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APPROXIMATED SNELL ENVELOPE AND
ITS APPLICATIONS

Abstract. This paper proposes some mild conditions on underlying
stochastic process of optimal stopping and some approximations are pro-
posed for Snell envelope techniques. The aim is to simplify the computation
of conditional expectations which are necessary in obtaining the sequential
backward Snell auxiliary process. Then, by applying these approximations
to return process of a financial asset, the behaviors of optimal stopping
times at which the expectation of return process is optimized are studied.
Here, it is assumed that the mean corrected return process is of GARCH
type.

1. Introduction

In optimal control literature, optimal stopping concerns with the problem of

choosing a time to take a given action based on sequential observations. Opti-

mal stopping has many applications in statistics (in sequential hypothesis test-

ing), mathematics (in optimal search), operation research (in secretary problem),

economics (portfolio management), trading (in finding momentum positions) and

finance (in pricing American option), see Marti (2004). In most of cases, the

optimal stopping problem is written as Bellman equation and it is solved using
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dynamic programming and backward induction. This method has many advan-

tages, but it is too time-consuming. Generally, there are three methods to solve

optimal stopping problems, including the Markovian approach, the martingale

approach, and the Snell envelope technique. The Snell method is a frequently

used method in mathematical finance, see Wang (2010). Often, this technique

is based on constructing conditional expectations and maximizing them and the

underlying process. However, from a computational point of view, except for inde-

pendent increments such as Brownian motion and random walk, the closed-form of

conditional expectation does not exist. Although Longstaff and Schwartz (2001)

proposed a simple regression method for American option pricing problems, the

Snell technique is generally difficult to apply, see Peskir and Shiryaev (2006).

Suppose that Xt, t = 1, 2, . . . is a discrete time stochastic process and Ft is

the natural filtration (σ-field, information set) made by (X1, . . . , Xt). The optimal

stopping problem is to find a stopping time τ which maximizes E(Xt). For finite

horizon case, when t = 1, . . . , n, the Snell envelope technique (see Ferguson, 2007)

defines an auxiliary process gt, 1 ≤ t ≤ n, as follows:

gt =

{
max (Xt, E(gt+1|Ft)) , 1 ≤ t ≤ n− 1,

Xn, t = n.

Such an approach and idea in the analysis of stochastic processes is being used

in algorithmic trading. To this end, let rt be the t-th return of a specific stock

and let µt and σt be the mean and the standard deviation of the return process,

respectively. For simplicity of arguments, assume that

rt = µt + σtzt,

where zt is a white noise sequence with a specific density function ϕ and the

corresponding distribution and survive functions Φ and Φ, respectively. Let Xt =

rt − µt. Here, σ
2
t obeys a GARCH series defined by

σ2
t = w + ασ2

t−1 + βX2
t−1.

We are interested in finding the first time (stopping time) τ at which Xt reaches

its maximum, i.e., rt is the farthest from the mean µt.

The Snell envelope technique is based on a backward induction method that

uses a dynamic programming approach. As stated, proposing analytical solu-

tions for Snell’s method requires closed-forms of recursive conditional expecta-

tions, which is hard in most cases. The asymptotic solutions provide a suitable
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alternative approach. In the case of independent observations, Lustri et al. (2020)

proposed a recursive relation for expectations of Snell’s sequences. In the present

paper, under some mild conditions, similar recursive relations are proposed in the

case of dependent observations, as well as its application in trading is proposed.

The simulation results are also described.

2. Formulation

The following lemma will be used in the proposed extension of Snell envelope.

Lemma 1. Suppose that X is a continuous random variable with density function

f , Y is another continuous random variable and a is a constant real number. Then

(i) E(max(X − a, 0)) =
∫∞
a

P (X > z)dz.

(ii) E(max(X − Y, 0)) = E
∫∞
Y

P (X > z|Y )dz.

(iii) If E|Y − E(Y )| → 0, then E(max(X − Y, 0)) =
∫∞
E(Y )

P (X > z)dz.

Proof. To show (i), we can write

E(max(X − a, 0)) =

∫ ∞

−∞
max(x− a, 0)f(x)dx =

=

∫ ∞

a

(x− a)f(x)dx =

∫ ∞

a

∫ x

a

dzf(x)dx =

=

∫ ∞

a

∫ ∞

z

f(x)dxdz =

∫ ∞

a

P (X > z)dz.

To show (ii), we can write

E(max(X − Y, 0)) = E(E(max(X − Y, 0))|Y ) = E

∫ ∞

Y

P (X > z|Y )dz.

For (iii), observe that

E

∣∣∣∣∣
∫ ∞

Y

P (X > z|Y )dz −
∫ ∞

E(Y )

P (X > z|Y )dz

∣∣∣∣∣ ≤ E|Y − E(Y )| → 0.
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Therefore

E

∫ ∞

Y

P (X > z|Y )dz = E

∫ ∞

E(Y )

P (X > z|Y )dz =

=

∫ ∞

E(Y )

E (P (X > z|Y )) dz =

∫ ∞

E(Y )

P (X > z)dz.

□

Remark 2. In Lemma 1 and its proof, it is assumed that E|Y − E (Y ) | → 0.

To clarify the type of this convergence, suppose that Y = Yϑ is indexed by some

deterministic parameter ϑ > 0 and as ϑ gets large or small, then E|Yϑ − E (Yϑ) |
goes to zero as a function of ϑ. As it was seen in the proof, it suffices that var(Yϑ)

tends to zero. As an example, let ϑ = n and let Yϑ = Wn be the average of n

copies of finite variances random variables Wi, i = 1, . . . , n.

2.1. Asymptotic envelope

To propose extension, let us define:

Yt := E(gt+1|Ft), vt := E(gt).

Then gt = Yt +max(Xt − Yt, 0). Assume that E|gt − vt| is close to zero. Then gt

is approximated well by its expectation vt. Thus

vt = vt+1 + E(max(Xt − Yt, 0)).

Here and in Lemma 3, the condition for E |gt − vt| to be small is sought. Note

that

E |gt − vt| = E
√

(gt − vt)2 ≤
√

E(gt − vt)2 =
√
var(gt).

The inequality in the middle is satisfied by Jensen’s inequality and the fact that

the function
√
x is concave. So, it is enough to find a condition for var(gt) to be

small. Let us define

Mn := max(var(X1), . . . , var(Xn)).

The required condition can be stated as follows.
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Lemma 3. We have var(gt) ≤ Mn for t = 1, . . . , n. In particular, if Mn → 0,

then all var(gt) are close to zero.

Proof. Since gn = Xn, we get var (gn) ≤ var (Xn) ≤ Mn. Next, we have gn−1 =

max (Xn−1, E(Xn|Fn−1)), which equals to Xn−1 in the case

var (gn−1) ≤ var(Xn−1) ≤ Mn,

or to E(Xn|Fn−1) in the case

var(E(Xn|Fn−1)) ≤ var(Xn) ≤ Mn.

Using backward induction, it is concluded that var(gt) ≤ Mn. This completes the

proof. □

Note that var(Yt) ≤ var(gt) ≤ Mn. Therefore E|Yt − E (Yt) | → 0 as Mn → 0.

Using Lemma 1, it is concluded that

E (max (Xt − Yt, 0) ) =

∫ ∞

vt+1

P (Xt+1 > z) dz.

Therefore, it is concluded that

vt = vt+1 +

∫ ∞

vt+1

P (Xt+1 > z) dz.

Let t0 = 0 and tn (n ≥ 1) be positive real indices such that tn − tn−1 = h for

some predetermined positive h, and assume that vtn = vn. Following Lustri et al.

(2020), it can be seen that the asymptotic behaviors of −v′n and
∫∞
vn

P (Xn > z) dz

are the same. Similarly, the asymptotic behaviors of
v′′
n

v′
n
and hn(vn) := P (Xn > vn)

are the same. Thus, we can write

−v′n ∼
∫ ∞

vn

P (Xn > z) dz,

v′′n
v′n

∼ hn (vn) .

Following Suli and Mayers (2003), the forward numerical approximation for v′n is

given by
vn+1 − vn

h
,
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and the suitable approximation for v′′n is given by

1

h

(
vn+2 − vn+1

h
− vn+1 − vn

h

)
.

Therefore, both
v′′
n

v′
n
and hn(vn) can be numerically approximated by

vn+2 − 2vn+1 + vn
h(vn+1 − vn)

.

This justifies the following proposition.

Proposition 4. Let vt := E(gt) and hn (z) := P (Xn > z). If Mn → 0, then

(a) vt = vt+1 +
∫∞
vt

hn (z) dz,

(b) v′n ∼ −
∫∞
vn

hn (z) dz,

(c) hn(vn) ∼ v′′
n

v′
n
, hn(vn) ∼ vn+2−2vn+1+vn

h(vn+1−vn)
.

In the case of GARCH series, we have

var (Xn) = E
(
X2

t

)
= E

(
σ2
t

)
=

w

1− (α+ β)
.

Therefore, it is enough to ensure that w
1−(α+β) is small. We also have

hn (x) = P (σnzn > x) = E

(
Φ

(
x√
σ2
n

))
.

To approximate the last expectation, the following lemma will be used.

Lemma 5. Let γ and δ be, respectively, the long-term mean and the standard

deviation of σ2
t . Then for every twice differentiable measurable function ζ(·), we

have

E
(
ζ
(
σ2
n

))
≈ ζ(γ) +

1

2
ζ ′′(γ)δ2.

The proof of Lemma 5 is based on the Taylor expansion of function of a random

variable and taking expectation. It is a routine work in the field of large sample
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theory (see Lehmann, 2018). Using Lemma 5, we get

E

(
Φ

(
x√
σ2
n

))
≈ Φ

(
x
√
γ

)
− δ2γ−3x

8

(
3
√
γϕ

(
x
√
γ

)
+ xϕ′

(
x
√
γ

))
.

In consequence, we obtain the following proposition.

Proposition 6. The function hn(x) from Proposition 4 can be approximated as

follows

hn(x) ≈ Φ

(
x
√
γ

)
− δ2γ−3x

8

(
3
√
γϕ

(
x
√
γ

)
+ xϕ′

(
x
√
γ

))
,

where the unconditional mean γ and the standard deviation δ of GARCH series

satisfy

γ =
w

1− (α+ β)
, δ2 =

β2var
(
z2t
)
E2
(
σ2
t

)
1− α2 − β2E (z4t )

.

If zt has the standard normal distribution, then var
(
z2t
)
= 2 and E

(
z4t
)
= 3.

2.2. Simulations

In this section, a simple method for approximation of vt is proposed, which

allows to use the Monte Carlo simulations. To this end, first suppose that σ2
t is a

non-random real function and remember that

vt − vt+1 =

∫ ∞

vt+1

P (σt+1zt+1 > z) dz.

Assume that vt+1

σt+1
= λ is constant for each t. Then

λ
σt − σt+1

σt+1
=

∫ ∞

λ

P (zt+1 > z)dz.

By differentiation with respect to λ, it can be seen that P (zt+1 ≤ λ) = σt

σt+1
. Thus

λ is the σt

σt+1
-th quantile of zt+1. Again, considering σt as a GARCH series and

simulating it by Monte Carlo method, the empirical distribution of zt+1 is fitted.

Furthermore, the empirical value of σt

σt+1
is forecasted. Therefore λ is estimated

by the σt

σt+1
-th quantile of distribution of zt+1.

Consider the daily log-return of Apple Inc. for period of 21 July 2021 to

20 June 2022, including 252 observations. The historical prices st are taken
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from https://www.nasdaq.com, and the daily log–returns are computed using

rt = log (st) − log(st−1). Here, µt = −0.00068 and w = 4.22× 10−5, α = 0.861,

β = 0.034. Assuming zt as a sequence of independent and standard normally

distributed random variables, Fig. 1 gives the time series plot of vt. Here, the

skew and kurtosis of zt are −0.021 and 2.96, respectively, which shows that zt is

normally distributed.

Fig. 1. Mean corrected series Xt vs vt

Remark 7. The assumption of normality for zt does not hold in practice. Here,

the Monte Carlo simulation may be applied to derive the empirical distribution

of zt. In the case of heavy-tailed distributions, suitable ones such as t-student

distribution is reasonable. In the case of thick-tail distributions, usually, it is rea-

sonable to decompose zt as sign(zt) × |zt| and to use a suitable copula function,

which is based on empirical covariance structure between the sign and absolute

value of zt with marginal distributions as Bernoulli law for 0.5(1 + sign(zt)) and

the normal distribution for a Box-Cox transformation of |zt|. The decomposition

of normal random variables to their signs and absolute values are also interesting.

An application of this analysis are the stock or foreign exchange markets predic-

tions, where investors are interested in the sign of change indicating an increase

or decrease in price before predicting the amount of the change in order to take

an appropriate trading position. Also, it should be mentioned that for the Monte

Carlo simulation of the product of two random variables, it is necessary to choose

appropriate copula function. For comprehensive review in these fields, see Mai

and Scherer (2012).
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Birkhäuser, Berlin, 2006.

8. Suli E., Mayers D.: An introduction to numerical analysis. Cambridge Uni-

versity Press, UK, 2003.

9. Wang D.: Generalized optimal stopping problems and financial markets. Long-

man Press, USA, 2010.


