
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2012

Seria: MATEMATYKA STOSOWANA z. 2 Nr kol. 1874

Marcin WOŹNIAK1, Zbigniew MARSZAŁEK1, Marcin GABRYEL2
1Institute of Mathematics
Silesian University of Technology
2Department of Computer Engineering
Czestochowa University of Technology

THE ANALYSIS OF PROPERTIES OF

INSERTION SORT ALGORITHM FOR LARGE

DATA SETS

Summary. Insertion sort algorithm is one of the sorting algorithms.
It is characterized by the computational complexity and time complexity,
which represent the possibility of using it for large data sets. The present
work is to describe this algorithm and describe it’s performance when sor-
ting large scale data sets.

ANALIZA WŁASNOŚCI ALGORYTMU
SORTOWANIA PRZEZ WSTAWIANIE DLA DUŻYCH
ZBIORÓW DANYCH

Streszczenie. Algorytm sortowania przez wstawianie jest jednym z al-
gorytmów opisywanych w literaturze. Omawiana metoda została scharakte-
ryzowana poprzez złożoność czasową i obliczeniową algorytmu, która opisuje
możliwość stosowania tego algorytmu do sortowania dużych zbiorów danych.
Praca ta ma na celu opisanie zachowania algorytmu i jego wydajności dla
dużych zbiorów danych.

2010 Mathematics Subject Classification: 68W40, 68Q25, 68P01, 68P10.
Wpłynęło do Redakcji (received): 14.07.2012 r.



46 M. Woźniak, Z. Marszałek, M. Gabryel

1. Defining the algorithm

Insertion sort algorithm compares data by inserting the individual characters
sorted. It selects found item and inserts it at the end of the string. Then, the
sorting is subjected to a new, remaining string. As the largest element is already
at the end of the string, the procedure comparison is only for n − 1 elements of
the original string. This procedure is repeated until the one element remain. One-
piece string is understood as the smallest of all the elements, in a similar way the
authors describe it in the literature [2, 3, 1]. The insertion sort algorithm is:

1. Start.

2. Load sequence to be sorted.

3. Assume i as the first place from the end of the sorted.

4. Make sure if the loaded string is empty.

(a) If you loaded the string is empty, then:

i. go to Step 4,

(b) f you loaded the string is not empty, then:

i. go to Step 5.

5. Start sorting.

(a) Take as the maximum the first element of the sorted string.

(b) Get the next element.

(c) Make sure if the downloaded item is the last in the tested string.

i. If you are on the last element in the sorted sequence, then:

A. Create a new string to sort of length t which is less than the
loaded i+ 1.

B. Found maximum swap with last element in the sorted string.

C. Increase the index i, which denotes the location of the next
maximum from the end of the main string.

D. Forward to sort the newly created string.

E. Go to Step 4.

ii. If you are the last element in the sorted sequence, then:



The analysis of properties of insertion sort algorithm. . . 47

A. Check if another element is greater than the accepted maxi-
mum.

B. If so, then:

• Accept this as a maximum element.

• Receive t as a value index, where found a new maximum.

C. If not, then:

• Go to Step 5.b.

6. Print the sorted string.

7. Stop.

Now we consider the complexity of the insertion sort algorithm. If we consider
duration of the program on the size of the given task we can determine a time
complexity of the algorithm, as described in literature [2, 1, 5]. The time that
we need for the implementation of the program is written as the symbol ϑ

(

n2
)

.
Such a record means that if the dimension of the task will increase two times, it
will need four times more for it’s execution. In practice we are not interested in
the exact runtime function containing a constants dependent on the computer,
but only estimation of the time of the algorithm from the bottom and top. We
define only factor that determines how long the algorithm is executed. Of course,
this estimation is valid for sufficiently large n and we define it as asymptotic
complexity. In fact, it may be that for the small dimension of the tasks constants
imposed by the algorithm can play a crucial role, what is discussed in literature
[4, 1, 5]. The algorithm of the lower asymptotic complexity can be running longer
than the algorithm with higher computational complexity expressed as ϑ

(

n2
)

. To
determine the time complexity of the insertion sort algorithm should be noted that
the search for the greatest numbers in the n-element string needs to make n − 1
comparisons. After shifting the largest element at the end in the next iteration
the number of necessary comparisons is reduced by one. Recording the number of
necessary comparisons in subsequent iterations - the complexity of the time, we
get the formula

ϑ
(

n2
)

= (n− 1) + (n− 2) + . . .+ 2 + 1 =
n− 1
2
· n, (1)

where n means the number of elements in the present task, so it’s dimension. We
restrict now the time complexity function (1) as follows

n2

4
¬
n · (n− 1)
2

¬
n2

n
, n ­ 2. (2)



48 M. Woźniak, Z. Marszałek, M. Gabryel

In this way, we estimate the time of the algorithm from below and from above
by polynomials of the same degree. The operating time factor determines n2. We
infer from the fact that this sort algorithm has time complexity ϑ

(

n2
)

. Thus, time
complexity is an increasing function in the same way as ordinary parabola with the
increase of data. Overall, we are interested in reducing the time of the algorithm
and finding algorithms with complexity of ϑ (n · log2n), which are described as the
fastest in literature [2, 4, 5]. Similarly, the complexity of the memory footprint will
be a function in memory, depending on the dimension of the task. The complexity
of memory is a linear function of the form

f (n) = a · n+ c, (3)

where the following symbols mean: n - dimension of the task. In our case the
dimension of the task is the amount of numbers that we have to be sorted, ie.
n elements of the sorted string, a - constant for the number of bytes required to
remember the integer. For integers a long int is equal to 4, c – constant dependent
on the size of the program, which for different compilers running under different
operating systems is different, as a constant for our purpose we can ignore it.
The function described by the formula (3) is a description footprint in memory

by the insertion sort algorithm. It stems from the need to memorize a vector of
numbers to be sorted and fixed number of variables used to construct an algorithm.
The shape of this function is based on the declaration of the array and variables.
Both the complexity can be treated as independent attributes of this algorithm
for characterizing the rate of work and the amount of required space on your
computer. For example, we can show how to reduce the duration of the program
by using more memory.

2. The analysis of properties

The insertion sort algorithm is not highly efficient algorithm, which also draws
attention to literature [2, 4, 3, 1, 5]. It’s performance has been tested only to the
level of 1000000 elements. Above this number of elements using insertion sort takes
a considerable amount of time. We can talk about a considerable increase in time
complexity. The present algorithm has been described by the characteristics of
the CPU clock cycles, real-time and time. These characteristics have been plotted
on a logarithmic scale to facilitate the analysis of properties of the insertion sort
algorithm.



The analysis of properties of insertion sort algorithm. . . 49

Table 1
Table of values of the characteristics of the CPU clock cycles for the

insertion sort algorithm

cpu tics Number of sorted elements

[ti] 100 1000 10000

avg 1000,6 10722,4 404794
standard deviation 213,6124996 2142,837325 65894,69603
avg deviation 149,04 1717,28 45036

coefficient of variation 0,2134844 0,1998468 0,1627858
variation area upper 786,9875004 8579,562675 338899,304
variation area lower 1214,2125 12865,23732 470688,696

[ti] 100000 1000000

avg 37104280,8 3694885205
standard deviation 6769240,094 661175967,3
avg deviation 5386017,36 533498159,9

coefficient of variation 0,1824383 0,1789436
variation area upper 30335040,71 3033709237
variation area lower 43873520,89 4356061172

The results presented in Table 1 were plotted for the calculated characteristic
values describing the results, which show Figures 1–2.
Figure of arithmetic average number of CPU clock cycles shows that the num-

ber is increasing as almost linear increment with the number of sorted elements.
The size of the average number of clock cycles is shown in Figure 1 is related

to the standard deviation and the deviation of the average shown in Figure 2. The
results shown in Figure 1 suggest as shown in formula (1) that the algorithm is
to harvest bigger than 1 million elements can significantly prolong the duration
of it’s action. In Table 2 is shown to develop real-time statistics on how the items
were sorted during the tests performed.



50 M. Woźniak, Z. Marszałek, M. Gabryel

Fig. 1. Average number of CPU clock cycles during the sorting
Rys. 1. Średnia ilość cykli zegarowych procesora w trakcie operacji sortowania

Fig. 2. Graph of the avg deviation and the standard deviation of the results obtained
during testing

Rys. 2. Wykres odchylenia standardowego i średniego ilości cykli zegarowych procesora
jakie uzyskano w trakcie testów



The analysis of properties of insertion sort algorithm. . . 51

Table 2
Table of values of real-time characteristics for the insertion sort algorithm

real time Number of sorted elements

[hh] 100 1000 10000

avg 0:0:0.0006419 0:0:0.0068791 0:0:0.2596993
standard deviation 0:0:0.0001371 0:0:0.0013747 0:0:0.0422757
avg deviation 0:0:0.000956 0:0:0.011016 0:0:0.288934

coefficient of variation 0,2135847 0,1998372 0,1627871
variation area upper 0:0:0.000779 0:0:0.0082538 0:0:0.6824563
variation area lower 0:0:0.0005048 0:0:0.0055044 0:0:0.1630577

[hh] 100000 1000000

avg 0:0:23.8045918 6:39:30.4953151
standard deviation 0:0:4.3428855 1:7:4.2004747
avg deviation 0:0:3.554729 0:5:42.823114

coefficient of variation 0,182439 0,1789501
variation area upper 0:0:28.1474773 7:46:34.6957898
variation area lower 0:0:19.4617063 5:32:26.2948404

The results presented in Table 2 were plotted with the calculated values of
characteristic, as shown in Figure 3–4.
Graph of real-time arithmetic average shows that the number is increasing

almost linear increment with the number of sorted elements. This phenomenon is
similar in nature to the clock cycles as shown in Figure 1.
Standard and avg deviation is shown in Figure 4. Graphs of these characteri-

stics show that the algorithm for larger strings can be characterized by variability
of execution time. This confirms the beginning suggestion. Therefore, for strings
larger than 1000000 items should be used other sorting algorithm. In Table 3 is
shown statistical study of the results for the time clock in which elements of strings
were sorted.



52 M. Woźniak, Z. Marszałek, M. Gabryel

Fig. 3. The average real-time during the sorting
Rys. 3. Średni czas rzeczywisty w trakcie operacji sortowania

Fig. 4. Graph of the avg deviation and the standard deviation of the results obtained
during testing

Rys. 4. Wykres odchylenia standardowego i średniego czasu rzeczywistego jaki uzyskano
w trakcie testów



The analysis of properties of insertion sort algorithm. . . 53

Table 3
Table of values of the characteristics of the clock time for the

insertion sort algorithm

clock time Number of sorted elements

[ms] 100 1000 10000

avg 0 6,4 259,2
standard deviation 0 1,1401754 42,038078
avg deviation 0 0,88 28,72

coefficient of variation 0 0,1781524 0,1621839
variation area upper 0 7,5401754 301,238078
variation area lower 0 5,2598246 217,161922

[ms] 100000 1000000

avg 23784,2 2370494,8
standard deviation 4363,292301 424200,3286
avg deviation 3471,44 342282,16

coefficient of variation 0,1834534 0,1789501
variation area upper 28147,4923 2794695,129
variation area lower 19420,9077 1946294,471

The coefficients of variation of the characteristics of insertion sort algorithm
described in Tables 1–3 are shown in Figure 5.

3. Conclusions

Analysis of the coefficient of variation shows that the algorithm is able to per-
form in an acceptable time of sorting up to 1,000 items. However, in practice we
are dealing with such small collections. The coefficients of variation brought closer
by using polynomial approximations. The resulting curves show the characteristics
of Figure 6, where the approximation characteristics of the CPU clock cycles and
real-time practically coincide. Variability characteristic curves confirm the possi-
bility of effective application of the algorithm by putting in the range up to 1,000
items. The results that were obtained during the tests suggest that for the larger
sets use other sorting algorithms.



54 M. Woźniak, Z. Marszałek, M. Gabryel

Fig. 5. Coefficient of variation for the number of CPU clock cycles, real-time and mil-
liseconds that were obtained during performed tests

Rys. 5. Współczynnik zmienności dla cykli zegarowych procesora, czasu rzeczywistego
oraz czasu zegarowego jakie uzyskano w trakcie wykonanych testów

Fig. 6. Characteristics of coefficient of variation for number of CPU clock cycles, real-
time and milliseconds based on polynomial approximation

Rys. 6. Wykres przybliżenia krzywej współczynnika zmienności dla cykli zegarowych
procesora, czasu rzeczywistego oraz czasu zegarowego poprzez aproksymację wie-
lomianową



The analysis of properties of insertion sort algorithm. . . 55

References

1. Aho A.V., Ullman J.D., Hopcroft J.E.: Data Structures and Algorithms. Ad-
dison Wesley, Boston 1983.

2. Cormen T.H., Leiserson Ch.E., Rivest R.L., Stein C.: Wprowadzenie do algo-
rytmów. WNT, Warszawa 2007.

3. Mehlhorn K., Sanders P.: Algorithms and Data Structures. Springer, Berlin
2008.

4. Sedgewick R.: Algorithms in C, Parts 1-5 (Bundle). Addison-Wesley, Boston
2001.

5. Shaffer C.A.: Data Structures and Algorithm Analysis in C++. Dover Publ.,
New York 2011.

Omówienie

W artykule przedstawiono metodę sortowania poprzez wstawianie. Opisano
algorytm pozwalający wykonać sortowanie oraz określono złożoność omówionej
metody. Metoda została przetestowana dla dużych zbiorów danych. Na podsta-
wie wyników jakie uzyskano w trakcie przeprowadzonych badań wykonano analizę
własności metody sortowania poprzez wstawianie. Wyniki opracowania statystycz-
nego pozwoliły określić szybkość omówionej metody dla dużych zbiorów danych
i zweryfikować jej stabilność. Wyniki analizy pozwoliły wprowadzić modyfikacje
zwiększające efektywność.




