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ALGORITHMS FOR COMPUTATIONS WITH

SYLOW 2-SUBGROUPS OF SYMETRIC

GROUPS

Abstract. An algorithm to transform n-levels labeled binary rooted
trees into elements from Sylow 2-subgroups of symmetric groups of degree
2n is described. The inverse algorithm that on input permutation from
a Sylow 2-subgroup of symmetric groups of degree 2n finds a labeled tree
is presented. An algorithm for multiplication of labeled trees that corre-
spond to the multiplication of permutations from the Sylow 2-subgroup is
introduced. The complexity and correctness of these algorithms are studied.

1. Introduction

Sylow p-subgroups of symmetric groups were described by Leo Kaluzhnin in

terms of wreath products of cyclic groups in [4]. He proposed the representation

of elements of these groups as tables, i.e. ordered sets of polynomials of a certain

form (see e.g. [3] and [7] for details). Ju. Dmitruk described the algebraic structure

of Sylow 2-subgroups of symmetric groups in [1]. The minimal generating sets and
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Cayley graphs of a Sylow p-subgroup (p — prime) of the symmetric group Spn

were characterized by A. Slupik and V. Sushchansky in [8].

Fix a positive integer n > 1. Denote by Syl2(S2n) a Sylow 2-subgroup of the

symmetric group S2n . The group Syl2(S2n) is isomorphic to the n times iterated

wreath product of cyclic groups or order 2, i.e.

Syl2(S2n) ∼= Z2 ≀ . . . ≀ Z2
︸ ︷︷ ︸

n times

.

B. Pawlik in [5] using the polynomial representation of elements described the

action of Syl2(S2n) on a set of of minimal generated sets of this group.

Another useful representation of wreath products of permutation groups is in

terms of automorphisms of rooted trees. In particular, one can view elements

of Sylow p-subgroups of the symmetric group Spn as so called portraits of such

automorphisms, i.e. labeled regular rooted trees (see [2] for details). Since tree-

like data structures are convenient and efficient for computations this leads to

the natural direction of developing algorithms for computations with Sylow p-

subgroup of symmetric groups using this representation. The basic case p = 2

deserves special attention due to the binary nature of the data involved.

The goal of this paper is to describe and analyze algorithms for computa-

tions with Sylow 2-subgroups of symmetric groups. We present algorithms that

transform elements of Syl2(S2n) into labeled binary rooted trees and vise versa.

We discuss correctness and complexity of these algorithms. An algorithm that de-

scribes the multiplication of two labeled binary trees is presented. It is shown that

using this algorithm the product of corresponding permutations from Syl2(S2n)

can be calculated.

2. Preliminaries

A tree T is called rooted tree if we fix one vertex v0 that is called the root.

A rooted tree is called binary tree if the degree of the root v0 is equal 2 and the

degrees of others vertices (except leaves) are equal 3. The distance between the

vertices vi and vj is equal to the length of the shortest path between them. If

the distance between the root v0 and the vertex v is j, then a vertex v is called

a vertex of the jth level. Denote by Tn a binary rooted tree with n levels. Denote

by V the set of vertices of tree [2, 6].
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A binary rooted tree, which has label 0 or 1 on all vertices from level 0 to level

(n − 1), is called labeled tree. Denote the set of all such n-level trees by LT2,n.

Note that its cardinality is |LT2,n| = 22
n−1.

Let D is a tree from the set LT2,n. We numerate all vertices of all levels. And

let i is a number of vertex v on level j. In this case we say that a pair (j, i) is

coordinates of the vertex v of a tree D, i ∈ {1, . . . , 2j}, j ∈ {0, . . . , (n− 1)}.

Denote Coord(D) is a set of coordinates of all vertices of tree D.

Define mapping c : V (Tn) → Coord(Tn) by the rule

c(v) = (j, i), if (j, i) is a pair of coordinates of vertex v on the tree Tn.

Assume that (j, i) < (k, r) if j < k or j = k with i < r.

We also say that v < w if c(v) < c(w).

Denote the next sets

1. OC(D) = {(j, i) ∈ Coord(D)| exists vertex with pair of coordinates (j, i) la-

beled by 1 in the tree D }.

2. OV (D) = {v ∈ V (Tn)| pair of coordinates (j, i) of vertex v belongs to OC(D)}.

We consider next operations on a set of all vertices of the tree D:

1. switch(D, v) =”to switch two sub-trees of the tree D, for which vertex v is

a root”;

2. switch(D, j, i) =”to switch two sub-trees of the tree D, for which some vertex

v with a pair of coordinates (j, i) is a root”.

The second row a = (a1, a2, . . . , a2n) of permutation π =

(

1 2 . . . 2n

a1 a2 . . . a2n

)

is called a block of elements. Permutation π is called 2-separated if we can do the

next steps.

1. At first, we divide the block a into 2 sub-blocks with the same length: u1 =

(a1, . . . , a2n−1) and u2 = (a2n−1+1, . . . , a2n). Then we check if every element of

u1 is greater (or less) than every element of u2.

2. If step 1 holds, then we repeat process and divide blocks u1 and u2 into sub-

blocks u1,1, u1,2 and u2,1 u2,2. After that we check the value of elements between

corresponding blocks. And so on until we get sub-blocks that contain only one

element.
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From the definition of the wreath product [9] follows that any 2-separated per-

mutation is an element of wreath product S2 ≀ . . . ≀ S2
︸ ︷︷ ︸

n times

. Thus, these permutations

are elements of the Sylow 2-subgroup of the group S2n according to [7].

3. Transformation a tree from LT2,n to permutation

from Syl2S2n

Consider an algorithm (see Algorithm 1) of obtaining a permutation from

Syl2S2n based on a tree from LT2,n. Input is a set of coordinates of vertices

labeled by 1 of some tree D. Output is a final vector a = (π(1), π(2), . . . , π(2n)).

Algorithm 1: Algorithm of transformation a tree into a permutation

Input: OC(D) be a set of coordinates of all vertices labeled by 1 of a tree

D.

Output: (ai1 , ai2 , · · · ai2n ) is the second row of permutation.

1 (a1, a2, · · · a2n) = (1, 2, · · · , 2n) ;

2 for (j, i) ∈ (OC(D), <) do

3 m := 2n−j−1 ( is count of elements in one block) ;

4 for l := 1 to m do

5 b := a(2i−2)m+l;

6 a(2i−2)m+l := a(2i−1)m+l;

7 a(2i−1)m+l := b;

Example 1. Consider a tree D ∈ LT2,4 where the 2nd vertex of the 1st level

labeled by 1. Obtain permutation, which a tree D sets (see Fig. 1).

Fig. 1. 4-levels labeled tree and elements of the vector a
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From the Fig. 1 we have: (a1 a2 a3 . . . a16) = (1, 2, 3, . . . , 16), j = 1, i = 2,

n = 4. Then we obtain

• m = 2n−j−1 = 4 is a length of a block;

• switch 2i− 1 = 3rd and 2i = 4th blocks:

a(2i−2)m+1 = a9 switch with a(2i−1)m+1 = a13,

a(2i−2)m+2 = a10 switch with a(2i−1)m+2 = a14,

a(2i−2)m+3 = a11 switch with a(2i−1)m+3 = a15,

a(2i−2)m+4 = a12 switch with a(2i−1)m+4 = a16.

As result, we get the permutation

(

1 . . . 8 9 . . . 12 13 14 15 16

1 . . . 8 13 . . . 16 9 10 11 12

)

.

Theorem 2. The algorithm of transformation tree into a permutation is correct.

Proof. Note that initial row (1, 2, . . . , 2n) is 2-separated. Also note, that for every

pair of coordinates (j, i) ∈ Coord(D) blocks u1 := (a(2i−2)m+1, . . . , a(2i−2)m+m)

and u2 := (a(2i−1)m+1, . . . , a(2i−1)m+m) also are 2-separated. And after switch

among themselves, block u = (a(2i−2)m+1, . . . , a(2i−2)m+m, a(2i−1)m+1, . . . ,

a(2i−1)m+m) is still 2-separated. So, every transformation on pair of coordinates

(j, i) ∈ OC(D) does not change 2-separated property of row a. As result, we

obtain that the row a is defined by 2-separated permutation π. �

Theorem 3. The complexity of transformation algorithm of a tree from LT2,n

into a permutation from Syl2(S2n) is equal to O(n · 2n).

Proof. Assume that every vertex v of the tree D is labeled by 1, c(v) ∈ OC(D). In

this case OC(D) has maximum cardinality. Then we need to do 2n−j−1 switches

of corresponding elements of vector a for every vertex v with coordinates (j, i).

Based on the fact that level j contains 2j vertices, 0 ≤ j ≤ (n− 1), we get

n−1∑

j=0

2j · 2n−j−1 =

n−1∑

j=0

2n−1 = n · 2n−1.

So, we have O(n · 2n−1) = O(n · 2n). �



108 V. Olshevska

4. Transformation a permutation π from Syl2(S2n)
into a tree from LT2,n

Consider an algorithm (see Algorithm 2) that finds a corresponding tree D ∈

LT2,m for a permutation π ∈ Syl2(S2n). Input is a = (π(1), π(2), . . . , π(2n)).

Output is a set of coordinates whose vertices are labeled by 1.

Algorithm 2: Transformation algorithm of a permutation into a tree

Input: (a1, a2, . . . , a2n) is the second row of 2-separated permutation π,

π ∈ Syl2(S2n).

Output: OC(D).

1 OC(D) := ∅;

2 for j := 0 to n− 1 do

3 m := 2n−j−1 (length of block);

4 for i := 1 to 2j do

5 if a(2i−2)m+1 > a(2i−1)m+1 then

6 OC(D) := OC(D)
⋃
{(j, i)}

Example 4. Let π =

(

1 2 3 4 5 6 7 8

3 4 2 1 6 5 7 8

)

∈ S8. Consider the corespond-

ing vector

(a1, a2, a3, a4, a5, a6, a7, a8) = (3, 4, 2, 1, 6, 5, 7, 8).

Define the set OC(D) = ∅. According to the Algorithm 2 we have (see Table 1):

Table 1

j m Blocks i a(2i−2)m+1 a(2i−1)m+1 Com- OC(D)
paring

0 4 3 4 2 1 | 6 5 7 8 1 a1 = 3 a5 = 6 3 6> 6 ∅
1 2 3 4 | 2 1 | 6 5 | 7 8 1 a1 = 3 a3 = 2 3 > 2 {(1, 1)}

2 a5 = 6 a7 = 7 5 6> 7 {(1, 1)}
2 1 3| 4| 2| 1| 6| 5| 7| 8 1 a1 = 3 a2 = 4 3 6> 4 {(1, 1)}

2 a3 = 2 a4 = 1 2 > 1 {(1, 1), (2, 2)}
3 a5 = 6 a6 = 5 6 > 5 {(1, 1), (2, 2), (2, 3)}
4 a7 = 7 a8 = 8 7 6> 8 {(1, 1), (2, 2), (2, 3)}

As result, we obtain: OC(D) = {(1, 1), (2, 2), (2, 3)}. So, we have the next tree

(see Fig. 2):
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Fig. 2. The tree D as result of Algorithm 2

Theorem 5. The complexity of the transformation algorithm of a permutation

from Syl2(S2n) into a tree from LT2,n is equal to O(2n).

Proof. There are two loops in algorithm: first is over j (required for defining level

of tree) and second is over i (required for defining index of vertex on level). All

vertices of tree are considered in this loops. Inside the loops we have one operation.

So, the complexity of algorithm is O(2n − 1) = O(2n). �

Define mapping ψ : LT2,n → Syl2(S2n) that is determined by the Algorithm 1.

Similar, define mapping τ : Syl2(S2n) → LT2,n, that is determined by the Algo-

rithm 2.

Theorem 6. Mappings ψ and τ are inverse to each other and are bijections be-

tween LT2,n and Syl2(S2n).

Proof. We need to show that τ(ψ) = id.

Let π be some 2-separated permutation and D = τ(π) be a tree from LT2,n,

obtained from π by Algorithm 2. Then

(j, i) ∈ OC(τ(π)) if and only if a(2i−2)m+1 > a(2i−1)m+1 in permutation π. (1)

Let D be some tree from LT2,n and π = ψ(D) be 2-separated permutation,

obtained by Algorithm 1. As Algorithm 1 started from ordered row (1, 2, . . . , 2n),

(j, i) ∈ OC(D) if and only if a(2i−2)m+1 > a(2i−1)m+1 in permutation ψ(D). (2)

Then from (2) we have

(j, i) ∈ OC(D) if and only if in ψ(D) : a(2i−2)m+1 > a(2i−1)m+1.

So, (1) implies that (j, i) ∈ OC(τ(ψ(D))). Therefore, τ(ψ) = id.

The proof of ψ(τ) = id is similar. �



110 V. Olshevska

5.Multiplication of trees from LT2,n

Consider the multiplication algorithm (see Algorithm 3) for two trees D1, D2 ∈

LT2,n. Let a vertex v labeled by 1 and c(v) = (j, i) ∈ OC(D1). Let w be a vertex

of the tree D2 and c(w) = (j, i) ∈ OC(D2). In steps 3-4 we run the operation

switch(D2, j, i) and change a label of vertex w to the opposite.

Algorithm 3: Algorithm of tree multiplication

Input: Two trees: D1 first multiplier, D2 second multiplier.

Output: A tree D with defined set OC(D).

1 OC(D) := OC(D2);

2 for (j, i) ∈ (OC(D1), <) do

3 switch(D, j, i);

4 OC(D) := OC(D)△{(j, i)};

By △ we denote the symmetric difference of sets.

Note that in Algorithm 3 we can replace the ordered set (OC(D1), <) by the

ordered set (OV (D1), <).

Example 7. Consider trees D1, D2 (see Fig. 3). We have

OC(D1) = {(0, 1), (1, 1), (2, 2), (2, 4)},

OC(D2) = {(1, 1), (2, 1), (2, 3)}.

Fig. 3. Input for Algorithm 3

The next tree (see Fig. 4) is the product of the trees D1, D2:

Fig. 4. Output for Algorithm 3
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Theorem 8. The complexity of the multiplication algorithm of the trees from

LT2,n is equal to O(2n).

Proof. There is a loop of length |OC(D1)| in the Algorithm 3. The maximum

cardinality of the set will be reached if the tree D1 will have the label 1 on all

vertices from 0 to (n− 1)th level. That means

|OC(D1)| = |Coord(D1)| = 2n − 1.

Inside the loops we have 2 operations on every pair of coordinates (j, i):

switch(D, j, i) and symmetric difference OC(D)△(j, i). Therefore there will be

done 2 · (2n − 1) operations.

So, the complexity of the algorithm is O(2 · (2n − 1)) = O(2n). �

6.Multiplication of permutations in terms

of multiplication of binary labeled rooted trees

6.1. Vertex mapping

Let v0, v, w ∈ V (Tn). Denote by Pathv0(v) := {v0, . . . , vj−1} a path, that is

connected the root v0 with some vertex v of jth level. We say that a vertex v is

under a vertex w (a vertex w is above a vertex v) if w ∈ Pathe(v). In this case we

will write that v ≻ w. Remark that if v ≻ w then v > w.

Definition 9. Let w be a vertex from V (Tn). Define a mapping ACTw : V (Tn) →

V (Tn) for a vertex v ∈ V (Tn) by the next rule: ACTw(v) = v′ if and only if v′ is

an image v after swithc(Tn, w).

Note that

• if v ≻ w and c(w) = (k, r), c(v) = (j, i), then c(v′) = (j, i′) and

i′ =







i+ 2j−k−1, if i ≤ (r − 1) · 2j−k + 2j−k−1

which means that v is in the left branch of a sub-tree with a root w,

i− 2j−k−1, if i ≥ (r − 1) · 2j−k + 2j−k−1 + 1

which means that vis in the right branch of a sub-tree with a root w,

• if v ⊁ w then ACTw(v) = v.
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Remark 10. For every vertex w ∈ V (Tn) we have

ACT2
w = id.

Let A = {w1, . . . , wt} be an ordered set, B = {v1, . . . , vl}, A,B ⊂ V (Tn) and

v be some vertex from V (Tn). Denote by

• ACTv(B) := {ACTv(v1), . . . ,ACTv(vt)}.

• ACTA(v) := (ACTw1 · . . . · ACTwt
)(v) = ACTwt

(. . . (ACTw1(v)) . . .).

We will consider that for empty set A = ∅: ACTA = id.

• ACTA(B) := {ACTA(v1), . . . ,ACTA(vl)}

Let D ∈ LT2,n, w ∈ V (D). Note that the set of vertices of the tree switch(D,w)

is ACTw(OV (D)).

Remark 11. Let D ∈ LT2,n be some tree and π = ψ(D) be some permutation,

obtained by Algorithm 1. Then for any k, 1 ≤ k ≤ 2n and v ∈ V (Tn), c(v) = (n, s):

π(k) = s if and only if c(ACT(OV (D),<)(v)) = (n, k).

Theorem 12. For any trees D1, D2 ∈ LT2,n:

OV (D1 ∗D2) = (ACT(OV (D1),<)(OV (D2)) )△ OV (D1).

Proof. Consider steps 2 − 4 from multiplication Algorithm 3. This loop can be

replaced by two in such way

For v ∈ (OV (D1), <) :

switch(D, v);

For v ∈ (OV (D1), <) :

OV (D) := OV (D)△{v};

Then the first loop can be rewritten as follows OV (D) := ACT(OV (D1),<)(OV (D)).

And the second loop can be rewritten as follows OV (D) := OV (D)△OV (D1).

From notation D = D1 ∗D2 and step 1 we have

OV (D1 ∗D2) = ACT(OV (D1),<)(OV (D2)) △ OV (D1).

�
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6.2. Vertex mapping properties

Lemma 13. Let v1, v2 ∈ V (Tn) and v1 ⊁ v2 and v2 ⊁ v1. Then

ACTv1 · ACTv2 = ACTv2 · ACTv1 .

Proof. Let t ∈ V (Tn). Consider the next cases:

Case 1. Let t ≻ v1. Then for ACTv1t := t′ we obtain

t′ ≻ v1, t ⊁ v2 and t′ ⊁ v2.

Then

ACTv2(ACTv1t) = ACTv2t
′ = t′,

ACTv1(ACTv2t) = ACTv1t = t′.

Case 2. Let t ≻ v2. Then the proof is similar to case 1.

Case 3. Let t ⊁ v1 and t ⊁ v2. Then we obtain

ACTv2(ACTv1t) = ACTv2t = t,

ACTv1(ACTv2t) = ACTv1t = t.

Therefore ACTv1 · ACTv2 = ACTv2 · ACTv1 . �

Lemma 14. Let v, v1 ∈ V (Tn) and v1 < v. Then

ACTACTv1(v)
= ACTv1 · ACTv · ACTv1 . (3)

Proof. Case 1. Let v ⊁ v1. Lemma 13 implies that we have

ACTv · ACTv1 = ACTv1 · ACTv. (4)

Note that v ⊁ v1, so ACTv1(v) = v. So, we have

ACTACTv1(v)
= ACTv. (5)

From (4) and (5) we have

ACTv1 ·ACTv·ACTv1 = ACTv1 ·ACTv1 ·ACTv = id·ACTv = ACTv = ACTACTv1 (v)
.
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Case 2. Let v ≻ v1. Denote by v′ := ACTv1(v). Let t be some fixed vertex V (Tn).

We consider the next cases.

• Let t ⊁ v1. As result t ⊁ v and t ⊁ v′. That’s why

(ACTv1 · ACTv · ACTv1)(t) = t = ACTv′(t).

• Let t ≻ v1 and t ⊁ v′. Then, on the one hand ACTv′(t) = t. Note that

t ⊁ v′ = ACTv1(v). Then, by acting over vertex v1, we have

ACTv1(t) ⊁ ACTv1(ACTv1(v)) = v,

so ACTv(ACTv1(v)) = ACTv1(v). So, on the other hand

(ACTv1 · ACTv · ACTv1)(t) = ACTv1(ACTv(ACTv1(t))) =

= ACTv1(ACTv1(t)) = t.

• Let t ≻ v1 and t ≻ v′. Let vertices v, v1 and t have the next coordinates:

c(v) = (k, r), c(v1) = (k1, r1) and c(t) = (k2, r2), where k1 < k < k2, 1 ≤

r1 ≤ 2k1 (see Fig. 5).

Fig. 5. The location of vertices of the tree Tn



Algorithms for computations with Sylow 2-subgroups of symetric groups 115

Without loss of generality we can say that

(a) v lies on the left to v′. Then

r′ = r + 2k−k1−1, (6)

(b) t is in the left branch of a sub-tree with the root v′ of the tree Tn. Then

(r′ − 1) · 2k2−k + 1 ≤ r2 ≤ (r′ − 1) · 2k2−k + 2k2−k−1. (7)

From (7) and (b) follows that the left part of equality (3) is equal to

c(ACTv′(t)) = (k2, r2 + 2k2−k−1). (8)

From (a) and (b) we have that t is in the right branch of a sub-tree with the

root v1 of the tree Tn. So, the image of t will be in the left branch of the sub-

tree with a root v1. Hence ACTv1(t) = t′, where c(t′) = (k2, r2 − 2k2−k1−1).

So, we have

(ACTv1 · ACTv · ACTv1)(t) = (ACTv · ACTv1)(t
′). (9)

From (7) and (6) we have:

r2 ≤ (r′ − 1) · 2k2−k + 2k2−k−1 = (r − 1 + 2k−k1−1) · 2k2−k + 2k2−k−1 =

= (r − 1)2k2−k + 2k2−k−1 + 2 6k−k1−1+k2−6k.

Hence

r2 − 2k2−k1−1

︸ ︷︷ ︸

second coordinate

of the vertex t′

≤ (r − 1)2k2−k + 2k2−k−1,

which means that t′ is in the left branch of a sub-tree with a root v of the

tree Tn. Hence ACTv(t
′) = t′′, where c(t′′) = (k2, r2 − 2k2−k1−1 + 2k2−k−1).

So, we have

(ACTv · ACTv1)(t
′) = ACTv1(t

′′). (10)

As t′ ≻ v, t′′ ≻ v. Also, this vertex v is in the left branch of a tree with

a root v1. As result, t′′ is also in the left branch of a tree with a root v1.
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That’s why the coordinates of image of vertex t′′ due to action over v1 are

c(ACTv1(t
′′)) = (k2, r2− 6 2k2−k1−1 + 2k2−k−1+ 6 2k2−k1−1) =

= (k2, r2 + 2k2−k−1). (11)

From (8), (9), (10) and (11) we obtain

ACTACTv1(v)
(t) = (ACTv1 · ACTv · ACTv1)(t).

�

Lemma 15. Let A ⊂ V (Tn) be some ordered set and B,C ⊂ V (Tn). Then

ACTA(B△C) = ACTA(B)△ACTA(C).

Proof.

ACTA(B△C) = {ACTA(v)|v ∈ B△C} =

= {ACTA(v)|v ∈ B}△{ACTA(v)|v ∈ C} = ACTA(B)△ACTA(C).

�

Lemma 16. For every a, b ∈ V (Tn):

ACTa · ACTb = ACT({ACTb(a)}△{b},<). (12)

Proof. Case 1. If a < b then ACTb(a) = a and ({a}△{b}, <) = {a, b}. Hence

ACT({ACTb(a)}△{b},<) = ACT{a,b} = ACTa · ACTb.

Case 2. If a = b then ACTb(a) = ACTa(a) = a and ({a}△{b}, <) = ∅. Hence

ACT({ACTb(a)}△{b},<) = ACT∅ = id = ACTa · ACTa.

Case 3. If b < a then b < ACTb(a). That‘s why ({ACTb(a)}△{b}, <) =

{b,ACTb(a)}. Lemma 14 implies that ACTACTb(a) = ACTb ·ACTa ·ACTb. Hence

ACT({ACTb(a)}△{b},<) = ACT{b,ACTb(a)} = ACTb · ACTACTb(a) = ACTa · ACTb.

�
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Lemma 17. Let A ⊂ V (Tn) be an ordered set by < and b ∈ V (Tn). Then

ACTA · ACTb = ACT(ACTb(A)△{b},<).

Proof. Let A = {a1, . . . , am} and 1 ≤ k ≤ m:

a1 < . . . < ak ≤ b < ak+1 < . . . am. (13)

Based on Lemma 16 and equation (13) we have

ACTA · ACTb = ACTa1 · . . . · ACTam
· ACTb =

= ACTa1 · . . . · ACT({ACTb(am)}△{b},<) =

= ACTa1 · . . . · ACT{b,ACTb(am)} = ACTa1 · . . . · ACTb · ACTACTb(am) = . . .

. . . = ACTa1 · . . . · ACTak
· ACTb · ACTACTb({ak+1,...,am}).

Note that for every a ∈ {a1, . . . , ak}: ACTb(a) = a. Hence the last is equal to

ACTACTb({a1,...,ak}) · ACTb · ACTACTb({ak+1,...,am}). (14)

1. If ak 6= b, then (14) is equal to ACT(ACTb(A)
⋃
{b},<).

2. If ak = b, then (14) is equal to ACT(ACTb(A)\{b},<).

Hence, in general case (14) is equal to ACT(ACTb(A)△{b},<). �

Lemma 18. Let A,B ⊂ V (Tn) be some ordered sets by <. Then

ACTA · ACTB = ACT(ACTB(A)△B,<).

Proof. Let B = {b1, . . . , bl}. By Lemma 17 for A and vertices b1, b2 we have

ACTA · ACTb1 · ACTb2 = ACT(ACTb1
(A)△{b1},<) · ACTb2 =

= ACT(ACTb2
(ACTb1

(A)△{b1},<)△{b2},<) =

= ACT(ACTb2
(ACTb1

(A)△{b1})△{b2},<). (15)

Since the set B is ordered, then b1 < b2. Therefore ACTb2(b1) = b1. From this

equality, Lemma 15 and (15) we have

ACT(ACTb2
(ACTb1

(A)△{b1})△{b2},<) = ACT(ACT{b1,b2}(A)△{b1,b2},<). (16)
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From (15) and (16) for every b3, . . . , bl:

ACTA · ACTB = ACT(ACT{b1,b2}(A)△{b1,b2},<) ·
l∏

k=3

ACTbk = . . .

= ACTACTB(A)△B.

�

Corollary 19. Let D1, D2 ∈ LT2,n. Then

ACT(OV (D1∗D2),<) = ACT(OV (D2),<) · ACT(OV (D1),<).

Proof. Proof directly follows from Theorem 12 and Lemma 18. �

6.3. Isomorphism theorem

Theorem 20. The mapping ψ is an isomorphism between LT2,n and Syl2(S2,n).

Proof. First, note that by Theorem 6 ψ is bijection. We need to show that we

have the next for any D1, D2 ∈ LT2,n:

ψ(D1 ∗D2) = ψ(D1) · ψ(D2).

So, for permutations π1 := ψ(D1), π2 := ψ(D2), π := ψ(D1 ∗ D2) and every

number 1 ≤ i ≤ 2n we need to show the next

π(i) = (π1π2)(i).

The last equality is equivalent to

π−1(i) = (π1π2)
−1(i). (17)

Let w be a vertex with coordinates (n, s) and 1 ≤ k ≤ 2n. Then Remark 11

implies that

π1(k) = s if and only if c(ACT(OV (D1),<)(w)) = (n, k), (18)

π2(k) = s if and only if c(ACT(OV (D2),<)(w)) = (n, k), (19)

π(k) = s if and only if c(ACT(OV (D1∗D2),<)(w)) = (n, k). (20)
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Let the vertex v ∈ V (Tn) and c(v) = (n, i). We take k := π1
−1(i) in (18);

k := π2
−1(i) in (19); k := π−1(i) in (20). Then (18)-(20) implies that (17) is

equivalent to

c(ACT(OV (D1∗D2),<)(v)) = (n, π−1(i)) = (n, (π1π2)
−1(i)) =

= (n, (π−1
2 π−1

1 )(i)) = c((ACT(OV (D2),<) · ACT(OV (D1),<))(v)).

So, equality (17) for any index i is equivalent to the next

ACT(OV (D1∗D2),<)(v) = (ACT(OV (D2),<) · ACT(OV (D1),<))(v), (21)

for any v ∈ V (Tn) on the nth level.

Note that the last equality holds according to Corollary 19. �

Corollary 21. The mapping τ is an isomorphism between Syl2(S2n) and LT2,n.
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