{2}}{2}
\end{array}\right|=\frac{1}{2} \neq 0
$$

Let us consider now the case when $n \geqslant 3$. Then, by using the formula for the sine of sum we can present the matrix S_{n} as follows

$$
\begin{aligned}
S_{n} & =\left[\begin{array}{ccccc}
\sin \left(x_{1}+y_{1}\right) & \sin \left(x_{1}+y_{2}\right) & \sin \left(x_{1}+y_{3}\right) & \ldots & \sin \left(x_{1}+y_{n}\right) \\
\sin \left(x_{2}+y_{1}\right) & \sin \left(x_{2}+y_{2}\right) & \sin \left(x_{2}+y_{3}\right) & \ldots & \sin \left(x_{2}+y_{n}\right) \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
\sin \left(x_{n}+y_{1}\right) & \sin \left(x_{n}+y_{2}\right) & \sin \left(x_{n}+y_{3}\right) & \ldots & \sin \left(x_{n}+y_{n}\right)
\end{array}\right]= \\
& =\left[\begin{array}{cccc}
\sin x_{1} \cos y_{1}+\sin y_{1} \cos x_{1} & \ldots & \sin x_{1} \cos y_{n}+\sin y_{n} \cos x_{1} \\
\sin x_{2} \cos y_{1}+\sin y_{1} \cos x_{2} & \ldots & \sin x_{2} \cos y_{n}+\sin y_{n} \cos x_{2} \\
\vdots & \ldots & \vdots \\
\sin x_{n} \cos y_{1}+\sin y_{1} \cos x_{n} & \ldots & \sin x_{n} \cos y_{n}+\sin y_{n} \cos x_{n}
\end{array}\right]= \\
& =\left[\mathbf{k}_{\mathbf{1}} \cos y_{j}+\mathbf{k}_{\mathbf{2}} \sin y_{j}\right]_{j=1, \ldots, n},
\end{aligned}
$$

where $\mathbf{k}_{\mathbf{1}}=\left[\sin x_{1}, \sin x_{2}, \ldots, \sin x_{n}\right]^{T}, \mathbf{k}_{\mathbf{2}}=\left[\cos x_{1}, \cos x_{2}, \ldots, \cos x_{n}\right]^{T}$.
One can easily notice that $\operatorname{det}\left(S_{n}\right)=0$ exactly when the columns of matrix S_{n} are linearly dependent which is, in turn, equivalent to the fact that the system of equations

$$
\sum_{j=1}^{n} \alpha_{j}\left(\mathbf{k}_{\mathbf{1}} \cos y_{j}+\mathbf{k}_{\mathbf{2}} \sin y_{j}\right)=\mathbf{0}
$$

possesses the non-zero solution. That is the system

$$
\left(\sum_{j=1}^{n} \alpha_{j} \cos y_{j}\right) \mathbf{k}_{\mathbf{1}}+\left(\sum_{j=1}^{n} \alpha_{j} \sin y_{j}\right) \mathbf{k}_{\mathbf{2}}=\mathbf{0}
$$

possesses the non-zero solution. And so it is for $n \geqslant 3$, because the system created from the coefficients placed by $\mathbf{k}_{\mathbf{1}}$ and $\mathbf{k}_{\mathbf{2}}$:

$$
\left\{\begin{array}{l}
\sum_{j=1}^{n} \alpha_{j} \cos y_{j}=0 \\
\sum_{j=1}^{n} \alpha_{j} \sin y_{j}=0
\end{array}\right.
$$

for $n \geqslant 3$ has more variables than equations.

Remark 2. The above fact can be also justified by using the Principle of Mathematical Induction. The proof can be then conducted in the following way:

- by using the formula for the sine of sum we compute directly the value of determinant $\operatorname{det}\left(S_{3}\right)$ receiving $\operatorname{det}\left(S_{3}\right)=0$,
- we pose the inductive assumption that for some $n \geqslant 3$ we have $\operatorname{det}\left(S_{n}\right)=0$,
- we expand the determinant $\operatorname{det}\left(S_{n+1}\right)$ (for example, with respect to the first row) and we get

$$
\operatorname{det}\left(S_{n+1}\right)=\sum_{j=1}^{n+1}(-1)^{1+j} \sin \left(x_{1}+y_{j}\right) \operatorname{det}\left(S_{n}\left(\left\{x_{i}\right\}_{i=2}^{n+1},\left\{y_{i}\right\}_{i=1, i \neq j}^{n+1}\right)\right) .^{1}
$$

For each $j \in\{1,2,3, \ldots, n+1\}$ from the inductive assumption we have

$$
\operatorname{det}\left(S_{n}\left(\left\{x_{i}\right\}_{i=2}^{n+1},\left\{y_{i}\right\}_{i=1, i \neq j}^{n+1}\right)\right)=0
$$

hence $\operatorname{det}\left(S_{n+1}\right)=0$. Thus, in view of the the Principle of Mathematical Induction we obtain that for $n \geqslant 3$ we have $\operatorname{det}\left(S_{n}\right)=0$.

[^1]Problem, discussed in this paper, can be generalized in the following way:

Problem 3. Let x_{i}, y_{i} be any complex numbers and let A_{n} be the matrix of dimension $n \times n$ of the form

$$
\begin{aligned}
A_{n} & =\left[\begin{array}{cccc}
x_{1} y_{1}+x_{2} y_{2} & x_{1} y_{3}+x_{2} y_{4} & \ldots & x_{1} y_{2 n-1}+x_{2} y_{2 n} \\
x_{3} y_{1}+x_{4} y_{2} & x_{3} y_{3}+x_{4} y_{4} & \ldots & x_{3} y_{2 n-1}+x_{4} y_{2 n} \\
x_{5} y_{1}+x_{6} y_{2} & x_{5} y_{3}+x_{6} y_{4} & \ldots & x_{5} y_{2 n-1}+x_{6} y_{2 n} \\
\vdots & \vdots & \ldots & \vdots \\
x_{2 n-1} y_{1}+x_{2 n} y_{2} & x_{2 n-1} y_{3}+x_{2 n} y_{4} & \ldots & x_{2 n-1} y_{2 n-1}+x_{2 n} y_{2 n}
\end{array}\right]= \\
& =\left[\mathbf{k}_{\mathbf{1}} y_{2 j-1}+\mathbf{k}_{\mathbf{2}} y_{2 j}\right]_{j=1,2, \ldots, n},
\end{aligned}
$$

where $\mathbf{k}_{\mathbf{1}}=\left[x_{1}, x_{3}, x_{5}, \ldots, x_{2 n-1}\right]^{T}, \mathbf{k}_{\mathbf{2}}=\left[x_{2}, x_{4}, x_{6}, \ldots, x_{2 n}\right]^{T}$. It should be proven that $\operatorname{det}\left(A_{n}\right)=0$ for any $n \geqslant 3$.

Proof. The only thing needed to be done is to repeat the reasoning from the proof of Problem 1. Value $\operatorname{det}\left(A_{n}\right)$ is equal to zero when the columns of matrix A_{n} are linearly dependent which is equivalent to the fact that the system of equations

$$
\sum_{j=1}^{n} \alpha_{j}\left(\mathbf{k}_{\mathbf{1}} y_{2 j-1}+\mathbf{k}_{\mathbf{2}} y_{2 j}\right)=\mathbf{0}
$$

possesses the non-zero solution. That is the system:

$$
\left(\sum_{j=1}^{n} \alpha_{j} y_{2 j-1}\right) \mathbf{k}_{\mathbf{1}}+\left(\sum_{j=1}^{n} \alpha_{j} y_{2 j}\right) \mathbf{k}_{\mathbf{2}}=\mathbf{0}
$$

possesses the non-zero solution. And so it is for $n \geqslant 3$, because the system created from the coefficients placed by $\mathbf{k}_{\mathbf{1}}$ and $\mathbf{k}_{\mathbf{2}}$:

$$
\left\{\begin{array}{l}
\sum_{j=1}^{n} \alpha_{j} y_{2 j-1}=0 \\
\sum_{j=1}^{n} \alpha_{j} y_{2 j}=0
\end{array}\right.
$$

for $n \geqslant 3$ has more variables than equations.

Remark 4. Although the solution presented in this paper, concerning the used idea, is consistent with Solution I in [1] and, probably, many mathematicians investigating this problem come to this idea in a quite natural way, I want to
emphasize that I found this solution without any help, and only later my supervisor showed me the mentioned above solutions presented in American Mathematical Montly [1]. Moreover, I want to notice that I have presented my solution in a full form with the proper generalization.

References

1. Hively G.A., Tomsky J., Dearden B.: E3178. Amer. Math. Monthly 95, no. 7 (1988), 664-665.
2. Zhang F.: Matrix Theory. Springer, New York 2011.

[^0]: 2010 Mathematics Subject Classification: 15A15.
 Keywords: problem E3178, determinant, sine-type matrix.
 Corresponding author: M. Szweda (marcin.szweda1@wp.pl).
 Received: 05.09.2015 r.
 While creating this paper M. Szweda was a student of the master's degree in Mathematics.

[^1]: ${ }^{1}$ Notation $S_{n}\left(\left\{x_{i}\right\}_{i=2}^{n+1},\left\{y_{i}\right\}_{i=1, i}^{n+1}, i\right)$ means that for creating the matrix S_{n} we use successively the numbers $\left(x_{2}, x_{3}, \ldots, x_{n+1}\right),\left(y_{1}, y_{2}, \ldots, y_{j-1}, y_{j+1}, \ldots, y_{n+1}\right)$.

