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PODSTAWOWE FAKTY O ORBITACH

TRANSFORMACJI KAPREKARA

Streszczenie. Prezentowany artykuł uzupełnia dwie inne prace auto-
rów, cytowane w dołączonej tu literaturze, dotyczące orbit transformacji
Kaprekara. W pracy przedstawiono wiele szczegółowych faktów dla pierw-
szych pięciu transformacji Kaprekara (od T2 do T6). Wprowadzono nowe po-
jęcia i pokazano, jak istotna jest analiza wyników numerycznych jako moty-
wacja do dyskusji teoretycznej transformacji Kaprekara. Ponadto w artyku-
le zamieszczono interesujące i oryginalne wyniki dotyczące punktów stałych
i 2-elementowych orbit transformacji Kaprekara. Wszystkie te wyniki wręcz
zachęcają do dalszej dyskusji. Artykuł zawiera również obszerny rozdział do-
tyczący uogólnień i modyfikacji transformacji Kaprekara. Wreszcie mamy tu
zamieszczoną garść informacji z OEIS, ufundowanej przez N.J.A. Sloane’a,
związanych z orbitami transformacji Kaprekara.

1. Introduction

The current paper represents an essential supplement of two previous papers
made by the authors, that is [16] and [17]. Two more papers sacrificed to the in-
vestigated subject, that is [13] and [15], are now prepared for publication by the
same team of authors. The present paper is almost an independent work, exclu-
ding few selected concepts adopted from [16] and [17] (concerning especially the
characteristics of the orbits of transformations, for example the Sharkovsky’s order
or the strong Sharkovsky’s order). At the end of this paper the tables of minimal
orbits of the Kaprekar’s transformations Tn, for n = 16, 17 and 18, are included
which complete the tables contained in [17]. Moreover, apart from the collection
of concepts and notations (many of them are new in relation to [16] and [17]),
there are discussed here ”in details” the minimal orbits and the fixed points of
Kaprekar’s transformations Tn for n = 2, 3, ..., 6. Some new sequences of the fixed
points and the 2-element orbits of the Kaprekar’s transformations Tan+b, n ∈ N,
for the given positive integers a, b (see Chapters 3 and 4) are introduced here.
In Chapter 5 devoted to the survey of many generalizations and modifications of
the Kaprekar’s transformations, except the broad literature presented there (even
though we are familiar with a huge amount of sources devoted to the subject and
the presented paper is long enough, we only managed to touch the selected thre-
ads) and the interesting factual materials, we undertook at the end of this chapter
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very surprising research topics. Our discoveries are related to the Ducci’s transfor-
mations and some unusual recurrence sequence – we revealed some new threads
connected with extending the discussion on the complex domain and we formula-
ted few new problems. In Chapter 6 we discussed shortly the information about
the ”presence” of the orbits of Kaprekar’s transformations in OEIS (i.e. Sloane’s
Online Encyclopedia of Integer Sequences).

2. Basic definitions and notions

Let us fix n ∈ N, n  2. Let α ∈ N be any n-digit number in its decimal
expansion, the digits of which are ordered in the following nondecreasing sequence

0 ¬ a1 ¬ a2 ¬ . . . ¬ an ¬ 9.

Let us also assume that at least two digits, from among these ones above, are
different, that is the condition a1 6= an is satisfied. We take

Tn(α) :=
n∑

k=1

(ak − an−k+1)10k−1 = anan−1 . . . a1 − a1a2 . . . an. (1)

The map Tn is called the n-th Kaprekar’s transformation. We will also use the
expression: odd or even Kaprekar’s transformation, depending on the parity of n.
Let us notice that in the decimal expansion of number Tn(α) at least two

digits are then different, additionally Tn(α) < 10n, and finally, by completing,
if necessary, the number obtained according to formula (1) with the appropriate
number of zeros, we assume also that 10n−1−1 ¬ Tn(α). A reason of such (a little
peculiar) action is the following fact (see also Theorem 2 or rather the proof of
this theorem for an analytic argument):

Tn(a1a2 . . . an) = Tn(aσ(1)aσ(2) . . . aσ(n))

for any permutation σ ∈ Sn, where, as usually, Sn denotes the set of all n-element
permutations (in other words, the set of elements of the symmetric n-group).
For example, we have

T3(323) = 332− 233 = 99 = 099,
T3(099) = T3(909) = T3(990) = 891,

T4(4344) = 4443− 3444 = 999 = 0999,
T4(0999) = T4(9099) = T4(9909) = T4(9990) = 8991.

(2)
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In order to simplify the way of presentation of the decimal expansions of the
discussed numbers we introduce the following notations

n(k×) :=







n . . . n
︸ ︷︷ ︸

k times

, for k, n ∈ N,

empty sequence, for k ∈ Z, k ¬ 0, n ∈ N,

N
cph
k :=

{
n ∈ N : 10k−1 − 1 ¬ n < 10k ∧ n 6= a(k×), a ∈ {1, 2, . . . , 9}

}
,

for k = 2, 3, . . . , that is Ncphk denotes the set composed from the number 10k−1 −
1 := 09((k − 1)×) and these k-digit natural numbers, the decimal expansion of
which contains at least two different digits.

Remark 1. Identifying the notation 09(k×) with the (k + 1)-element sequence
of the respective numbers, similarly as the numbers from set Ncphk+1 for every k =
1, 2, 3, . . ., we can write that

N
cph
k ∩ N

cph
k+1 = ∅, k ∈ N.

On the other hand, treating only formally this identification procedure, we get

N
cph
k ∩ N

cph
k+1 = {9(k×)} .

By using the above introduced notations we can additionally formulate the
following theorem referring to examples (2):

Theorem 2. If n ∈ N
cph
k , then Tk(n)  9((k − 1)×) for every k = 2, 3, . . .

Proof. Let us assume that the digits of the decimal expansion of number n ∈ N
cph
k

are ordered in the nondecreasing sequence 0 ¬ a1 ¬ . . . ¬ ak ¬ 9, a1 < ak. Then
we have

Tk(n) = akak−1 . . . a1 − a1a2 . . . ak.
In consequence, if ak  2 + a1, then Tk(n) > 10k−1, whereas if ak = 1 + a1, then

Tk(n)  9((k − 1)×),

however the equality holds here only if a1 = a2 = . . . = ak−1 and ak = 1+a1, which
determines, with accuracy to the location of digits, the following nine numbers

01((k − 1)×), 12((k − 1)×), . . . , 89((k − 1)×).

✷
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Remark 3. (Concerning the proof of Theorem 2.) Examples (2), taking into ac-
count an additional zero, are typical for discussing the operators T3 and T4.

Corollary 4. We have

Tk : N
cph
k → N

cph
k

for every k = 2, 3, . . . Moreover we get

Tk (09(k×)) = 89((k − 1)×)1,

Tk (a(k×)(a− 1)) = 09(k×)

for every a = 2, 3, . . . , 9 and k = 2, 3, . . .

Remark 5. A reason for introducing the set Ncphk in this paper was to eliminate
from the discussion the trivial fixed point (i.e. the zero number) of transformations
Tk. Let us notice that in papers [16, 17] the trivial fixed point of transformations
Tk is allowed. In this case we had the more general definition of the Kaprekar’s
transformation

Tk : {0} ∪ Ncphk → {0} ∪ N
cph
k ,

where k  2. Certainly Tk(0) = 0. Let us also notice that we have then

Tk
({
α ∈ N : 10k−1 ¬ α < 10k

})
= {0} ∪

{
α ∈ N : 10k−1 − 1 ¬ α > 10k

}
.

3. Iterations of operators T2, T3, T4 and T5

One can easily verify (calculations by hand are sufficient to this aim) that

T2(N
cph
2 ) = {A(9− A) : A = 0, 1, . . . , 8},

T n2 (N
cph
2 ) = {A(9−A) : A = 0, 1, . . . , 4} for n  2,

T3(N
cph
3 ) = {A9(9−A) : A = 0, 1, . . . , 8},

T k3 (N
cph
3 ) = {A9(9−A) : A = 4, 5, . . . , 10− k} for k = 2, 3, . . . , 6,

T n3 (N
cph
3 ) = {495} for n  6.

Next, the set T4(N
cph
4 ) is represented by the following numbers [16]:

9×A(A+B)A, when A+B ¬ 9,
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9× (A+ 1)(A+B − 10)A, when A+B > 9,
where A = a − d, B = b − c and a, b, c, d are the digits of the 4-digit number n
and such that 0 ¬ d ¬ c ¬ b ¬ a ¬ 9, d < a.
One of the numbers described by these formulae is the number 686×9 = 6174.

This is the only fixed point of operator T4 and, simultaneously, this is the unique
possible orbit of this operator obtained, which is especially interesting, after at
most seven iterations of operator T4. More precisely, we have

T 64 (N
cph
4 ) = {6174, 4176, 8352, 8532} and T 74 (N cph4 ) = {6174}. (3)

Number 6174 will be called the classical Kaprekar’s constant. The given below
decomposition of this constant is interesting

6174 =
√
2× 3× 343× 3×

√
2 = 21 × 32 × 73.

Furthermore, in the orbits of operator T5 there appear only the numbers of
form: ABA × 99, where 0 ¬ B ¬ A ¬ 9 – these numbers create the image of
operator T5 (see [16]).
One can obtain in this way 54 numbers generating one 2-element orbit and two

4-element orbits of operator T5. There are certainly all the orbits of this operator,
therefore this operator, unlike operator T4, does not possess any fixed point!
We noticed additionally the following interesting relations

T5(99× AAA) = T5(99× (1110−AAA)) = T5(99×BAB) = T5(99×BBB),

for A = 1, 2, 3, 4, where B := 10−A.
Number T5(99× 444) = T 35 (99× 333) = 61974 belongs to one of the 4-element

orbits (number 61974 is the extension of the classical Kaprekar’s constant with
digit 9), whereas the number T 35 (99× 111) = T5(99× 222) = 85932 after the next
superposition with operator T5 falls into the second 4-element orbit.
The 2-element orbit has the form

(

T5(505× 99) = 545× 99, 606× 99
)

.

Set T n5 (N
cph
5 ) stabilizes starting from n = 4.

3.1. Historical remarks

The Kaprekar’s transformations Tn, n ∈ N, n  2, were defined by Hindu
mathematician Dattathreya Ramachandra Kaprekar in paper [18] where the Ka-
prekar’s constant 6174 was only announced. Only in his next paper [19], published



Orbits of the Kaprekar’s transformations. . . 11

after six years, he proved that T 74 (N
cph
4 ) = {6174} and the constant 7 is the lowest

number as possible (see the first equality in relations (3)).
Properties of operators T3, T5 were investigated as well by some other ma-

thematicians (among others, by Ch. Trigg – the known American popularizer of
mathematics – in paper [28], by K.E. Eldridge and S. Sagong in paper [10]) and
also in various number systems.
Moreover, let us notice that the discussion on operators Tn for greater values

of n was omitted for many years, which in fact was the main cause of our interest
in this subject-matter. The reason of this discussion missing was firstly the weakly
developed computer science and afterwards, probably, the, not attractive enough,
substantial character of this problem – very unfair judgement according to us, the
authors of the current paper and the papers [13, 15–17], is it not?

4. Iterations of operator T6

Set T6(N
cph
6 ) is created by the numbers described by means of one of the given

below seven formulae (see [16]):

9×A(A+B)(A +B + C)(A+B)A,

where 0 ¬ C ¬ B ¬ A ¬ A+B + C ¬ 9,

9×A(A +B + 1)(A+B + C − 10)9A,

where 0 ¬ C ¬ B ¬ A ¬ A+B ¬ 8 and 10 ¬ A+B + C < 20,

9× (A+ 1)0(A+B + C − 10)9A,

where 1 ¬ C ¬ B ¬ A ¬ 9 and A+B = 9,

9× (A+ 1)(A+B − 9)(A+B + C − 9)(A+B − 10)A,

where 0 ¬ C ¬ B ¬ A ¬ 9 and 10 ¬ A+B ¬ A+B + C ¬ 18,

9× (A+ 1)(A+B − 8)(A+B + C − 19)(A+B − 10)A,

where 0 ¬ C ¬ B ¬ A ¬ 9, A+B + C  19 and A+B ¬ 17,

9× 110(C − 1)89,

where C  1,
9× 109989.
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The image of operator T6 consists of 219 numbers. Set T n6 (N
cph
6 ) stabilizes

not before n = 13, the respective so called maxinvariant set is composed of two
fixed points and the elements of the unique 7-element orbit of operator T6. Set
T 12−n6 (Ncph6 ) consists of 10 + 2n elements for n = 0, 1, . . . , 4 and, respectively, of
21, 25, 31, 40, 53, 82 elements for n = 5, 6, . . . , 10.
For each A ∈ {5, 6, . . . , 9} we have

T 136 (99A(A− 5)00) = 420876.

This number belongs to the 7-element orbit of operator T6, moreover, the numbers
T n6 (99A(A− 5)00), n = 1, . . . , 13 are all different. Let us notice that

T 126 (99A(A− 5)00) = 652644,

which can be also described by formula

T 126 (N
cph
6 )\T 136 (Ncph6 ) = {652644}.

Moreover we have

T 116 (N
cph
6 )\T 126 (Ncph6 ) = {620874, 749943},

T 106 (N
cph
6 )\T 116 (Ncph6 ) = {651744, 629964},

T 96 (N
cph
6 )\T 106 (Ncph6 ) = {873522, 864432},

T 86 (N
cph
6 )\T 96 (Ncph6 ) = {310887, 820872}.

Remark 6. If abcdef ∈ T6(Ncph6 ) and a1b1c1d1e1f1 ∈ T6(Ncph6 ), and these num-
bers are different, then abc 6= a1b1c1.

Number 549945 is the fixed point of operator T6 and it will be called the
singular fixed point of operator T6 with respect to the following property:
if k ∈ N

cph
6 and n ∈ N and

T n6 (k) = 549945 6= k,

then n = 1.
Let us notice also that if k ∈ N

cph
6 and T6(k) = 549945, then the decimal

expansion of number k is a ”permutation” of digits of the number

(5 + e)(5 + e)ddee,
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where 0 ¬ e ¬ 4, e ¬ d ¬ 5 + e. Number 631764 is the second fixed point of
operator T6 and it will be called the Kaprekar’s type fixed point of operator T6
(with the bold typing the classical Kaprekar’s constant is marked). It possesses
the following property.

If k ∈ N
cph
6 , n ∈ N and T n6 (k) = 631764 6= k, then n ¬ 4 and moreover:

— if n = 1, then the decimal expansion of number k is a ”permutation” of
digits of the number

(6 + f)(3 + e)(2 + d)def,

where 0 ¬ f ¬ 3, f ¬ e ¬ d ¬ 1 + e ¬ 4 + f ;

— if n = 2, then the decimal expansion of number k is a ”permutation” of
digits of one of two following numbers

(4 + f)(3 + e)(2 + d)def, 0 ¬ f ¬ 5, f ¬ e ¬ d ¬ 1 + e ¬ 2 + f

or
(6 + e)(6 + e)(2 + d)dee, 0 ¬ e ¬ 3, e ¬ d ¬ 4 + e;

— if n = 3, then the decimal expansion of number k is a ”permutation” of
digits of one of four following numbers

(7 + f)(6 + e)(4 + d)def, 0 ¬ f ¬ 2, f ¬ e ¬ d ¬ 2 + e ¬ 3 + f,

(7 + e)(6 + d)(6 + d)dde, 0 ¬ e ¬ 2, e ¬ d ¬ 1 + e,

(7 + f)(4 + e)ddef, 0 ¬ f ¬ 2, f ¬ e ¬ d ¬ 4 + e ¬ 7 + f

and
(7 + f)(6 + e)ddef, 0 ¬ f ¬ 2, f ¬ e ¬ d ¬ 6 + e ¬ 7 + f ;

— and finally if n = 4, then the decimal expansion of number k is a ”permu-
tation” of digits of one of three following numbers

(8 + e)(8 + e)(3 + d)dee, 0 ¬ e ¬ 1, e ¬ d ¬ 5 + e,

(8 + e)(8 + e)(5 + d)dee, 0 ¬ e ¬ 1, e ¬ d ¬ 3 + e,

(8 + e)(8 + e)(7 + d)dee, 0 ¬ e ¬ 1, e ¬ d ¬ 1 + e.
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4.1. More about the fixed points of the Kaprekar’s

transformations

In reference to the singular fixed point of operator T6 let us note yet that the
number given below

5((n− 1)×)49(n×)4((n− 1)×)5
is the fixed point of operator T3n for every n ∈ N.

Proof. We have (minuend and subtrahend are written in a way giving the possi-
bility to verify directly the obtained difference – we will continue this fashion for
all verified differences in the rest of this paper):

9( n× ) 5(n×) 4( n× )
− 4( n× ) 5(n×) 9( n× )
5((n− 1)×) 4 9(n×) 4((n− 1)×) 5

✷

Next, the Kaprekar’s type fixed point of operator T6 is the second element of
the following sequence of the fixed points

63(n×)176(n×)4, n = 0, 1, 2, . . . ,

of the Kaprekar’s transformation T2n+4, respectively, for n = 0, 1, 2 . . .
Rather as a curiosity, we introduce two more disjoint sequences of the fixed

points of the Kaprekar’s transformations.1 At first for transformations T2n+15,
n  1, we have respectively

9(n×)8765420987543210((n− 1)×)1, n  1.

Proof. Let us notice that

9((n+ 1)×) 8 8 7 7 6 5 5 4 4 3 2 2 1 1 0( n× )

− 0( n× ) 1 1 2 2 3 4 4 5 5 6 7 7 8 8 9 ( (n+ 1)× )

9( n× ) 8 7 6 5 4 2 0 9 8 7 5 4 3 2 1 0((n− 1)×) 1

✷

And now for transformations T8n+3, n  2, we get the sequence of the following
fixed points

{
987((n− 1)×)65((n− 1)×)43((n− 1)×)21((n− 2)×)098((n− 1)×)

76((n− 1)×)54((n− 1)×)32((n− 1)×)11; n  2
}
.

1Other sequences of the fixed points of the Kaprekar’s transformations are presented

in paper [17].
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Let us observe that we start here from the fixed point of the transformation T19!
With the bold typing we identified the unique fixed point of transformation T11.

Proof. Let us notice that

9 9 8(n×)7(n×)6(n×)5(n×)4(n×)3(n×)2(n×)1(n×) 0
− 0 1(n×)2(n×)3(n×)4(n×)5(n×)6(n×)7(n×)8(n×) 9 9
987(n − 1×)65(n − 1×)43(n − 1×)21(n − 2)×098(n − 1×) 76(n − 1×)54(n − 1×)32(n − 1×)11

✷

5. Announcement of our new paper [13]

By observing the obtained numerical results describing the orbits of transfor-
mations Tn for n ¬ 35 we manage to prove the following theorem.

Theorem 7. Each Kaprekar’s transformation T2k−1, k ∈ N, k  7 possesses the
following 2-element orbit

(873(n×)209876(n×)22,
966543((n− 2)×)296((n− 1)×)54331),

where n := k − 5, that is n takes the values starting from 2, 3, . . .

Proof. Let us notice that
9 9 6 ((n+ 1)×) 5 5 4 4 3( n× ) 2 1

− 1 2 3 ( n× ) 4 4 5 5 6 ((n+ 1)×) 9 9
8 7 3 ( n× ) 2 0 9 8 7 6( n× ) 2 2

and

9 8 8 7 7 6( n× ) 3( n× ) 2 2 2 0
− 0 2 2 2 3 ( n× ) 6 ( n× ) 7 7 8 8 9
9 6 6 5 4 3((n− 2)×)29 6((n− 1)× )5 4 3 3 1

for every n = 2, 3, . . . ✷

Remark 8. We observed also that only for k = 12 and k = 13 the transformation
T2k−1 possesses one more 2-element orbit (only one in each case!). So, for k = 12
this is the orbit

(87765543319997665443222, 87764442219997775553222),
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whereas for k = 13 this is the orbit

(8876654432199977655433212, 8876644422199977755533212).

This remark does not have to be surprising if we put our attention to the fact that
our numerical observation includes only the orbits of transformations Tn with
indices n ¬ 35.

6. Generalizations and modifications of the
Kaprekar’s transformations

Certainly, it seems completely natural to ask for the possibility of modifying
the operators Tn, n ∈ N and the consequences resulting from such modifications.
For instance, in paper [11] the operator T4 is replaced by operator

k(a) := a4a3a2a1 − a2a1a4a3,

where a ∈ N
cph
4 and a1, a2, a3, a4 forms the sequence of digits of a in an ascending

order.
This operator does not possess the fixed point but it has the 2-element orbit

{2178, 6534} and, what is surprising, T4(2538) = 6174. In the mentioned paper
much more is proven, that is, if we would consider this problem with respect to
the equivalents of 4-digit numbers in any base b ∈ N, b  2, it means with respect
to the numbers of form

x = (b1b2b3b4)b = b1b3 + b2b2 + b3b+ b4,

where bi ∈ {0, 1, . . . b− 1}, i = 1, 2, 3, 4, and

a1 = bσ(1)  a2 = bσ(2)  a3 = bσ(3)  a4 = bσ(4),

for the respective ordering permutation σ (with the same constraint as for decimal
expansion that a1 > a4 which means that we eliminate from discussion b numbers
of the form (ββββ)b, β ∈ {0, 1, . . . b−1}), then operator k would possess the fixed
point only if b = 2 or b = 3 · 2n.
In this last case one can prove that

ki(x) =
(
2n, 2n − 1, 2n+1 − 1, 2n+1

)

b
dla i  2n+ 3.

Let us also notice that operator T5 in bases b < 13 was investigated by the,
mentioned before, C. Trigg in paper [28].
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Authors of the current paper, apart from the discussed here Kaprekar’s trans-
formations, have also defined and investigated few generalizations of these maps
(paying special attention to the description of minimal orbits). Exceptionally in
this section we will also discuss not only the numbers from set Ncphn but all the
natural n-digit numbers, for every n ∈ N, n  2 (see [15, 16]). We distinguish the
following generalizations of the Kaprekar’s transformations:

— the symmetric Kaprekar’s transformations

Let a1a2 . . . an be the decimals representation of natural number a, 10n−1 ¬
a < 10n. Then the n-th symmetric Kaprekar’s transformationM is defined by the
formula

M(a1a2 . . . an) =
n∑

k=1

|ck − bk|10k−1,

where (b1, b2, . . . , bn) and (c1, c2, . . . , cn) are the sequences, nondecreasing and no-
nincreasing, respectively, composed of the digits a1, a2, ..., an. We include to the
set of n-digit numbers also the number zero. The orbits of operatorsM for the odd
values n ¬ 19, although ”quite easy” to calculate even by hand, surprise yet with
their final form. We will present here only few quantitative pieces of information.
So, if n = 2k + 1, 1 ¬ k ¬ 5, then M possesses only the fixed points

and k-element orbits, for n = 13 operator M possesses two fixed points, 0 and
65432101. . . 6, four 2-element cycles, eleven 3-element cycles and 827 cycles of
length 6 (sic). For n = 15 the operator M possesses 44 fixed points, 342 different
2-elements orbits and 2678 different 4-elements orbits. For n = 17 the operator
M possesses only 6 fixed points, 32 different 2-element orbits and 6060 different
4-element orbits. Finally, for n = 2k the operator M possesses only trivial orbit
= {0} for every k ∈ N (it follows from Theorem 9 given below).

— the nonoptimal Kaprekar’s transformations

One of the examples of this transformation, called by us the Q-Kaprekar’s
transformation, is defined as

Qn(A) := (an − a2)10n−1 + (an−1 − a1)10n−2 +
n−2∑

k=1

(ak − an−k+1)10k−1,

where 0 ¬ a1 ¬ a2 ¬ . . . ¬ an ¬ 9 are the all digits of decimal expansion of
number A. We note that, in contrast to the Kaprekar’s transformation T4, the
transformation Q4 possesses two 2-element orbits: {2187, 6543} and {3285, 5274}
and the trivial fixed point. Next, Q5 possesses the trivial fixed point and the
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2-element orbit {52974, 54963} (to the contrast, transformation T5 has four diffe-
rent orbits). Transformations Q6 and T6 have both three fixed points and, respec-
tively, the 8-element orbit and the 7-element orbit. Transformations Q7 and T7
possess both the trivial fixed point and one 8-element orbit (but of the different
orbit types – see [16] for the respective definition).

— general Kaprekar’s transformations

We take that the natural number A, 10n−1 ¬ A < 10n, possesses the follow-
ing decimal expansion A = d1d2 . . . dn. Let a1 := max{d1, d2, . . . , dn}, a2 :=
max{d2, d3, . . . , dn} and in general ak := max{dk, dk+1, . . . , dn}, for k = 1, . . . , n.
The general Kaprekar’s transformations are defined by relations

dσ,π(A) :=
n∑

k=1

|dσ(k) − dπ(k)|10n−k,

dweakσ,π (A) :=

∣
∣
∣
∣
∣

n∑

k=1

(dσ(k) − dπ(k))10n−k
∣
∣
∣
∣
∣
,

and

Df,g(A) :=
n∑

k=1

|df(k) − dg(k)|10n−k,

Dweakf,g (A) :=

∣
∣
∣
∣
∣

n∑

k=1

(df(k) − dg(k))10n−k
∣
∣
∣
∣
∣
,

Rf (A) :=
n∑

k=1

|ak − af(k)|10n−k,

Rweakf (A) :=

∣
∣
∣
∣
∣

n∑

k=1

(ak − af(k))10n−k
∣
∣
∣
∣
∣
,

for any permutations σ, π on set {1, . . . , n} and for any functions f, g : {1, . . . , n} →
{1, . . . , n}.
At the end we should recall the oldest known modification of the Kaprekar’s

transformation, that is the Ducci’s transformation. Italian mathematician Enrico
Ducci (1864–1940) at the end of XIX century made many remarks concerning the
following map Dn : Zn → Zn, n  3, defined by formula

Dn(x) :=
[
|x1 − x2|, |x2 − x3|, . . . , |xn − x1|

]
,
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where x := [x1, x2, . . . , xn]. This map is called today the nth Ducci’s map (for every
n  3). Some property of the iteration of this map became a ground of a problem2
which often appears in various task books – including the books of recreational-
cognitive character (see the books by Kordemskii [20] and Kurlyandchik [21]) as
well as the scientific articles (especially concerning the number theory, see the
papers by Calkin [6], Beardon [3], Ludington Furno [24] and the works cited by
these authors). We formulate the mentioned property of Ducci’s map in the form
of the following theorem:

Theorem 9. For each x ∈ Zn there exists m = m(x) ∈ N such that

Dmn (x) =
[
0, . . . , 0
︸ ︷︷ ︸

n-times

]

if and only if n is the power of number two (that is n = 2k for some k ∈ N).

Proof of this theorem was published for the first time by C. Ciamberlini and
A. Marengoni in paper [8] (see also Beardon’s paper [3]).
Next, M. Burmester, R. Forcade and E. Jacobs in paper [5] proved that if

number n, in the above theorem, is not the integer power of number two, then for
every x ∈ Zn there exists m = m(x) ∈ N such that the vector Dmn (x) belongs to
one of the orbits of operator Dn. Each orbit of operator Dn is composed from the
vectors of the form

k
[
x1, x2, . . . , xn
︸ ︷︷ ︸

binary vector

]
,

where k ∈ N, xi ∈ {0, 1} for every i = 1, 2, . . . , n.
The length of orbits of operator Dn was discussed for the first time by A. Ehr-

lich in paper [9], and next by N.J. Calkin (with colleagues) in [5].

6.1. Ducci’s transformations on the real vectors

Already in 1949 Mosche Lotan in paper [22] (see also [29]) proved that for
every x ∈ R4, either after the finite number of operator D4 iterations, vector x
transforms into the zero vector, or

D4(x) = α[1, q, q2, q3],

2Unfortunately this problem does not have a unified name. It is known as the ”Ducci

Sequences”, the ”N-number Game”, the ”Four Number Game”, the ”Difference boxes”

and the playing ”Diffy” (see [1,27]).



20 H. Hanslik et al.

where α ∈ R and q is the unique real root of equation

q3 − q2 − q − 1 = 0.

We have q = 1
3

(

1 + 3

√

19− 3
√
33 + 3

√

19 + 3
√
33
)

≈ 1.83929. Moreover, we get
then

Dn4 (x) = α|1− q|n−1[1, q, q2, q3],

for every n = 1, 2, 3, . . . Also the following ”corollary” (observed by us) resulting
from the Lothan Theorem holds:

Theorem 10. Let x ∈ R4 and x = [x1, x2, x3, x4]. If one of the following nine
conditions is satisfied then there exists m = m(x) ∈ N such that Dm4 (x) = O:

1◦ D4(x) = [a, b, c, d] and b+ d 6= b(a+ c);

2◦ max{x1, x3} ¬ min{x2, x4};

3◦ min{x1, x3}  max{x2, x4};

4◦ min{x1, x3} ¬ min{x2, x4} ¬ x1+x32 ¬ max{x2, x4} ¬ max{x1, x3};

5◦ min{x2, x4} ¬ min{x1, x3} ¬ x2+x42 ¬ max{x1, x3} ¬ max{x2, x4};

6◦ min{x1, x3} ¬ min{x2, x4} and max{x2, x4} ¬ x1+x32 ;

7◦ min{x2, x4} ¬ min{x1, x3} and max{x1, x3} ¬ x2+x42 ;

8◦ x1+x32 ¬ min{x2, x4} and max{x2, x4} ¬ max{x1, x3};

9◦ x2+x42 ¬ min{x1, x3} and max{x1, x3} ¬ max{x2, x4}.

We observe that if the condition 2◦ or 3◦ is satisfied then m = 4, whereas, if
one of the conditions 4◦, 5◦, . . . , 9◦ is satisfied thenm = 7. All the needed verifying
calculations were made by hand – we used almost four sheets of paper!
Let us notice that, similarly as for case k = 4, for the any k ∈ N, k  3, we

have
Dnk (qk) = |1− qk−1|n−1qk,

where qk := [1, qk−1, q2k−1, . . . , q
k−1
k−1 ] and qk−1 is a real root of the equation

qk−1 − qk−2 − . . .− q − 1 = 0.
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Remark 11. Let us set

fk(q) :=







qk − qk−1q−1 , if q 6= 1,
1− k, if q = 1.

Then we have
q fk−1(q) = fk(q) + 1 (4)

and on the basis of the above equation and the above definition we can prove by
induction that

— if k is odd then fk(q) possesses only one real root (of multiplicity one): 0 <
qk < 2,

— if k is even then fk(q) possesses two real roots (both of multiplicity one):
q
(1)
k < 0 < q

(2)
k ,

— and additionally

1 = q1 ¬ q2k−1 < q(2)2k < q2k+1, k ∈ N. (5)

Moreover, we can prove that if fk(q) = 0, then fk−1(q) = 1q and q = 2 − 1
qk
.

Therefore, if we set

γk :=







qk, if k is odd,

q
(2)
k , if k is even,

then
lim
k→∞
γk = 2,

lim
k→∞
fk−1(γk) = lim

k→∞

1
γk
=
1
2
.

Hare, Prodinger, and Shallit proved in [14, Theorem 1.1] that

γk = 2− 2
∞∑

n=1

1
n

(
n(k + 1)− 2
n− 1

)
1

2n(k+1)
, (6)

1
2− γk

= 2k − k
2
− 1
2

∞∑

n=1

1
n

(
n(k + 1)
n+ 1

)
1

2n(k+1)
, (7)

1
γk
=
1
2
+
1
2

∞∑

n=1

1
n

(
n(k + 1)
n− 1

)
1

2n(k+1)
. (8)

The formula (6) was discovered in 1998 by Wolfram (see [30, Theorem 3.9]).
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For γ3 we obtain the relation

(γ3 − 1)3 = 2− 2(γ3 − 1)2, (9)

which implies the following nested radicals expansion:

γ3 − 1 = (2(1− tn))1/3 , (10)

where

tk+1 = (2|1− tk|)2/3 , k = 0, 1, . . . , n− 1,
t0 = (γ3 − 1)2.

But no other t0 in sufficient small neighborhood of (γ3−1)2 there exists such that
these procedure is convergent. To the contrast if we write (9) in the form

γ3 − 1 =
√

2
2 + (γ3 − 1)

,

then the sequence

tk+1 =

√
2
2 + tk

, k = 0, 1, . . . ,

is convergent to γ3 − 1 for every t0 > 2−1/3 − 2 ≈ −1.2063, since
(√

2
2+x

)′

=
−1√
2(2+x)3

. More other informations on real and complex zeros of polynomials fk(q)

(and simultaneously their derivatives and integrals!) could be found in Zhu and
Grossman paper [31].
At the end of this subsection we note that M. Misiurewicz and A. Schinzel

in [25] proved, among others, that for every x ∈ Rn and a limit point p of the
sequence {Dkn(x)}∞k=1 we have p = cv, where v ∈ {0, 1}n, and

c := lim
k→∞
||Dkn(x)||max

(

||b||max := max
1¬l¬n

{|bl|}
)

.

Additionally, let us note some, unsolved yet, problem referring to the sub-
ject matter of the infinite Ducci’s transformation. Let {pn}∞n=1 be the increasing
sequence of all primes and let us set d0(n) = pn, n  1, and

dk+1(n) := |dk(n)− dk(n+ 1)|, k  0, n  1,

then a well known Gilbreath’s conjecture claims that

dk(1) = 1 for all k  1

– see the paper by Andrew M. Odlyzko [26] for a background of this problem.
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7. Geometric and periodic properties of some
recurrence sequence

In [4] it is proven that the sequence {an}∞n=0 of real numbers, satisfying relation
an+1 = |an|−an−1, is always periodic with period 9. We observe additionally that
the respective sequence of complex elements does not possess this property, for
example:

— if a0 = 1, a1 = i then a2 = 0, a3 = −i, a4 = 1, a5 = 1 + i, a6 =
√
2 − 1,

a7 =
√
2 − 2 − i, a8 = 1 −

√
2 +
√

7− 4
√
2, a9 = 3 − 2

√
2 +
√

7− 4
√
2 + i.

From numerical calculations (with working precision 600 in Mathematica v.8
software) it follows that the sequence {ℑ(an)}∞n=0 is periodic with period 4 (the
repeated sequence of the form 0, 1, 0, −1). This property holds in all complex
(not real) cases which can be proven easily by observing the basic recurrence
formula for an. In consequence, the sequence {an}may have only the periods 4k
for some k ∈ N. By symbolic calculations in Mathematica software we deduced
that k = 1 is impossible3;

0 50 100 150 200

-0.5

0.0

0.5

1.0

n

ℜ
(a
n
)

Fig. 1. Plot of function n 7→ ℜ(an), where a0 = 0, a1 = i; the successive points are

connected with lines
Rys. 1. Wykres funkcji n 7→ ℜ(an), gdzie a0 = 0, a1 = i; kolejne punkty połączone są

odcinkami

3How did we test the ”nonperiodicity” of {an}? For example, at first we found the

sequence {|ℜ (an − a160)|}
600
n=0 and next we sorted this one in nondecreasing order. In all

discussed here cases of {an} we got the respective sorted sequences with values  0.1 for

n  3.
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Fig. 2. Plot in the Gauss plane where elements of sequence {an}, where a0 = 0, a1 = i,

are connected with lines
Rys. 2. Wykres na płaszczyźnie Gaussa, na którym elementy ciągu {an}, gdzie a0 = 0,

a1 = i, połączone są odcinkami

— if a0 = 5 + 3i, a1 = 3 − 4i then a2 = −3i, a4 = 4i, a5 = 4 + 3i, a6 = 5 − 4i,
a7 =

√
41 − 4 − 3i, . . ., also in this case the sequence {ℑ(an)}∞n=0 is periodic

with period 4 (the repeated sequence of the form 3, −4, −3, 4);
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Fig. 3. Plot of function n 7→ ℜ(an), where a0 = 5+3i, a1 = 3− 4i; the successive points

are connected with lines
Rys. 3. Wykres funkcji n 7→ ℜ(an), gdzie a0 = 5 + 3i, a1 = 3 − 4i; kolejne punkty

połączone są odcinkami
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ℑ
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n
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ℜ(an)

Fig. 4. Plot in the Gauss plane where elements of sequence {an}, where a0 = 5 + 3i,

a1 = 3− 4i, are connected with lines

Rys. 4. Wykres na płaszczyźnie Gaussa, na którym elementy ciągu {an}, gdzie a0 =

5 + 3i, a1 = 3− 4i, połączone są odcinkami

— if a0 = 1+ i, a1 = 1− i then a2 =
√
2− 1− i ≈ 0.414214− i, a3 =

√

4− 2
√
2−

1+i ≈ 0.0823922+i, a4 = 1−
√
2+

√

1 +
(√

4− 2
√
2− 1
)2

+i ≈ 0.589175+i,
a5 ≈ 1.07827− i, a6 ≈ 0.881423− i, a7 ≈ 0.25474 + i, similarly as in previous
cases the sequence {ℑ(an)}∞n=0 is periodic with period 4 (the repeated sequence
of the form 1, −1, −1, 1).
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Fig. 5. Plot of function n 7→ ℜ(an), where a0 = 1 + i, a1 = 1 − i; the successive points

are connected with lines
Rys. 5. Wykres funkcji n 7→ ℜ(an), gdzie a0 = 1+ i, a1 = 1− i; kolejne punkty połączone

są odcinkami
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Fig. 6. Plot in the Gauss plane where elements of sequence {an}, where a0 = 1 + i,

a1 = 1− i are connected with lines

Rys. 6. Wykres na płaszczyźnie Gaussa, na którym elementy ciągu {an}, gdzie a0 = 1+i,

a1 = 1− i, połączone są odcinkami

We are surprised by the phenomenon of the ”almost periodicity” of {ℜ(an)}∞n=0
as well as by the geometry of patterns illustrating the location of elements of
sequence {an}.
However we do not know if the respective complex sequence is periodic and

especially under which initial conditions it may happen. We are quite inspired by
a problem of this type, so probably we will put our attention on it in the separate
paper.

8. On the orbits of Kaprekar’s transformations
in OEIS

In the commonly known Sloane’s online encyclopaedia of the sequences of inte-
ger numbers OEIS one can find, among others, the following sequences connected
with the orbits of Kaprekar’s transformations:

— A164731(n) – the number of cycles of n-digit numbers (including fixed po-
ints) under the n-th Kaprekar transformation; in other bases: A004526 (ba-
se 2), A165006 (base 3), A165025 (base 4), A165045 (base 5), A165064
(base 6), A165084 (base 7), A165103 (base 8), A165123 (base 9);
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— A164732(n) – the number of n-digit numbers in a cycle (including fixed
points) under the n-th Kaprekar transformation;

— A151949(n) = Tn(n), n = 0, 1, 2, . . . where T0(0) := 0.

The number of 3-element minimal orbits of Kaprekar’s transformation T2n+8 is
equal to A140226(n) = n(11+n

2)
3 for n = 0, 1, 2, . . . , 6. In case of n = 7 we have one

more orbit, for n = 8 we have four more orbits and the number of orbits increases
simultaneously with n. These facts give the answer for the query formulated by
us in [17].

9. Description of tables presenting the cycles
of Kaprekar’s transformations Tn

The tables included in this paper complete the tables presented in paper [17].
Each table is composed in the following way:

— in the first row the value of index n of the Kaprekar’s transformation Tn is
given,

— the second row presents the amount of minimal cycles of the given length
of the given transformation Tn as well as the information whether the given
transformation preserves the strong Sharkovsky’s order or the Sharkovsky’s
order (see definitions 1 and 2 in [16]),

— the third row shows how many n-digit numbers is transformed by the given
Kaprekar’s transformation Tn (after the finite number of steps) onto the
respective minimal cycle of this transformation,

— in the successive rows the successive cycles from the third row (except the
trivial one, that is the zero cycle) are associated with: the order types (it
concerns only the cycles of length greater than 1, see the proper definition in
[16]); the sum of digits of particular elements of the cycle (in case when these
sums are identical, we include them only once), the digit types (and again,
in case when they are identical, we include them only once), the longest
increasing interval of the given cycle, the longest increasing subsequence of
the given cycle, the longest decreasing interval of the given cycle and the
longest decreasing subsequence of the given cycle.
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Table 1
Orbits of the Kaprekar’s transformations Tn for n = 16

n = 16

α 9 fix, 1 cyc length 2, 36 cyc. length 3, 1 cyc. length 7

β

12453423840 → 6333333176666664

16151750334720 → 9753333086666421

288964555636736 → 9775531088644221

25833706778880 → 9975333086664201

63301395692080 → 9977551088442201

12672264084480 → 9997533086642001

1798167571200 → 9999753086420001

56054718720 → 9999975084200001

116754375618944 → (8764421997755322, 8765431997654322)

23320362175768 → (6431111088888654, 8777732087622222, 8655555264444432)

61059798199904 → (6433111088886654, 8777332087662222, 8655553266444432)

173962314566354 → (6433311088866654, 8773332087666222, 8655533266644432)

584232077559056 → (6433331088666654, 8733332087666622, 8655333266664432)

1562115147143000 → (6433333086666654, 8333332087666662, 8653333266666432)

20828871835200 → (6543111088886544, 8777321088762222, 8765555264444322)

247256035559542 → (6543311088866544, 8773321088766222, 8765553266444322)

503206745448336 → (6543331088666544, 8733321088766622, 8765533266644322)

647808143886664 → (6543333086666544, 8333321088766662, 8765333266664322)

148663568886560 → (6554311088865444, 8773211088876222, 8776555264443222)

209856407175472 → (6554331088665444, 8733211088876622, 8776553266443222)

300213325345888 → (6554333086665444, 8333211088876662, 8776533266643222)

113091617595840 → (6555431088654444, 8732111088887622, 8777655264432222)

129286456577040 → (6555433086654444, 8332111088887662, 8777653266432222)

46498994640358 → (6555543086544444, 8321111088888762, 8777765264322222)

9779663013120 → (9751111088888421, 9777775084222221, 9755555084444421)

103008180814792 → (9753111088886421, 9777753086422221, 9755553086444421)

305485387461632 → (9753311088866421, 9777533086642221, 9755533086644421)

279503795441776 → (9753331088666421, 9775333086664221, 9755333086664421)

56642138723040 → (9755111088884421, 9777751088422221, 9775555084444221)

439879201167232 → (9755311088864421, 9777531088642221, 9775553086444221)

709233455214416 → (9755331088664421, 9775331088664221, 9775533086644221)

55387159027200 → (9755511088844421, 9777511088842221, 9777555084442221)

255206998851840 → (9755531088644421, 9775311088864221, 9777553086442221)

40532740754800 → (9755551088444421, 9775111088884221, 9777755084422221)

219079113823280 → (9775511088844221, 9777551088442221, 9775551088444221)

13242806456880 → (9975111088884201, 9977775084222201, 9975555084444201)

103184533315240 → (9975311088864201, 9977753086422201, 9975553086444201)

193906021429120 → (9975331088664201, 9977533086642201, 9975533086644201)

78642569074160 → (9975511088844201, 9977751088422201, 9977555084442201)

169898689920960 → (9975531088644201, 9977531088642201, 9977553086442201)

45119851496720 → (9975551088444201, 9977511088842201, 9977755084422201)

8978941171200 → (9997511088842001, 9997775084222001, 9997555084442001)

53561712032400 → (9997531088642001, 9997753086422001, 9997553086442001)

17993317181840 → (9997551088442001, 9997751088422001, 9997755084422001)

2483222742000 → (9999751088420001, 9999775084220001, 9999755084420001)

1542305910431760 →

(4333332087666666, 8533333176666642, 7533333086666643,

8433333086666652, 8633333086666632, 8633333266666632,

6433333266666654)

β1 − β8 72 (10, 9, 9, 9, 9, 9, 9, 8)

β9 81 (10, 9, 9, 9, 9, 9, 8, 18) 2, 2, 1, 1

β10 − β13 (1, 3, 2) 72 (10, 9, 9, 9, 9, 9, 9, 8)

β14 (1, 2, 3) 72 (10, 9, 9, 9, 9, 9, 9, 8)

β15 (1, 3, 2) 72 (10, 9, 9, 9, 9, 9, 9, 8)

β16 (1, 3, 2) 72 (10, 9, 9, 9, 9, 9, 9, 8)

β17 − β24 (1, 2, 3) 72 (10, 9, 9, 9, 9, 9, 9, 8)
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Table 2
Orbits of the Kaprekar’s transformations Tn

for n = 16, continuation

n = 16, continuation

β25 − β30 (1, 3, 2) 72 (10, 9, 9, 9, 9, 9, 9, 8)

β31 − β34 (1, 2, 3) 72 (10, 9, 9, 9, 9, 9, 9, 8)

β35 − β39 (1, 3, 2) 72 (10, 9, 9, 9, 9, 9, 9, 8)

β40 (1, 2, 3) 72 (10, 9, 9, 9, 9, 9, 9, 8)

β41 (1, 2, 3) 72 (10, 9, 9, 9, 9, 9, 9, 8)

β42 (1, 3, 2) 72 (10, 9, 9, 9, 9, 9, 9, 8)

β43 (1, 3, 2) 72 (10, 9, 9, 9, 9, 9, 9, 8)

β44 (1, 2, 3) 72 (10, 9, 9, 9, 9, 9, 9, 8)

β45 (1, 3, 2) 72 (10, 9, 9, 9, 9, 9, 9, 8)

β46 (1, 7, 3, 4, 2, 5, 6) 72 (10, 9, 9, 9, 9, 9, 9, 8)

Table 3
Orbits of the Kaprekar’s transformations Tn for n = 17

n = 17

α 3 fix, 1 cyc length 2, 6 cyc. length 5; Sharkovsky’s order

β

113545244138720 → 86433331976666532

2242260814424720 → 98765420987543211

420053260194588 → (87333320987666622, 96654332966654331)

1880904701228820 →
(86433320987666532, 96643331976665331, 88433331976666512,

87643331976665322, 86543331976665432)

2914077854756922 →
(86543320987665432, 96643320987665331, 98643331976665311,

88743331976665212, 87654331976654322)

6647662007373128 →
(87643320987665322, 96654331976654331, 88433320987666512,

97664331976653321, 88543331976665412)

19495759008608962 →
(87654320987654322, 96654320987654331, 98643320987665311,

98764331976653211, 88754331976654212)

27971772407003112 →
(88543320987665412, 97664320987653321, 98654331976654311,

88743320987665212, 97665431976543321)

38313964702271018 →
(88754320987654212, 97665420987543321, 98654320987654311,

98764320987653211, 98765431976543211)

β1 81 (10, 9, 9, 9, 9, 9, 9, 8, 9)

β2 81 (10, 9, 9, 9, 9, 9, 9, 8, 9)

β3 81 (10, 9, 9, 9, 9, 9, 9, 8, 9) 2, 2, 1, 1

β4 (1, 5, 4, 3, 2) 81 (10, 9, 9, 9, 9, 9, 9, 8, 9)

β5 (1, 5, 4, 2, 3) 81 (10, 9, 9, 9, 9, 9, 9, 8, 9)

β6 (1, 3, 5, 2, 4) 81 (10, 9, 9, 9, 9, 9, 9, 8, 9)

β7 (1, 5, 2, 3, 4) 81 (10, 9, 9, 9, 9, 9, 9, 8, 9)

β8 (1, 4, 2, 5, 3) 81 (10, 9, 9, 9, 9, 9, 9, 8, 9)

β9 (1, 2, 3, 4, 5) 81 (10, 9, 9, 9, 9, 9, 9, 8, 9)
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Table 4
Orbits of the Kaprekar’s transformations Tn for n = 18

n = 18

α 13 fix, 60 cyc length 3, 1 cyc. length 7; Sharkovsky’s order

β

343248360 → 555554999999444445

193060004280 → 633333331766666664

40682728645629000 → 886644219977553312

462548810471040 → 975333330866666421

32758226653688364 → 977553310886644221

1045242025027200 → 997533330866664201

11993957371770192 → 997755310886442201

810435000735360 → 999753330866642001

1815284433159288 → 999775510884422001

230753248165440 → 999975330866420001

21279200342400 → 999997530864200001

465242057280 → 999999750842000001

417192011665180 → (643111110888888654, 877777320876222222, 865555552644444432)

1673925407129460 → (643311110888886654, 877773320876622222, 865555532664444432)

5006518660845124 → (643331110888866654, 877733320876662222, 865555332666444432)

14609158747913340 → (643333110888666654, 877333320876666222, 865553332666644432)

26954900351649616 → (643333310886666654, 873333320876666622, 865533332666664432)

112288180545441560 → (643333330866666654, 833333320876666662, 865333332666666432)

415099293052356 → (654311110888886544, 877773210887622222, 876555552644444322)

3172702814525340 → (654331110888866544, 877733210887662222, 876555532664444322)

15791141249243468 → (654333110888666544, 877333210887666222, 876555332666444322)

21827337061506816 → (654333310886666544, 873333210887666622, 876553332666644322)

37884329753093292 → (654333330866666544, 833333210887666662, 876533332666664322)

5104875400454544 → (655431110888865444, 877732110888762222, 877655552644443222)

17611050472067172 → (655433110888665444, 877332110888766222, 877655532664443222)

20720837004971100 → (655433310886665444, 873332110888766622, 877655332666443222)

20413502503210920 → (655433330866665444, 833332110888766662, 877653332666643222)

7665399521143776 → (655543110888654444, 877321110888876222, 877765552644432222)

10670008500612792 → (655543310886654444, 873321110888876622, 877765532664432222)

9664365651123504 → (655543330866654444, 833321110888876662, 877765332666432222)

4615754089561056 → (655554310886544444, 873211110888887622, 877776552644322222)

4405165352325876 → (655554330866544444, 833211110888887662, 877776532664322222)

1325127359483640 → (655555430865444444, 832111110888888762, 877777652643222222)

250697264684472 → (975111110888888421, 977777750842222221, 975555550844444421)

2390765619058848 → (975311110888886421, 977777530864222221, 975555530864444421)

14368726942559760 → (975331110888866421, 977775330866422221, 975555330866444421)

21731724146954172 → (975333110888666421, 977753330866642221, 975553330866644421)

11515994937142104 → (975333310886666421, 977533330866664221, 975533330866664421)

1001919175110984 → (975511110888884421, 977777510884222221, 977555550844444221)

20898333269792568 → (975531110888864421, 977775310886422221, 977555530864444221)

50870232777464298 → (975533110888664421, 977753310886642221, 977555330866444221)

67209914965351896 → (975533310886664421, 977533310886664221, 977553330866644221)

2201220396976032 → (975551110888844421, 977775110888422221, 977755550844442221)

12888794397934224 → (975553110888644421, 977753110888642221, 977755530864442221)

26301173380953480 → (975553310886644421, 977533110888664221, 977755330866442221)

2180598897630816 → (975555110888444421, 977751110888842221, 977775550844422221)

9803497619570592 → (975555310886444421, 977531110888864221, 977775530864422221)

902221889350176 → (975555510884444421, 977511110888884221, 977777550844222221)

9924142664688144 → (977551110888844221, 977775510884422221, 977555510884444221)

44780476859549520 → (977553110888644221, 977755310886442221, 977555310886444221)

13448849194329000 → (977555110888444221, 977755110888442221, 977755510884442221)

393351449572224 → (997511110888884201, 997777750842222201, 997555550844444201)

3990289674793968 → (997531110888864201, 997777530864222201, 997555530864444201)

12341187080996904 → (997533110888664201, 997775330866422201, 997555330866444201)

9414249141726000 → (997533310886664201, 997753330866642201, 997553330866644201)

2176728436209600 → (997551110888844201, 997777510884222201, 997755550844442201)

17441176197149328 → (997553110888644201, 997775310886422201, 997755530864442201)
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Table 5
Orbits of the Kaprekar’s transformations Tn for n = 18, continuation

n = 18, continuation

β

18009598159150416 → (997553310886644201, 997753310886642201, 997755330866442201)

2665782114515520 → (997555110888444201, 997775110888422201, 997775550844422201)

10795265281272240 → (997555310886444201, 997753110888642201, 997775530864422201)

1693205117280432 → (997555510884444201, 997751110888842201, 997777550844222201)

9164642341681944 → (997755110888442201, 997775510884422201, 997755510884442201)

355749617013336 → (999751110888842001, 999777750842222001, 999755550844442001)

2684116560135036 → (999753110888642001, 999777530864222001, 999755530864442001)

5685547633260768 → (999753310886642001, 999775330866422001, 999755330866442001)

1989409814323776 → (999755110888442001, 999777510884222001, 999775550844422001)

4691018366080488 → (999755310886442001, 999775310886422001, 999775530864422001)

1187183159259552 → (999755510884442001, 999775110888422001, 999777550844222001)

150660139646016 → (999975110888420001, 999977750842220001, 999975550844420001)

939005034577896 → (999975310886420001, 999977530864220001, 999975530864420001)

301152102149808 → (999975510884420001, 999977510884220001, 999977550844220001)

28556497404864 → (999997510884200001, 999997750842200001, 999997550844200001)

149175155897380652 →

(433333320876666666, 853333331766666642, 753333330866666643,

843333330866666652, 863333330866666632, 863333332666666632,

643333332666666654)

β1 108 (10, 9, 9, 9, 9, 8, 18, 18, 18)

β2 81 (10, 9, 9, 9, 9, 9, 9, 9, 8)

β3 90 (10, 9, 9, 9, 9, 9, 9, 8, 18)

β4 − β12 81 (10, 9, 9, 9, 9, 9, 9, 9, 8)

β13 − β15 (1, 3, 2) 81 (10, 9, 9, 9, 9, 9, 9, 9, 8) 2,2,2,2

β16 (1, 2, 3) 81 (10, 9, 9, 9, 9, 9, 9, 9, 8) 3,3,1,1

β17, β18 (1, 3, 2) 81 (10, 9, 9, 9, 9, 9, 9, 9, 8) 2,2,2,2

β19 (1, 2, 3) 81 (10, 9, 9, 9, 9, 9, 9, 9, 8) 3,3,1,1

β20 − β22 (1, 3, 2) 81 (10, 9, 9, 9, 9, 9, 9, 9, 8) 2,2,2,2

β23, β24 (1, 2, 3) 81 (10, 9, 9, 9, 9, 9, 9, 9, 8) 3,3,1,1

β25 (1, 3, 2) 81 (10, 9, 9, 9, 9, 9, 9, 9, 8) 2,2,2,2

β26 − β34 (1, 2, 3) 81 (10, 9, 9, 9, 9, 9, 9, 9, 8) 3,3,1,1

β35 − β42 (1, 3, 2) 81 (10, 9, 9, 9, 9, 9, 9, 9, 8) 2,2,2,2

β43 (1, 2, 3) 81 (10, 9, 9, 9, 9, 9, 9, 9, 8) 3,3,1,1

β44 (1, 3, 2) 81 (10, 9, 9, 9, 9, 9, 9, 9, 8) 2,2,2,2

β45 − β49 (1, 2, 3) 81 (10, 9, 9, 9, 9, 9, 9, 9, 8) 3,3,1,1

β50, β51 (1, 3, 2) 81 (10, 9, 9, 9, 9, 9, 9, 9, 8) 2,2,2,2

β52 (1, 2, 3) 81 (10, 9, 9, 9, 9, 9, 9, 9, 8) 3,3,1,1

β53 − β58 (1, 3, 2) 81 (10, 9, 9, 9, 9, 9, 9, 9, 8) 2,2,2,2

β59 − β62 (1, 2, 3) 81 (10, 9, 9, 9, 9, 9, 9, 9, 8) 3,3,1,1

β63 − β67 (1, 3, 2) 81 (10, 9, 9, 9, 9, 9, 9, 9, 8) 2,2,2,2

β68, β69 (1, 2, 3) 81 (10, 9, 9, 9, 9, 9, 9, 9, 8) 3,3,1,1

β70, β71 (1, 3, 2) 81 (10, 9, 9, 9, 9, 9, 9, 9, 8) 2,2,2,2

β72 (1, 2, 3) 81 (10, 9, 9, 9, 9, 9, 9, 9, 8) 3,3,1,1

β73 (1, 3, 2) 81 (10, 9, 9, 9, 9, 9, 9, 9, 8) 2,2,2,2

β74 (1, 7, 3, 4, 2, 5, 6) 81 (10, 9, 9, 9, 9, 9, 9, 9, 8) 3,5,2,3
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