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INVOLUTIVE BASES OF SYLOW

2-SUBGROUPS OF SYMMETRIC

AND ALTERNATING GROUPS

Summary. The paper presents a construction of Sylow 2-subgroups of
symmetric and alternating groups, which bases contains only an involutions.
Polynomial representation of Sylow 2-subgroups was used.

INWOLUTYWNE BAZY 2-PODGRUP SYLOWA
GRUP SYMETRYCZNYCH I ALTERNUJĄCYCH

Streszczenie. W artykule przedstawiono konstrukcję takich 2-podgrup
Sylowa grup symetrycznych i alternujących, których bazy zawierą wyłącznie
inwolucje. Zastosowano reprezentację 2-podgrup Sylowa za pomocą zredu-
kowanych wielomianów wielu zmiennych nad ciałem Z2.

1. Introduction

Let p be a prime. The Sylow p-subgroups of symmetric and alternating groups
of order pn, n ∈ N play an analogous role for finite p-groups, as symmetric and
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alternating groups for finite groups. Every finite p-group can be isomorphically
embedded into one of these groups, thus Sylow p-subgroups of symmetric and
alternating groups are important in group theory. Other important applications
of these groups involve various fields of discrete mathematics, like coding theory,
sorting theory, etc. Especially generating sets of such p-groups are important in
some investigations.
If p ≠ 2, then every Sylow p-subgroup of the alternating group of order pn is also

Sylow p-subgroup of the symmetric group of the same order. It is well known, that
the Frattini subgroup of any finite p-group G is equal to G′Gp. Hence, generating
sets of such a group correspond to generating sets of p-abelianisation. So the Sylow
p-subgroups of symmetric and alternating groups of degree pn have equinumerous
minimal in terms of inclusion, generating sets (bases) (see [5]).
Every involution (permutation of the order 2) can be written as a product of

separable transpositions. Involutive base is a base in which every element is an in-
volution. In this article we investigate involutive bases of Sylow 2-subgroups of the
symmetric group S2n and the alternating group A2n , n ∈ N. We use a polynomial
representation of such Sylow 2-subgroups, e.g. in which elements are sequences of
reduced polynomials over field Z2 of residues modulo 2 (see [2, 4]).
In Section 2 we recall basic and well known facts about Sylow p-subgroups

of symmetric and alternating groups. In Section 3 we introduce the polynomial
(Kaloujnine) representation of wreath product and some of its properties. The
construction of involutive base of Sylow 2-subgroup of symmetric and alternating
group is discussed in Section 4.

2. Sylow p-subgroups of symmetric and alternating

groups

Ifm = a0+a1p+a2p2+ . . .+akpk, where p is a prime, then the Sylow p-subgroup
Sylp(Sm) of symmetric group Sm is isomorphic (see e.g. [3]) to the direct product

(Sylp(Sp))
a1 × (Sylp(Sp2))

a2 × . . . × (Sylp(Spk))
ak
.

Alternating groups have similar property. The Sylow p-subgroup Sylp(Am) of the
alternating group Am is isomorphic to the product

(Sylp(Sp))
a1 " (Sylp(Sp2))

a2 " . . . " (Sylp(Spk))
ak
,

where Ga is an even part of Ga (i.e. the intersection of Ga with the corresponding
alternating group) and G "H is an even part of G ×H .
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So instead of Sylow p-subgroups of the symmetric group Sm or the alternating
group Am, we may investigate the subgroups of group Spn .
It is known that Sylp(Spn) is isomorphic (see e.g. [3]) to the iterated wreath

produt of cyclic groups of order p:

Sylp(Spn) ≅
n
≀
i=1
Cp.

The alternating subgroup has index 2 in symmetric group, so for every p prime,
p > 2, the Sylow p-subgroups ofAn and Sn coincide. Syl2(A2n) is a proper subgroup
of Syl

2
(S2n) and

[Syl
2
(S2n) ∶ Syl2(A2n)] = 2.

In order to describe Syl
2
(A2n) we use the polynomial representation of wreath

product introduced by L. Kaloujnine (see e.g. [4, 5]).

3. Polynomial representation

The sequence of variables x1, x2, . . . , xi will be denoted by Xi.
Let Zp be the field of residues modulo p. Naturally Zp ≅ Cp. Thus

Sylp(Spn) ≅
n
≀
i=1

Zp,

where
n
≀
i=1

Zp is a wreath product acting on set Znp and its elements (tableaux ) are

of the form
f = [f1, f2(X1), f3(X2), . . . , fn(Xn−1)], (1)

where f1 ∈ Zp and fi ∶ Zi−1p → Zp for i = 2, . . . , n are reduced polynomials from the
quotient ring Z[Xi]/⟨x

p
1
− x1, . . . , x

p
i − xi⟩.

Every tableau of the form (1) acts on the set Znp in the following way:

(u1, u2, . . . , un)f = (u1 + f1, u2 + f2(u1), . . . , un + fn(u1, . . . , un−1)) , (2)

for any (u1, u2, . . . , un) ∈ Znp .

For more details about the group
n
≀
i=1

Zp, see e.g. [5].

Groups Spn and Apn act on the set {1,2, . . . , pn}, so we have to determine
a bijection ϕ between sets Znp and {1,2, . . . , p

n}. Let (u1, . . . , un) ∈ Znp . The most
natural bijection ϕ ∶ Znp → {1, . . . , p

n} is

ϕ(u1, . . . , un) = u1pn−1 + u2pn−2 + . . . + un−1p + un + 1.
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We note that in this case
ϕ(0,0, . . . ,0) = 1

and
ϕ(p − 1, p − 1, . . . , p − 1) = pn.

For every polynomial on n variables we can define a height of a polynomial:

Definition 1. The height of the nonzero monomial xα1
1
xα2
2
. . . xαnn is defined to be

the number

h(xα1
1
xα2
2
. . . xαnn ) = 1 + α1 + α2p + . . . +αkp

k−1.

We assume that h(0) = 0. The height of the reduced polynomial is equal to the
maximum height of its monomials.

For every tableau f ∈ Sylp(Spn) of the form (1) we can now define a height
vector of f (also called as a characteristic of f):

h(f) = [h(f1), . . . , h(fn)].

Observe that 0 ≤ h(fi) ≤ pi−1 for i = 1, . . . , n.
In the set of height vectors we define a partial order. Let

g = [g1, . . . , gn(Xn−1)]

be an element of Sylp(Spn). Then

h(g) ≤ h(f) ⇐⇒ ∀ i ∈ {1, . . . , n} h(gi) ≤ h(fi).

Definition 2. A subgroup G of Sylp(Spn) is called ideal if

∀u ∈ G (u′ ∈ Sylp(Spn) ∧ h(u
′) ≤ h(u))⇒ u′ ∈ G.

Observe that Sylp(Spn) is an ideal subgroup of Spn .
Every ideal subgroup G of Sylp(Spn) can be uniquely described by its so-called

height vector of the form

h(G) = [max
g∈G
h(g1),max

g∈G
h(g2), . . . ,max

g∈G
h(gn)].

We note that
h(E) = [0,0, . . . ,0]
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and
h(Sylp(Spn)) = [1, p, . . . , p

n−1].

Before we determine the height vector of the alternating group, we need a sim-
ple observation. The next lemma belongs to so-called mathematical folklore:

Lemma 3. A reduced polynomial w ∈ Z2[x1, . . . , xk]/⟨x21 − x1, . . . , x
2

k − xk⟩ has
degree k iff it has odd number of zeros.

The proof of Lemma 3 is proposed in [1].

Theorem 4. The tableau f = [f1, f2(x1), . . . , fn(Xn−1)] ∈ Syl2(S2n) is an element
of Syl

2
(A2n) iff the height of fn is less than 2n−1.

Proof. Let
a = [0, . . . ,0, an(Xn−1)] ∈ Syl2(S2n),

where h(an) = 2n−1 and let u = (u1, . . . , un) ∈ Znp . We will show that a is odd (as
a permutation), i.e. a /∈ A2n .
There are two cases of the action of a on u:

1○ ua = u iff an(u1, . . . , un−1) = 0.

2○ ua = (u1, . . . , un−1, un + 1) iff an(u1, . . . , un−1) = 1.

Since h(an) = 2n−1, the degree of an is equal to n−1. From Lemma 3 we know
that an odd number of sequences (u1, . . . , un) is fixed by a. The number of all
sequences from Z

n
2
is 2n, which is an even number, so also a number of sequences

from 2○ is odd. Thus, a is a product of odd number of transpositions, so a /∈ A2n .
Now let

g = [g1, g2(x1), . . . , gn−1(Xn−2),0] ∈ Syl2(S2n).

Every orbit On−1 of the tableau g = [g1, . . . , gn−1(Xn−2)] on Z
n−1
2
corresponds to

two orbits O′n and O
′′

n of g on Z
n
2
of the form

O′n = On−1 × {0} = {(u1, . . . , un−1,0) ∶ (u1, . . . , un−1) ∈ On−1}

and
O′′n = On−1 × {1} = {(u1, . . . , un−1,1) ∶ (u1, . . . , un−1) ∈ On−1}.

Thus number of orbits of g on Zn
2
is even, so g is an even permutation.
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Every element

f = [f1, f2(x1), . . . , fn(Xn−1)] ∈ Syl2(S2n)

can be expressed as f = a′ ⋅ g′, where

a′ = [0, . . . ,0, fn(Xn−1)],

g′ = [f1, f2(x1), . . . , fn−1(Xn−2),0].

As we have shown before in this proof, g′ is even.
If h(fn) = 2n−1, then a′ is odd. So a′ ⋅ g′ is odd. Thus, f /∈ A2n .
If h(fn) < 2n−1, then a′ can be presented as a product of tableaux of form

[0,0, . . . , z], where z is constant or z is a monomial xi1xi2 . . . xil , where

1 ≤ i1 < i2 < . . . < il < n − 1.

Every permutation of such type is a product of an even number of transpositions,
because degree of a monomial z is less than n − 1. Hence a′ in this case is even as
a product of even permutations, so f ∈ A2n . ◻

From Theorem 4 we get the following

Corollary 5. h(Syl
2
(A2n)) = [1,2, . . . ,2n−2,2n−1 − 1].

4.Main results

Facts shown in the previous sections can be now used to present our main
statement, i.e. the construction of involution bases of Sylow 2-subgroups of the
symmetric and alternating group. Let (t′, t′′) be the transposition, which moves
t′ to t′′, where t′ ≠ t′′. We will use the notation ∏ji=1(τ

′

i , τ
′′

i ) for a product of
transpositions.

Theorem 6. Let

αk =
2
n−k

∏
i=1

(i, 2n−k + i)

for k = 1, . . . , n and let

β = (1, 2)(2n−1 + 1, 2n−1 + 2).

Then ⟨α1, . . . , αn−1, αn⟩ is a base of Syl2(S2n) and ⟨α1, . . . , αn−1, β⟩ is a base of
Syl
2
(A2n).
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Proof. Letm(Xi) be the polynomial on {x1, . . . , xi} with all coefficients equal to 1,
e.g.

m(X3) = x1x2x3 + x1x2 + x1x3 + x2x3 + x1 + x2 + x3 + 1.

Let a1 = [1,0, . . . ,0] and for all i = 2, . . . , n let ai be a tableau with the unique
nonzero element on k-th position, equal to m(Xk−1):

a2 = [0, x1 + 1,0, . . . ,0,0],

a3 = [0,0, x1x2 + x1 + x2 + 1, . . . ,0,0]

⋮

an = [0,0,0, . . . ,0,m(Xn−1)],

and let
b =m(Xn−1) − x1x2 . . . xn−1.

Simple calculations show that αk = ak for all k = 1, . . . , n and β = b. Now, recall
that

h(m(Xn−1)) = 2n−1

and
h(b) = 2n−1 − 1.

Let Ga = ⟨a1, . . . , an⟩ and Gb = ⟨a1, . . . , an−1, b⟩. Then

h(Ga) = [1,21,22, . . . ,2n−2,2n−1],

h(Gb) = [1,21,22, . . . ,2n−2,2n−1 − 1].

so Ga is isomorphic to Syl2(S2n) and Gb is isomorphic to Syl2(A2n). Thus,

Syl
2
(S2n) = ⟨α1, . . . , αn−1, αn⟩

and
Syl
2
(A2n) = ⟨α1, . . . , αn−1, β⟩.

◻

The base a1, . . . , an used in the above proof is an example of the so-called
diagonal base of group Syl

2
(S2n) (that is a base made of tableaux t1, . . . , tn for

which the unique nonzero element of i-th tableau is on i-th position). We also note
that every diagonal base is an involutive base.
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