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Summary. In this paper we present the independent solution of pro-
blem E3178 posed in 1988 by G.A. Hively in American Mathematical Mon-
thly. We also give a generalization of this problem together with the proof.
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Streszczenie. W artykule prezentujemy niezależne rozwiązanie proble-
mu E3178 postawionego w 1988 r. przez G.A. Hively’ego w czasopiśmie
American Mathematical Monthly. Podajemy również uogólnienie tego pro-
blemu wraz z dowodem.
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During some research conducted with my supervisor, Professor RomanWituła,
a problem published in American Mathematical Monthly has fallen into my hands.
This problem concerns the value of determinant of the sine-type matrix and has
been posed in 1988 by G.A. Hively. Author of this problem formulated it in the
following way:

Problem 1. Let xi, yi be any complex numbers and let Sn be a matrix of form

Sn =
(

sin(xi + yj)
)

n×n. It should be shown that for n  3 the matrix Sn is
singular.

Proof. At first we will prove that for n = 2 the thesis of the above formulated
problem is not satisfied. Let us take, for instance, x1 = π4 , x2 = y1 = 0, y2 =

π
4
.

Then we get
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Let us consider now the case when n  3. Then, by using the formula for the sine
of sum we can present the matrix Sn as follows

Sn =













sin(x1 + y1) sin(x1 + y2) sin(x1 + y3) . . . sin(x1 + yn)
sin(x2 + y1) sin(x2 + y2) sin(x2 + y3) . . . sin(x2 + yn)

...
...

... . . .
...

sin(xn + y1) sin(xn + y2) sin(xn + y3) . . . sin(xn + yn)













=

=













sinx1 cos y1 + sin y1 cosx1 . . . sinx1 cos yn + sin yn cosx1
sinx2 cos y1 + sin y1 cosx2 . . . sinx2 cos yn + sin yn cosx2

... . . .
...

sinxn cos y1 + sin y1 cosxn . . . sinxn cos yn + sin yn cosxn













=

= [k1 cos yj + k2 sin yj ]j=1,...,n,

where k1 = [sinx1, sinx2, . . . , sinxn]T , k2 = [cosx1, cosx2, . . . , cosxn]T .
One can easily notice that det(Sn) = 0 exactly when the columns of matrix

Sn are linearly dependent which is, in turn, equivalent to the fact that the system
of equations

n
∑

j=1

αj(k1 cos yj + k2 sin yj) = 0
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possesses the non-zero solution. That is the system

( n
∑

j=1

αj cos yj

)

k1 +
( n
∑

j=1

αj sin yj

)

k2 = 0

possesses the non-zero solution. And so it is for n  3, because the system created
from the coefficients placed by k1 and k2:















n
∑

j=1

αj cos yj = 0

n
∑

j=1

αj sin yj = 0

for n  3 has more variables than equations. �

Remark 2. The above fact can be also justified by using the Principle of Mathe-
matical Induction. The proof can be then conducted in the following way:

• by using the formula for the sine of sum we compute directly the value of
determinant det(S3) receiving det(S3) = 0,

• we pose the inductive assumption that for some n  3 we have det(Sn) = 0,

• we expand the determinant det(Sn+1) (for example, with respect to the first
row) and we get

det(Sn+1) =
n+1
∑

j=1

(−1)1+j sin(x1 + yj) det(Sn({xi}n+1i=2 , {yi}
n+1
i=1, i6=j)).

1

For each j ∈ {1, 2, 3, . . . , n+ 1} from the inductive assumption we have

det
(

Sn({xi}n+1i=2 , {yi}
n+1
i=1, i6=j)

)

= 0,

hence det(Sn+1) = 0. Thus, in view of the the Principle of Mathematical
Induction we obtain that for n  3 we have det(Sn) = 0.

1Notation Sn({xi}
n+1
i=2 , {yi}

n+1
i=1, i6=j) means that for creating the matrix Sn we use

successively the numbers (x2, x3, . . . , xn+1), (y1, y2, . . . , yj−1, yj+1, . . . , yn+1).
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Problem, discussed in this paper, can be generalized in the following way:

Problem 3. Let xi, yi be any complex numbers and let An be the matrix of di-

mension n× n of the form

An =

















x1y1 + x2y2 x1y3 + x2y4 . . . x1y2n−1 + x2y2n
x3y1 + x4y2 x3y3 + x4y4 . . . x3y2n−1 + x4y2n
x5y1 + x6y2 x5y3 + x6y4 . . . x5y2n−1 + x6y2n

...
... . . .

...

x2n−1y1 + x2ny2 x2n−1y3 + x2ny4 . . . x2n−1y2n−1 + x2ny2n

















=

= [k1y2j−1 + k2y2j ]j=1,2,...,n,

where k1 = [x1, x3, x5, . . . , x2n−1]T , k2 = [x2, x4, x6, . . . , x2n]T . It should be pro-
ven that det(An) = 0 for any n  3.

Proof. The only thing needed to be done is to repeat the reasoning from the proof
of Problem 1. Value det(An) is equal to zero when the columns of matrix An are
linearly dependent which is equivalent to the fact that the system of equations

n
∑

j=1

αj
(

k1y2j−1 + k2y2j
)

= 0

possesses the non-zero solution. That is the system:

( n
∑

j=1

αjy2j−1

)

k1 +
( n
∑

j=1

αjy2j

)

k2 = 0

possesses the non-zero solution. And so it is for n  3, because the system created
from the coefficients placed by k1 and k2:















n
∑

j=1

αjy2j−1 = 0

n
∑

j=1

αjy2j = 0

for n  3 has more variables than equations. �

Remark 4. Although the solution presented in this paper, concerning the used
idea, is consistent with Solution I in [1] and, probably, many mathematicians
investigating this problem come to this idea in a quite natural way, I want to
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emphasize that I found this solution without any help, and only later my supervisor
showed me the mentioned above solutions presented in American Mathematical
Montly [1]. Moreover, I want to notice that I have presented my solution in a full
form with the proper generalization.
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