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COMPLEX OSCILLATION OF A SECOND
ORDER LINEAR DIFFERENTIAL EQUATION
WITH ENTIRE COEFFICIENTS OF
(α, β)-ORDER

Abstract. In this paper we study distribution of zeros and growth
of solutions of second order linear equations depending on the coefficients
of the equation and their (α, β)-order. We obtain results in general form,
which considerably extend some results from [21].

1. Introduction, Definitions and Notations

Throughout this paper, we assume that the reader is familiar with the fun-

damental results and the standard notations of the Nevanlinna value distribution

theory of entire and meromorphic functions which are available in [11,18,20,26–28]

and therefore we do not explain those in details. It is well-known that the theory

of complex linear differential equations has been developed since 1960s. Several
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authors have investigated the second order linear differential equation

f ′′ +A(z)f = 0, (1)

when A(z) is an entire function or a meromorphic function of finite order or finite

iterated order, and have obtained many results about the interaction between the

solutions and the coefficient of (1) (see [1–3, 17]). Moreover, some authors have

investigated the exponent of convergence of zero sequence and pole sequence of the

solutions of second order differential equations and have obtained some interesting

results (see [6, 7, 17,25]).

We denote the linear measure and the logarithmic measure of a set E ⊂
(1,+∞) by mE =

∫
E
dx and mlE =

∫
E
dx
x . Now let L be a class of continu-

ous functions α, non-negative on (−∞,+∞), such that α(x) = α(x0) ≥ 0 for

x ≤ x0 and α(x)→ +∞ as x0 ≤ x→ +∞.

During the past decades, several authors made close investigations on the prop-

erties of entire functions related to (α, β)-order in some different direction. Re-

cently Mulyava et al. [19] have investigated the properties of solutions of a hetero-

geneous differential equation of the second order under some different conditions

and have obtained several interesting results. For details one may see [19]. Now

it is interesting to investigate distribution of zeros and growth of solutions of sec-

ond order linear equations depending on the coefficients of the equation and their

(α, β)-order, which is the main aim of this paper. For this purpose, we rewrite the

definition of the (α, β)-order of a meromorphic function in the following way after

giving a minor modification to the original definition (e.g. see, [19, 22]):

Definition 1. Let α ∈ L and β ∈ L. The (α, β)-order denoted by σ(α,β)[f ] and

(α, β)-lower order denoted by µ(α,β)[f ] of a meromorphic function f are, respec-

tively, defined by

σ(α,β)[f ] = lim sup
r→+∞

α(log T (r, f))

β(log r)
and µ(α,β)[f ] = lim inf

r→+∞

α(log T (r, f))

β(log r)
,

where T (r, f) is the Nevanlinna characteristic function of f .

Example 2. Let f be a meromorphic function. One can see that α(r) = log[p] r,

(p ≥ 0) and β(r) = log[q] r, (q ≥ 0) belong to the class L, where log[k] x =

log(log[k−1] x) (k ≥ 1) , with convention that log[0] x = x. So, when p = 0 and

q = 0, i.e., α(r) = β(r) = r, the Definition 1 coincides with the usual order

and lower order, when α(r) = log[p−1] r (p ≥ 1) and β(r) = r, we obtain the
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iterated p−order and the iterated lower p−order (see [17], [23]), moreover when

α(r) = log[p−1] r and β(r) = log[q−1] r, (p ≥ q ≥ 1), we get the (p, q)-order and the

lower (p, q)-order (see [14], [15]). Finally, if α(r) = ϕ (er), where ϕ is an increasing

unbounded function on d1,+∞) and β(r) = r, we obtain the ϕ−order and the

lower ϕ−order (see [4], [8]).

Let f be a meromorphic function, n(r, f) be the number of poles of f(z) in

|z| ≤ r, each counted with correct multiplicity, and let n(r, f) be the number of

poles, where each multiple pole is counted only once. Similarly to Definition 1 we

can also define the (α, β)-exponent of convergence of the zero sequence and (α, β)-

exponent of convergence of the distinct zero sequence of a meromorphic function

f in the following way:

Definition 3. Let α ∈ L and β ∈ L. The (α, β)-exponent of convergence of the

zero sequence of a meromorphic function f , denoted by λ(α,β)[f ], is defined by

λ(α,β)[f ] = lim sup
r→+∞

α(log n(r, 1/f))

β(log r)
.

Similarly, the (α, β)-exponent of convergence of the distinct zero sequence of f ,

denoted by λ(α,β)[f ], is defined by

λ(α,β)[f ] = lim sup
r→+∞

α(log n(r, 1/f))

β(log r)
.

We say that α ∈ L1, if α ∈ L and α((1 + o(1))x) = (1 + o(1))α(x) as x→ +∞
and α ∈ Lsi, if α ∈ L and α(cx) = (1 + o(1))α(x) as x → +∞ for each fixed

c ∈ (0,+∞). It is clear that Lsi ⊂ L1. Now we add two conditions on α and β:

(i) α and β always denote the functions belonging to Lsi and L1, respectively,

and

(ii) α(log x) = o(β(x)) as x→ +∞.

Throughout this paper, we assume that α and β always satisfy the above two

conditions unless otherwise specifically stated.

Proposition 4. Let f1, f2 be non-constant meromorphic functions with σ(α,β)[f1]

and σ(α,β)[f2] as their (α, β)-order. Then

(i) σ(α,β)[f1 ± f2] ≤ max{σ(α,β)[f1], σ(α,β)[f2]},
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(ii) σ(α,β)[f1 · f2] ≤ max{σ(α,β)[f1], σ(α,β)[f2]},

(iii) if σ(α,β)[f1] 6= σ(α,β)[f2], then σ(α,β)[f1 ± f2] = max{σ(α,β)[f1], σ(α,β)[f2]},

(iv) if σ(α,β)[f1] 6= σ(α,β)[f2], then σ(α,β)[f1 · f2] = max{σ(α,β)[f1], σ(α,β)[f2]}.

Proof. (i) Without loss of generality, we assume that σ(α,β)[f1] ≤ σ(α,β)[f2] < +∞.

From the definition of (α, β)-order, for any ε > 0, we obtain for all sufficiently large

values of r that

T (r, f1) < exp(α−1((σ(α,β)[f1] + ε)β(log r))) (2)

and

T (r, f2) < exp(α−1((σ(α,β)[f2] + ε)β(log r))). (3)

Since T (r, f1± f2) ≤ T (r, f1) + T (r, f2) + log 2 for all large r, we get from (2) and

(3), for all sufficiently large values of r, that

T (r, f1 ± f2) < 2 exp(α−1((σ(α,β)[f2] + ε)β(log r))) + log 2,

i.e., T (r, f1 ± f2) < 3 exp(α−1((σ(α,β)[f2] + ε)β(log r))),

i.e.,
1

3
T (r, f1 ± f2) < exp(α−1((σ(α,β)[f2] + ε)β(log r))),

i.e., log T (r, f1 ± f2)− log 3 < α−1((σ(α,β)[f2] + ε)β(log r)).

We can write

log T (r, f1 ± f2)− log 3 =

(
1− log 3

log T (r, f1 ± f2)

)
log T (r, f1 ± f2).

Since log 3
log T (r,f1±f2) → 0 as r → +∞ and α ∈ L1, we obtain

(1 + o(1))α (log T (r, f1 ± f2)) = α((1− log 3

log T (r, f1 ± f2)
) log T (r, f1 ± f2))

≤
(
σ(α,β)[f2] + ε

)
β (log r) ,

which implies that

lim sup
r→+∞

(1 + o(1))α(log T (r, f1 ± f2))

β(log r)
≤ σ(α,β)[f2] + ε
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holds for any ε > 0. Hence

σ(α,β)[f1 ± f2] ≤ max{σ(α,β)[f1], σ(α,β)[f2]}. (4)

(iii) Further, without loss of any generality, let σ(α,β)[f1] < σ(α,β)[f2] < +∞
and f = f1 ± f2. Then in view of (4) we get that σ(α,β)[f ] ≤ σ(α,β)[f2]. As

f2 = ±(f−f1), in this case we obtain that σ(α,β)[f2] ≤ max {σ(α,β)[f ], σ(α,β)[f1]}.
As we assume that σ(α,β)[f1] < σ(α,β)[f2], therefore we have σ(α,β)[f2] ≤ σ(α,β)[f ]

and hence σ(α,β)[f ] = σ(α,β)[f2] = max{σ(α,β)[f1], σ(α,β)[f2]}.
(ii) and (iv) Similarly, from T (r, f1 · f2) ≤ T (r, f1) + T (r, f2) for all large r, we

can also get

σ(α,β)[f1 · f2] ≤ max{σ(α,β)[f1], σ(α,β)[f2]}

and if σ(α,β)[f1] 6= σ(α,β)[f2], then

σ(α,β)[f1 · f2] = max{σ(α,β)[f1], σ(α,β)[f2]},

which completes the proof of Proposition 4. �

Proposition 5. Let f1 and f2 be non-constant meromorphic functions with

σ(α(log),β)[f1] and σ(α(log),β)[f2] as their (α(log), β)-order. Then

(i) σ(α(log),β)[f1 ± f2] ≤ max{σ(α(log),β)[f1], σ(α(log),β)[f2]},

(ii) σ(α(log),β)[f1 · f2] ≤ max{σ(α(log),β)[f1], σ(α(log),β)[f2]},

(iii) if σ(α(log),β)[f1] 6= σ(α(log),β)[f2], then

σ(α(log),β)[f1 ± f2] = max{σ(α(log),β)[f1], σ(α(log),β)[f2]},

(iv) if σ(α(log),β)[f1] 6= σ(α(log),β)[f2], then

σ(α(log),β)[f1 · f2] = max{σ(α(log),β)[f1], σ(α(log),β)[f2]}.

Since α((1 + o(1))x) = (1 + o(1))α(x) as x→ +∞, the proof of Proposition 5

would run parallelly to that of Proposition 4. We omit the details.

Proposition 6. (i) If f is an entire function, then

σ(α,β)[f ] = lim sup
r→+∞

α(log T (r, f))

β(log r)
= lim sup

r→+∞

α(log[2]M(r, f))

β(log r)
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and

µ(α,β)[f ] = lim inf
r→+∞

α(log T (r, f))

β(log r)
= lim inf

r→+∞

α(log[2]M(r, f))

β(log r)
,

where M(r, f) = max{|f(z)| : |z| = r}.
(ii) If f is a meromorphic function, then

λ(α,β)[f ] = lim sup
r→+∞

α(log n(r, 1/f))

β(log r)
= lim sup

r→+∞

α(logN(r, 1/f))

β(log r)

and

λ(α,β)[f ] = lim sup
r→+∞

α(log n(r, 1/f))

β(log r)
= lim sup

r→+∞

α(logN(r, 1/f))

β(log r)
,

where N(r, 1/f) and N(r, 1/f) are the corresponding counting functions of poles

of 1/f .

Proof. (i) By the inequality T (r, f) ≤ log+M(r, f) ≤ R+r
R−rT (R, f) (0 < r < R)

(cf. [11]) for an entire function f , set R = ηr (η > 1), we have

T (r, f) ≤ log+M(r, f) ≤ η + 1

η − 1
T (ηr, f). (5)

By (5), α((1 + o(1))x) = (1 + o(1))α(x) as x → +∞ and β((1 + o(1))x) = (1 +

o(1))β(x) as x→ +∞, it is easy to see that conclusion (i) holds.

(ii) Without loss of generality, assume that f(0) 6= 0, then N(r, 1/f) =∫ r
0
n(t,1/f)

t dt. We have

N(r, 1/f)−N(r0, 1/f) =

∫ r

r0

n(t, 1/f)

t
dt ≤ n(r, 1/f) log

r

r0
(0 < r0 < r),

that is

N(r, 1/f) ≤ N(r0, 1/f) + n(r, 1/f) log
r

r0
(0 < r0 < r),

i.e., N(r, 1/f) ≤

(
1 +

N(r0, 1/f)

n(r, 1/f) log r
r0

)
n(r, 1/f) log

r

r0
(0 < r0 < r),

which implies

logN(r, 1/f) ≤ log n(r, 1/f) + log log r

+ log

(
1− log r0

log r

)
+ log

(
1 +

N(r0, 1/f)

n(r, 1/f) log r
r0

)
(0 < r0 < r), (6)
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then by (6), we have

lim sup
r→+∞

α(logN(r, 1/f))

β(log r)
≤ lim sup

r→+∞

α
(

(1 + o (1))
(

log n(r, 1/f) + log[2] r
))

β(log r)

≤ lim sup
r→+∞

(1 + o (1))α(log n(r, 1/f) + log[2] r)

β(log r)

≤ lim sup
r→+∞

α(2 max{log n(r, 1/f), log[2] r})
β(log r)

= lim sup
r→+∞

(1 + o (1)) max{α(log n(r, 1/f)), α(log[2] r)}
β(log r)

= lim sup
r→+∞

α(log n(r, 1/f)) + α(log[2] r)

β(log r)

≤ lim sup
r→+∞

α(log n(r, 1/f))

β(log r)
+ lim sup

r→+∞

α(log[2] r)

β(log r)

= lim sup
r→+∞

α(log n(r, 1/f))

β(log r)
, (7)

since α(log x) = o(β(x)) as x→ +∞ we have α(log[2] r)
β(log r) → 0 as r → +∞.

On the other hand, we have

N(er, 1/f) =

∫ er

0

n(t, 1/f)

t
dt ≥

∫ er

r

n(t, 1/f)

t
dt

≥ n(r, 1/f) log e = n(r, 1/f). (8)

By (8) and the condition β((1 + o(1))x) = (1 + o(1))β(x) as x→ +∞, we have

lim sup
r→+∞

α(logN(er, 1/f))

β(log r)
≥ lim sup

r→+∞

α(log n(r, 1/f))

β(log r)
.
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We can write

lim sup
r→+∞

α(logN(er, 1/f))

β(log r)
= lim sup

r→+∞

α(logN(er, 1/f))

β(log er − log e)

= lim sup
r→+∞

α(logN(er, 1/f))

β(
(

1− 1
log er

)
log er)

= lim sup
r→+∞

α(logN(er, 1/f))

β((1 + o (1)) log er)

= lim sup
r→+∞

α(logN(er, 1/f))

(1 + o (1))β(log er)

= lim sup
r→+∞

α(logN(r, 1/f))

β(log r)
,

it follows that

lim sup
r→+∞

α(logN(r, 1/f))

β(log r)
≥ lim sup

r→+∞

α(log n(r, 1/f))

β(log r)
. (9)

By (7) and (9), it is easy to see that

λ(α,β)[f ] = lim sup
r→+∞

α(log n(r, 1/f))

β(log r)
= lim sup

r→+∞

α(logN(r, 1/f))

β(log r)
.

By the same proof as above, we can obtain the conclusion

λ(α,β)[f ] = lim sup
r→+∞

α(log n(r, 1/f))

β(log r)
= lim sup

r→+∞

α(logN(r, 1/f))

β(log r)
.

�

Proposition 7. (i) If f is an entire function, then

σ(α(log),β)[f ] = lim sup
r→+∞

α(log[2] T (r, f))

β(log r)
= lim sup

r→+∞

α(log[3]M(r, f))

β(log r)

and

µ(α(log),β)[f ] = lim inf
r→+∞

α(log[2] T (r, f))

β(log r)
= lim inf

r→+∞

α(log[3]M(r, f))

β(log r)
.
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(ii) If f is a meromorphic function, then

λ(α(log),β)[f ] = lim sup
r→+∞

α(log[2] n(r, 1/f))

β(log r)
= lim sup

r→+∞

α(log[2]N(r, 1/f))

β(log r)

and

λ(α(log),β)[f ] = lim sup
r→+∞

α(log[2] n(r, 1/f))

β(log r)
= lim sup

r→+∞

α(log[2]N(r, 1/f))

β(log r)
.

Since α((1 + o(1))x) = (1 + o(1))α(x) as x→ +∞, the proof of Proposition 7

would run parallelly to the one of Proposition 6. We omit the details.

2. Main Results

In this paper, our aim is to make use of the concept of (α, β)-order of entire

functions to investigate distribution of zeros and growth of solutions of equa-

tion (1), which considerably extends some results of [21].

Theorem 8. Let A(z) be an entire function satisfying σ(α,β)[A] > 0. Then

σ(α(log),β)[f ] = σ(α,β)[A] holds for all non-trivial solutions of (1).

Remark 9. If we choose α(r) = log[p−1] r (p ≥ 2) and β(r) = r in Theorem 8, we

obtain Theorem 3.1 in [17] for p ≥ 2. Furthermore, by setting α(r) = log[p−1] r

(p ≥ 2) and β(r) = log[q] ϕ(er) (q ≥ 1) in Theorem 8, we obtain Theorem 2.1

in [21] for p ≥ q ≥ 2 and p = 2, q = 1. We assume that ϕ : [0,+∞) → (0,+∞)

is a non-decreasing unbounded function and always satisfies the following two

conditions:

(i) lim
r→+∞

logp+1 r

logq ϕ(r) = 0.

(ii) lim
r→+∞

logq ϕ(ηr)

logq ϕ(r) = 1 for some η > 1.

Theorem 10. Let A(z) be an entire function satisfying σ(α,β)[A] > 0, let f1 and

f2 be two linearly independent solutions of (1) and denote F = f1· f2. Then

max{λ(α(log),β)[f1], λ(α(log),β)[f2]} = λ(α(log),β)[F ] = σ(α(log),β)[F ] ≤ σ(α,β)[A].
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If σ(α(log),β)[F ] < σ(α,β)[A], then λ(α(log),β)[f ] = σ(α,β)[A] holds for all solutions

of type f = c1f1 + c2f2, where c1· c2 6= 0.

Remark 11. By setting α(r) = log[p−1] r (p ≥ 2) and β(r) = r in Theorem 10,

we obtain Theorem 3.2 in [17] for p ≥ 2. Moreover, by putting α(r) = log[p−1] r

(p ≥ 2) and β(r) = log[q] ϕ(er) (q ≥ 1) in Theorem 10 for p ≥ q ≥ 2 and p = 2,

q = 1, where ϕ(r) satisfies the two conditions in Remark 9, we obtain Theorem 2.2

in [21].

Theorem 12. Let A(z) be an entire function satisfying λ(α,β)[A] < σ(α,β)[A].

Then λ(α(log),β)[f ] ≤ σ(α,β)[A] ≤ λ(α,β)[f ] holds for all non-trivial solutions of

(1).

Remark 13. If we put α(r) = log[p−1] r (p ≥ 2) and β(r) = r in Theorem 12, we

obtain Theorem 3.3 in [17] for p ≥ 2. Furthermore, by choosing α(r) = log[p−1] r

(p ≥ 2) and β(r) = log[q] ϕ(er) (q ≥ 1) in Theorem 12 for p ≥ q ≥ 2 and p = 2,

q = 1, where ϕ(r) satisfies the two conditions in Remark 9, we obtain Theorem 2.3

in [21].

3. Some Lemmas

In this section, we present the following lemmas which will be needed in the

sequel.

Lemma 14. ( [12, 13, 18]) Let f be a transcendental entire function, and let z be

a point with |z| = r at which |f(z)| = M(r, f). Then, for all |z| outside a set E1

of r of finite logarithmic measure, we have

f (j)(z)

f(z)
=
(ν(r, f)

z

)j
(1 + o(1)) (j ∈ N), (10)

where ν(r, f) is the central index of f .

Lemma 15. ( [9, 10, 18]) Let g : [0,+∞)→ R and h : [0,+∞)→ R be monotone

nondecreasing functions such that g(r) ≤ h(r) outside of an exceptional set E2 of

finite linear measure or finite logarithmic measure. Then, for any d > 1, there

exists r0 > 0 such that g(r) ≤ h(dr) for all r > r0.
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Lemma 16. ( [13], Theorems 1.9 and 1.10, or [16], Satz 4.3 and 4.4) Let f(z) =∑+∞
n=0 anz

n be any entire function, µ(r, f) be the maximum term, i.e., µ(r, f) =

max {|an|rn;n = 0, 1, ...}, and ν(r, f) be the central index of f .

(i) If |a0| 6= 0, then

logµ(r, f) = log |a0|+
r∫
0

ν(t, f)

t
dt. (11)

(ii) For r < R, we have

M(r, f) < µ(r, f)
(
ν(R, f) +

R

R− r

)
. (12)

Lemma 17. Let f be an entire function satisfying σ(α,β)[f ] = σ1 and µ(α,β)[f ] =

µ1, and let ν(r, f) be the central index of f . Then

lim sup
r→+∞

α(log ν(r, f))

β(log r)
= σ1 and lim inf

r→+∞

α(log ν(r, f))

β(log r)
= µ1.

Proof. In view of the first part of Lemma 16, one may obtain that (cf. [5])

logµ(2r, f) = log |a0|+
2r∫
0

ν(t, f)

t
dt

≥ log |a0|+
2r∫
r

ν(t, f)

t
dt ≥ log |a0|+ ν(r, f) log 2. (13)

Also, by Cauchy’s inequality, it is well known that (cf. [24])

µ(r, f) ≤M(r, f). (14)

Therefore one may obtain from (13) and (14) that (cf. [5])

ν(r, f) log 2 ≤ logM(2r, f)− log |a0|.

Thus, from above we get that

log ν(r, f) + log[2] 2 ≤ log[2]M(2r, f) + log
(

1− log |a0|
logM(2r, f)

)
,



12 B. Beläıdi, T. Biswas

i.e., lim sup
r→+∞

α((1 + o(1)) log ν(r, f))

β(log r)
≤ lim sup

r→+∞

α((1 + o(1)) log[2]M(2r, f))

β(log 2r − log 2)
,

i.e., lim sup
r→+∞

(1 + o(1))α(log ν(r, f))

β(log r)
≤ lim sup

r→+∞

(1 + o(1))α(log[2]M(2r, f))

β((1 + o(1)) log 2r)
,

i.e., lim sup
r→+∞

α(log ν(r, f))

β(log r)
≤ lim sup

r→+∞

α(log[2]M(2r, f))

(1 + o(1))β(log 2r)
,

i.e., σ1 = lim sup
r→+∞

α(log[2]M(2r, f))

β(log 2r)
≥ lim sup

r→+∞

α(log ν(r, f))

β(log r)
, (15)

and consequently

µ1 ≥ lim inf
r→+∞

α(log ν(r, f))

β(log r)
. (16)

Further, for any constant K1 one may get from the second part of Lemma 16,

that (cf. [5])

logM(r, f) < ν(r, f) log r + log ν(2r, f) +K1.

Therefore from above we obtain that

logM(r, f) < ν(2r, f) log r + ν(2r, f) +K1,

i.e., logM(r, f) < ν(2r, f)(1 + log r) +K1,

i.e., logM(r, f) < ν(2r, f) log(e · r) +K1,

i.e., log[2]M(r, f) < log ν(2r, f) + log[2](e · r) + log
(

1 +
K1

ν(2r, f) log(e · r)

)
,

i.e., lim sup
r→+∞

α(log[2]M(r, f))

β(log r)
≤ lim sup

r→+∞

α((1 + o(1)) log ν(2r, f))

β(log r)
,

i.e., lim sup
r→+∞

α(log[2]M(r, f))

β(log r)
≤ lim sup

r→+∞

(1 + o(1))α(log ν(r, f))

β(log r − log 2)
,

i.e., lim sup
r→+∞

α(log[2]M(r, f))

β(log r)
≤ lim sup

r→+∞

α(log ν(r, f))

β((1 + o(1)) log r)
,

i.e., lim sup
r→+∞

α(log[2]M(r, f))

β(log r)
≤ lim sup

r→+∞

α(log ν(r, f))

(1 + o(1))β(log r)
,

i.e., σ1 = lim sup
r→+∞

α(log[2]M(r, f))

β(log r)
≤ lim sup

r→+∞

α(log ν(r, f))

β(log r)
, (17)
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and accordingly

µ1 ≤ lim inf
r→+∞

α(log ν(r, f))

β(log r)
. (18)

Combining (15), (17) and (16), (18) we obtain that

lim sup
r→+∞

α(log ν(r, f))

β(log r)
= σ1 and lim inf

r→+∞

α(log ν(r, f))

β(log r)
= µ1.

This proves the lemma. �

Lemma 18. Let f be an entire function satisfying

σ(α(log),β)[f ] = σ2 and µ(α(log),β)[f ] = µ2,

and let ν(r, f) be the central index of f . Then

lim sup
r→+∞

α(log[2] ν(r, f))

β(log r)
= σ2 and lim inf

r→+∞

α(log[2] ν(r, f))

β(log r)
= µ2.

The proof of Lemma 18 can be conducted along the same lines as the proof of

Lemma 17 and so it is omitted.

Lemma 19. Let f1 and f2 be the entire functions of (α, β)-exponent of convergence

of the zero sequence and denote F = f1· f2. Then

λ(α,β)[F ] = max{λ(α,β)[f1], λ(α,β)[f2]}.

Proof. Let n(r, 0, F ), n(r, 0, f1) and n(r, 0, f2) be the unintegrated counting func-

tions for the number of zeros of F , f1 and f2. For any r > 0, it is easy to see

that

n(r, 0, F ) ≥ max{n(r, 0, f1), n(r, 0, f2)}. (19)

By Definition 3 and (19), we have

λ(α,β)[F ] ≥ max{λ(α,β)[f1], λ(α,β)[f2]}. (20)

On the other hand, since the zeros of F must be the zeros of f1 and the zeros of

f2, for any r > 0 we have

n(r, 0, F ) = n(r, 0, f1) + n(r, 0, f2) ≤ 2 max{n(r, 0, f1), n(r, 0, f2)}. (21)
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By Definition 3 and (21), we get that

λ(α,β)[F ] ≤ max{λ(α,β)[f1], λ(α,β)[f2]}. (22)

Therefore, by (20) and (22), we have

λ(α,β)[F ] = max{λ(α,β)[f1], λ(α,β)[f2]}.

This completes the proof. �

Lemma 20. Let f1 and f2 be the entire functions of (α(log), β)-exponent of con-

vergence of the zero sequence and denote F = f1· f2. Then

λ(α(log),β)[F ] = max{λ(α(log),β)[f1], λ(α(log),β)[f2]}.

The proof of Lemma 20 can be conducted along the same lines as the proof of

Lemma 19 and so this proof is omitted.

Lemma 21. Let f be a transcendental meromorphic function satisfying σ(α,β)[f ]

= σ3 and let k ≥ 1 be an integer. Then, for any ε > 0, there exists a set E3,

having finite linear measure, such that for all r /∈ E3 we have

m
(
r,
f (k)

f

)
= O

(
α−1 ((σ3 + ε)β (log r))

)
.

Proof. Set k = 1. Since σ(α,β)[f ] = σ3 < +∞, for sufficiently large r and for any

given ε > 0, we have

T (r, f) < exp
(
α−1 ((σ3 + ε)β (log r))

)
. (23)

By the lemma of logarithmic derivative, we have

m
(
r,
f ′

f

)
= O(log r + log T (r, f)) (r /∈ E3), (24)

where E3 ⊂ [0,+∞) is a set of finite linear measure, not necessarily the same

at each occurrence. By (23) and (24) and the condition α(log x) = o(β(x)) as

x→ +∞, we have

m
(
r,
f ′

f

)
= O

(
α−1 ((σ3 + ε)β (log r))

)
(r /∈ E3).
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We assume that

m
(
r,
f (k)

f

)
= O

(
α−1 ((σ3 + ε)β (log r))

)
(r /∈ E3) (25)

holds for a certain integer k ≥ 1. By N(r, f (k)) ≤ (k + 1)N(r, f), for all r /∈ E3,

we have

T (r, f (k)) = m(r, f (k)) +N(r, f (k))

≤ m
(
r,
f (k)

f

)
+m(r, f) + (k + 1)N(r, f)

≤ (k + 1)T (r, f) +O
(
α−1 ((σ3 + ε)β (log r))

)
. (26)

By (24) and (26), for r /∈ E3, we obtain that

m
(
r,
f (k+1)

f (k)

)
= m

(
r,

(
f (k)

)′
f (k)

)
= O(log r + log T (r, f (k)))

= O
(
α−1 ((σ3 + ε)β (log r))

)
. (27)

Therefore, by (25) and (27), for r /∈ E3, we get that

m
(
r,
f (k+1)

f

)
≤ m

(
r,
f (k+1)

f (k)

)
+m

(
r,
f (k)

f

)
= O

(
α−1 ((σ3 + ε)β (log r))

)
.

Hence the lemma follows. �

4. Proof of the Main Results

Proof of Theorem 8. Set σ(α,β)[A] = σ4 > 0. First, we prove that every

solution of (1) satisfies σ(α(log),β)[f ] ≤ σ4. If f is a polynomial solution of (1), it is

easy to show that σ(α(log),β)[f ] = 0 ≤ σ4 holds. Suppose that f is a transcendental

solution of (1). By (1), we can write∣∣∣∣f ′′ (z)f (z)

∣∣∣∣ = |A (z)| ,
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so, by Lemma 14, there exists a set E1 ⊂ (1,+∞) having finite logarithmic measure

such that for all z satisfying |z| = r /∈ [0, 1] ∪ E1 and |f(z)| = M(r, f), we have(ν(r, f)

r

)2

|1 + o(1)| ≤ exp[2]
(
α−1

((
σ4 +

ε

2

)
β(log r)

))
,

and hence, we obtain that

ν(r, f) ≤ r exp[2](α−1((σ4 + ε)β(log r))) (r /∈ E1). (28)

Therefore by (28) and Lemma 15, there exists some η1 > 1 such that for all r > r0

we have

ν(r, f) ≤ η1r exp[2](α−1((σ4 + ε)β(log η1r))). (29)

By (29), Lemma 18, and the two conditions on α and β, we obtain that

σ(α(log),β)[f ] = lim sup
r→+∞

α(log[2] ν(r, f))

β(log r)
≤ σ4. (30)

On the other hand, by (1), since f is a transcendental, we get that

m(r,A) = m
(
r,−f

′′

f

)
= O(log rT (r, f))

= O(log r + log T (r, f)), (r /∈ E3),

where E3 ⊂ [0,+∞) is a set of finite linear measure. By using Lemma 15, for any

η2 > 1 and for all r > r0, we have

m(r,A) = m
(
r,−f

′′

f

)
≤ K2(log η2r + log T (η2r, f)), (31)

whereK2 > 0 is some constant. By (31), by using the two inequalities log (x+ y) ≤
log x + log y + log 2 (x, y ≥ 1) and x + y ≤ 2 max {x, y} , since A (z) is an entire

function, we have

σ(α,β)[A] = lim sup
r→+∞

α(logm(r,A))

β(log r)

≤ lim sup
r→+∞

α(logK2 + log log η2r + log log T (η2r, f) + log 2)

β(log r)

≤ lim sup
r→+∞

α((1 + o (1)) (log log η2r + log log T (η2r, f)))

β(log r)
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= lim sup
r→+∞

(1 + o (1))α(log log η2r + log log T (η2r, f))

β(log r)

≤ lim sup
r→+∞

α(2 max {log log η2r, log log T (η2r, f)})
β(log r)

≤ lim sup
r→+∞

(1 + o (1)) max {α (log log η2r) , α (log log T (η2r, f))}
β(log r)

≤ lim sup
r→+∞

α (log log η2r) + α (log log T (η2r, f))

β(log r)

≤ lim sup
r→+∞

α (log log η2r)

β(log η2r − log η2)
+ lim sup

r→+∞

α (log log T (η2r, f))

β(log η2r − log η2)

≤ lim sup
r→+∞

α (log log η2r)

(1 + o (1))β(log η2r)
+ lim sup

r→+∞

α (log log T (η2r, f))

(1 + o (1))β(log η2r)
= σ(α(log),β)[f ],

since α(log x) = o(β(x)) as x → +∞ we have α(log[2] η2r)
β(log η2r)

= α(log[2] R)
β(logR) → 0 as

R = η2r → +∞. Therefore, we get that σ(α(log),β)[f ] = σ(α,β)[A] holds for all

non-trivial solutions of (1). Thus Theorem 8 follows.

Proof of Theorem 10. Set σ(α,β)[A] = σ5 > 0, by Theorem 8 we have

σ(α(log),β)[f1] = σ(α(log),β)[f2] = σ(α,β)[A] = σ5. Hence, we have

λ(α(log),β)[F ] ≤ σ(α(log),β)[F ]

≤ max{σ(α(log),β)[f1], σ(α(log),β)[f2]} = σ(α,β)[A]. (32)

By (32) and Lemma 20, we have

max{λ(α(log),β)[f1], λ(α(log),β)[f2]} = λ(α(log),β)[F ]

≤ σ(α(log),β)[F ] ≤ σ(α,β)[A]. (33)

It remains to show that λ(α(log),β)[F ] = σ(α(log),β)[F ]. By (1), we have (see [17], [18,

pp. 76-77]) that all zeros of F are simple and that

F 2 = C2
((F ′

F

)2

− 2
(F ′′
F

)
− 4A

)−1

, (34)
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where C 6= 0 is a constant. Hence,

2T (r, F ) = T
(
r,
(F ′
F

)2

− 2
(F ′′
F

)
− 4A

)
+O(1)

≤ O
(
N
(
r,

1

F

)
+m

(
r,
F ′

F

)
+m

(
r,
F ′′

F

)
+m(r,A)

)
. (35)

By σ(α(log),β)[f ] = σ(α,β)[A] = σ5 < +∞ and Lemma 21, for all r /∈ E3, we have

m(r,A) = m
(
r,
f ′′

f

)
= O(exp(α−1((σ5 + ε)β(log r)))),

m
(
r,
F ′

F

)
= O(exp(α−1((σ5 + ε)β(log r)))),

m
(
r,
F ′′

F

)
= O(exp(α−1((σ5 + ε)β(log r)))).

Therefore, by (35), for all r /∈ E3 we have

T (r, F ) = O
(
N
(
r,

1

F

)
+ exp(α−1((σ5 + ε)β(log r)))

)
. (36)

Now, let us assume that λ(α(log),β)[F ] < κ < σ(α(log),β)[F ]. Since all zeros of F

are simple, we obtain

N
(
r,

1

F

)
= N

(
r,

1

F

)
= O(exp[2](α−1(κβ(log r)))). (37)

Hence by (36) and (37), for all r /∈ E3, we get that

T (r, F ) = O(exp[2](α−1(κβ(log r)))).

By Definition 1 and Lemma 15, we have σ(α(log),β)[F ] ≤ κ < σ(α(log),β)[F ], this is

a contradiction. Therefore, the first assertion is proved.

If σ(α(log),β)[F ] < σ(α,β)[A], let us assume that λ(α(log),β)[f ] < σ(α,β)[A] holds

for any solution of type f = c1f1 + c2f2 (c1c2 6= 0). We denote F = f1 · f2 and

F1 = f · f1, then we have λ(α(log),β)[F ] < σ(α,β)[A] and λ(α(log),β)[F1] < σ(α,β)[A].

Since (36) holds for F and F1, F1 = f · f1 = (c1f1 + c2f2)f1 = c1f
2
1 + c2F , then

we obtain

T (r, f1) = O(T (r, F1) + T (r, F )) = O
(
N
(
r,

1

F1

)
+N

(
r,

1

F

)
+ exp(α−1((σ5 + ε)β(log r)))

)
. (38)
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By λ(α(log),β)[F ] < σ(α,β)[A], λ(α(log),β)[F1] < σ(α,β)[A] and (37), for some κ <

σ(α,β)[A], we get that

T (r, f1) = O(exp[2](α−1(κβ(log r)))). (39)

By Definition 1 and (39), we have σ(α(log),β)[f1] ≤ κ < σ(α,β)[A], this is a contra-

diction with Theorem 8. Therefore, we have that λ(α(log),β)[f ] = σ(α,β)[A] holds

for all solutions of type f = c1f1 + c2f2, where c1c2 6= 0. Hence the theorem

follows.

Proof of Theorem 12. By Theorem 8 and λ(α(log),β)[f ] ≤ σ(α(log),β)[f ], it

is easy to show that λ(α(log),β)[f ] ≤ σ(α,β)[A] holds. It remains to show that

σ(α,β)[A] ≤ λ(α,β)[f ]. Let us assume that σ(α,β)[A] > λ(α,β)[f ]. By (1) and

a similar proof of Theorem 5.6 in [18, pp. 82], we obtain

T
(
r,
f

f ′

)
= O

(
N
(
r,

1

f

)
+N

(
r,

1

A

))
(r /∈ E3). (40)

By (40) and the assumption σ(α,β)[A] > λ(α,β)[f ] and λ(α,β)[A] < σ(α,β)[A], we

get for some κ < σ(α,β)[A] that

T
(
r,
f

f ′

)
= O(exp(α−1(κβ(log r)))). (41)

Further, by Definition 1 and (41), we have σ(α,β)

[
f
f ′

]
= σ(α,β)

[
f ′

f

]
≤ κ <

σ(α,β)[A]. Therefore by

−A(z) =

(
f ′

f

)′
+
(f ′
f

)2

,

we get that σ(α,β)[A] ≤ σ(α,β)

[
f ′

f

]
< σ(α,β)[A], which is a contradiction. Hence,

we have that λ(α(log),β)[f ] ≤ σ(α,β)[A] ≤ λ(α,β)[f ] holds for all non-trivial solutions

of (1). The proof is complete.
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20 B. Beläıdi, T. Biswas

References

1. Bank S., Laine I.: On the oscillation theory of f ′′+Af = 0 where A is entire.

Trans. Amer. Math. Soc. 273 (1982), no. 1, 351–363.

2. Bank S., Laine I.: On the zeros of meromorphic solutions of second-order

linear differential equations. Comment. Math. Helv. 58 (1983), no. 4, 656–677.

3. Bank S., Laine I., Langley J.: Oscillation results for solutions of linear dif-

ferential equations in the complex domain. Results Math. 16 (1989), no. 1-2,

3–15.
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