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1. Introduction

A long-standing open problem in network science is to develop algorithms ca-

pable to rank nodes in complex networks with respect to their relative significance.

Such algorithms, in the form of centrality measures, should take into account the

heterogeneity and function-oriented specificity of nodes in the network. Designing

novel and more accurate node ranking methods affects our abilities to understand

and control, for instance, pandemics, cascading failure processes, dissemination

and diffusion phenomena as well as the robustness of critical infrastructures.

In the network science literature, there exist many different proposals how to

identify influential nodes in complex networks [16, 17, 24, 25, 38]. For instance,

a popular way to define the relative importance of a given node in a complex

network relies on quantifying its abilities to initiate walks around the network.

This concept leads to the use of different matrix functions of the general form

f (M (G)) where M (G) is some graph-theoretical matrix. If f is the resolvent

function and M (G) is the adjacency matrix, then we obtain the resolvent-based

subgraph centrality measure [11] or the Katz centrality measure [5, 17, 29]. In

turn, if f is the exponential function and M (G) is the adjacency matrix, then we

obtain the subgraph centrality measure [19] or the total communicability centrality

measure [10].

Note that the oldest of the centrality metrics defined via the matrix function,

i.e., the Katz centrality index, denoted by KC, is a parameter-dependent node

significance ranking algorithm. This means that the values of this measure hinge

on the choice of the attenuation factor (hereinafter referred to as the Katz param-

eter). However, the choices of this factor have not received much attention in the

network science literature. Some insightful discussions are provided by M. Benzi

and C. Klimko who scrutinized the behavior of the KC index as the attenuation

factor decreases to zero or increases to 1
ρ(A(G)) (where ρ (A (G)) is the spectral

radius of the adjacency matrix of the network G) [11] and by M. Aprahamian et.

al who analysed how the attenuation factor affects the linear and rank correla-

tions between the KC index and the total communicability centrality measure,

denoted by TC [5]. Nevertheless, as far as we know, the KC and TC indices

were not tested with respect to their performance in dismantling the networks or

with respect to their robustness and assortativeness. Consequently, in the light of

the above, it seems desirable to carry out the computer simulation experiments in

order to quantitatively assess the efficiency of the KC and TC indices in attack-

ing the empirical networks as well as to estimate the reliability of both ranking
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methods in the face of measurement errors. Furthermore, it would be valuable

to determine the assortativeness of the above centrality metrics. In all simulation

experiments, the KC index will be calculated with four different values of the

Katz parameter considered in the reference [5] and the resulting ranking lists will

be comparatively evaluated. Thus, the present work will complement the analyses

contained in [5].

As was stated before, the Katz and total communicability centrality measures

are defined by the functions applied to the adjacency matrix of the network un-

der consideration. As is well know, the entries of the adjacency matrix of any

network indicate if pairs of nodes are connected or not in this network without

providing any information regarding the strength of such connections. Therefore,

we will propose to introduce the weighted (normalized) variants of the KC and

TC indices. These modified vertex importance ranking algorithms are defined

by applying the resolvent and exponential functions to the edge-weighted adja-

cency matrix developed in the field of chemical graph theory by S.B. Bozkurt and

coworkers [12]. In the simulation experiments, we will juxtapose the original KC

and TC measures with their newly suggested weighted counterparts.

The rest of the paper is structured in the following manner: Section 2 contains

the necessary background on graph theory and on the centrality measures defined

via the expression f (M (G)). Section 3 proposes the weighted (normalized) ver-

sions of the indices presented in Section 2. Section 4 describes the datasets and

computational methodology used in Section 5. The numerical results and discus-

sion are included in Section 5. Finally, Section 6 concludes the article.

2. Background

In the current work, all considered networks are represented by undirected

graphs without loops or multiple edges of the general form G = (V (G) , E (G))

where V (G) = {v1, v2, . . . , vn} is the vertex (node) set and E (G) = {e1, . . . , em}

is the edge (link) set. For two vertices vi, vj ∈ V (G), vivj means that vi and vj

are adjacent, i.e., vivj ∈ E (G). A complex network can be represented by the

adjacency matrix A (G) = [a]ij whose elements are given by the term [a]ij = 1 if

vivj ∈ E (G) and [a]ij = 0 otherwise. The symbol ki denotes the degree of the

vertex vi ∈ V (G) . The degree of vi is the number of edges that are incident to the

vertex vi. The degree centrality corresponding to the node vi ∈ V (G), denoted

by DC (vi), is given by DC (vi) =
ki

n−1 or simply by DC (vi) = ki [17, 38]. Sev-
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eral topological metrics have been introduced in order to study the way in which

nodes with a given degree are connected within a complex network. A paradig-

matic example of such metrics is the degree assortativity coefficient suggested by

M. Newman in [37]. Namely, for a complex network G = (V (G) , E (G)), the

degree assortativity coefficient (also known as the degree-degree correlation coeffi-

cient), denoted by Ak(G), is expressed by the following condition [47]:

Ak(G) :=
4 〈kikj〉 − 〈ki + kj〉

2

2
〈

k2i + k2j
〉

− 〈ki + kj〉
2 , (1)

where vivj ∈ E(G) and 〈〉 denotes the arithmetic mean over all edges in G. Note

that the equation (1) is simply the Pearson correlation coefficient of the degrees

at both ends of a link. The network G in which high-degree nodes tend to be

connected to each other possesses a positive value of Ak(G) and is said to be

degree-assortative. In turn, the network G in which high-degree nodes tend to

constitute edges with low-degree nodes has a negative value of Ak(G) and is said

to be degree-disassortative. When Ak(G) ≈ 0, the network is said to be degree-

neutral [17, 38].

The degree assortativity coefficient can be easily generalized to any centrality

measure C [35]. Accordingly, for a complex network G = (V (G) , E (G)), the cen-

trality assortativity coefficient (also known as the centrality-centrality correlation

coefficient), denoted by AC(G), is identified with the subsequent formula

AC(G) :=
4 〈cicj〉 − 〈ci + cj〉

2

2
〈

c2i + c2j
〉

− 〈ci + cj〉
2 (2)

where vivj ∈ E(G), ci is the value of any centrality measure C at the node

vi ∈ V (G) and 〈〉 denotes the arithmetic mean over all links in G.

For a complex network G, we adopt the ranges of the indices defined by the

equations (1) and (2) as well as the corresponding degree and centrality assorta-

tivity levels of G from the reference [35]. They are included in Table 1.

The degree assortativity of complex networks is studied in many articles (cf.

the review paper [40] and the references cited therein), whereas the assortativity

determined by other centrality measures has received much less attention. As far

as we know, only several references consider the assortativity of complex networks

induced by other than the degree node importance ranking algorithms (cf. [3, 6,

20, 32, 34, 35]).
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Table 1
The ranges of the degree-degree or centrality-centrality correlation coefficient

and the corresponding degree or centrality assortativity levels

Range Assortativity level Range Assortativity level

0.0 to 0.19 neutral −0.19 to −0.01 neutral
0.2 to 0.59 weakly assortative −0.59 to −0.20 weakly disassortative
0.6 to 1 strongly assortative −1 to −0.60 strongly disassortative

In Subsection 5.5, we will estimate the centrality assortativity coefficients (ac-

cording to the equation (2)) induced by the exponential-based and resolvet-based

centrality measures of the empirical and generated networks and we will compare

the obtained results with the degree assortativity coefficient of these networks. We

will try to corroborate the hypothesis that the centrality assortativity coefficients

conditioned by the centrality metrics defined via the matrix functions under con-

sideration provide valuable information concerning the structural characteristics

of the networks.

The spectral radius of the adjacency matrix, denoted by ρ (A (G)), is iden-

tified with the largest absolute value of its eigenvalues [17]. A walk of length

l in a network G = (V (G) , E (G)) is a list of (not necessary different) nodes

vi, v2, . . . , vl, vl+1 such that for each i = 1, 2, . . . , l there is a link from vi to vi+1.

A closed walk of length l is a walk vi, v2, . . . , vl, vl+1 in which vl+1 = vl [17]. For

a complex network G = (V (G) , E (G)) represented by the adjacency matrix A (G)

and for any positive l, the entry
[

al
]

ij
of the matrix Al(G) is equal to the num-

ber of walks of length l that start at the vertex vi and end at the vertex vj [17].

For a network G = (V (G) , E (G)) with the vertex set V (G) where |V (G)| = n,

its Randić matrix (also known as the product connectivity matrix ), denoted by

R (G) = [r]ij , is the square real matrix of order n whose entries are given by the

term [r]ij = (kikj)
−0.5 if vivj ∈ E (G) and [r]ij = 0 otherwise [12]. The quantity

(kikj)
−0.5

assigned to the edge vivj ∈ E (G) is known as its Randić weight. The

Randić degree of the node vi ∈ V (G), denoted by rki, is given by the formula:

rki =
n
∑

j=1

[r]ij . The Randić eigenvalues of the network G are the eigenvalues of its

Randić matrix R (G). The Randić spectral radius of G, denoted by ρ (R (G)), is

the largest absolute value of its Randić eigenvalues. In [31], it is proved that for

any network G, its Randić spectral radius is always equal to one.

As previously mentioned, a popular way of defining a centrality measure for

a complex network G is to use the functions of some graph-theoretical matrices
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M (G). The present paper focuses on the Katz centrality measureKC (defined via

the matrix resolvent function) and on the total communicability centrality measure

TC (defined via the matrix exponential function). Recall that for a complex

network G = (V (G) , E (G)) with the vertex set V (G) where |V (G)| = n, the

Katz centrality of the vertex vi ∈ V (G) is given by the following expression

KCi (α) :=

n
∑

j=1

[

(I − αA (G))
−1

]

ij
, (3)

where the term (I − αA (G))
−1

is the matrix resolvent (I refers to the identity

matrix of order n) and α is the attenuation parameter (known as the Katz pa-

rameter) which satisfies the condition 0 < α < 1
ρ(A(G)) . The resolvent in the

equation (3) has the following power series expansion

(I − αA (G))
−1

= I + αA (G) + α2 A2 (G) + . . .+ αl Al (G) + . . . =

=
∞
∑

l=0

αl Al (G) . (4)

The restrictions imposed on α ensure that the matrix I−αA (G) is invertible and

that the power series expansion given by the equation (4) converges to its inverse.

These restrictions also force that the resolvent in the equation (3) is nonnegative as

I−αA (G) is a nonsingularM -matrix, i.e., a matrix of the formW = qI−B, where

B = [b]ij with bij ≥ 0 for all 1 ≤ i, j ≤ n and q exceeds the dominant eigenvalue of

B (for the general properties of matrix functions and M -matrices, we refer to [22,

30, 43]). Consequently, the row sums of (I − αA (G))
−1

are nonnegative and can

be used to rank vertices in the networks with respect to their relative significance.

From the equations (3) and (4), it follows that the Katz centrality score of the

vertex vi ∈ V (G) counts all walks that originate at vi and simultaneously penalizes

the contribution of walks of length l by the factor αl. The Katz centrality measure

is a parameter-dependent node importance ranking algorithm. Accordingly, this

node significance ranking algorithm has infinitely many numerical instances. In

the network science literature, several different choices of the Katz parameter have

been suggested and, consequently, several numerical instances of the KC index

have been used. The most frequently encountered choices of α were discussed and
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tested in [5]. These choices are expressed by the subsequent formulae

α0.5 =
1

2ρ (A (G))
, (5)

α0.85 =
0.85

ρ (A (G))
, (6)

αk =
1

‖A (G)‖∞ + 1
, (7)

and

αmin =
1− exp−ρ(A(G))

ρ (A (G))
. (8)

Recall that in undirected and unweighted networks, the ∞-norm of A (G) in the

equation (7) is equal to the largest node degree. The justification for the choice of

αmin discussed in depth in [5] is as follows: Suppose that KC (α) (G) is the vector

of the Katz centrality scores calculated on the network G = (V (G) , E (G)) with

the vertex set V (G) where |V (G)| = n under the parameter α, i.e.,

KC (α) (G) := (I − αA (G))
−1

1, (9)

where 1 = [1, 1, . . . , 1]T and TC (G) is the vector of the total communicability

centrality scores calculated on the same network G, i.e.,

TC (G) := expA(G)
1, (10)

where the term expA(G) is the matrix exponential discussed below. The authors

of the reference [5] proposed to determine the Katz parameter α that aims to min-

imize the 2-norm of the difference between the vectors given by the equations (9)

and (10). This is equivalent to find α that solves

min
α

err (α) = min
α

‖TC (G)−KC (α) (G)‖2 , (11)

where the 2-norm is given by the condition ‖x‖2 =
(

xTx
)0.5

. Accordingly, the

approach from [5] naturally forces that the centrality scores obtained from the

Katz centrality vector (I − αA (G))
−1

1 (the equation (9)) and the action of the

exponential of the adjacency matrix expA(G)
1 (the equation (10)) are similar.

By contrast, applying the matrix exponential to the adjacency matrix of a com-

plex network G = (V (G) , E (G)) with the vertex set V (G) where |V (G)| = n
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gives rise to the subsequent power series expansion of the term expA(G) [10]:

expA(G) = I +A (G) +
A2 (G)

2!
+

A3 (G)

3!
+ . . .+

Al (G)

l!
+ . . . =

=

∞
∑

l=0

Al (G)

l!
. (12)

Then, the so-called total (subgraph) communicability centrality measure TC of the

vertex vi ∈ V (G) is identified with the condition [10]:

TCi :=

n
∑

j=1

[

expA(G)
]

ij
. (13)

The power series expansion given by the equation (12) and the definition of the

TC index given by the equation (13) imply that this node significance ranking

algorithm counts all walks between a focal node vi and all other nodes in the

network (with the node vi included) and weights walks of length l by a penalty

factor equal to 1
l! . Accordingly, the TC index evaluates the relative importance

of nodes in a network based on their communicability with other nodes in this

network [10].

3. The weighted (normalized) exponential-based
and resolvent-based ranking algorithms

For a complex network G = (V (G) , E (G)) with the vertex set V (G) where

|V (G)| = n, the reference [14] proposes to define the communicability between

two arbitrary vertices vi, vj ∈ V (G) by the matrix exponential function applied

to the weighted (normalized) adjacency matrix, denoted by W (G), of the network

G. This matrix is defined by the condition

W (G) := D−0.5 (G)A (G)D−0.5 (G) , (14)

where D (G) ∈ R
{n×n} is the degree matrix. For the network G, this matrix has

the form D (G) = diag(ki). Note that from the fact the degree matrix D (G) is

diagonal and positive, it can be easily observed that its reciprocal square root

D−0.5 (G) is just the diagonal matrix whose diagonal elements are the reciprocals

of the square roots of the diagonal entries of D (G). Based on the concept of the
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communicability between two arbitrary nodes in the network G defined via the

normalized adjacency matrix, the reference [4] proposes the centrality measure

which was shown to be useful in mining the brain connectivity complex networks.

It follows that for any complex networkG, the normalized adjacency matrixW (G)

given by the equation (14) coincides with the Randić matrix R (G) defined in

[12]. The conceptual motivation which leads the authors of the reference [14] to

evaluate the exponential on the weighted adjacency matrix in order to define the

communicability between nodes can be summarized as follows: For a complex

network G = (V (G) , E (G)) with the vertex set V (G) where |V (G)| = n, the

entry
[

al
]

ij
of the l-th power of the adjacency matrix A (G) given by the condition

[

al
]

ij
=

n
∑

r1=1

n
∑

r2=1

. . .

n
∑

rk=1

ai,r1 ar1,r2 ar2,r3 . . . arl−1,rl arl,j (15)

counts the number of walks of length l that originate at the vertex vi and finish

at the vertex vj . From the fact that the binary adjacency matrix A (G) considers

only the presence (given by the entry equal to one) or the absence (given by the

entry equal to zero) of a link between each pair of nodes in the network G, it

follows that it is impossible to express the connectivity strength of this link solely

on the basis of A (G). In turn, many empirical network datasets contain the

connectivity information in the form of real-valued, non-negative weights, where

a larger weight of the link vivj ∈ E (G) indicates that the nodes vi and vj are

more strongly connected. Consequently, in such cases, the equation (15) remains

valid but now the term ai,r1 ar1,r2 ar2,r3 . . . arl−1,rl arl,j in this equation does not

give the dichotomous contribution depending on whether the walk i → r1 →

r2 → r3 → . . . → rl → j takes place. Instead, the equation (15) contributes the

product of the weights along all edges in the walk and simultaneously decreases

the contribution stemmed from longer walks. The references [4,14] contain several

empirical evidences that the above summarized methodology gives rise to the more

realistic results.

The present paper proposes to define two novel centrality measures based on

the exponential and resolvent functions evaluated on the product connectivity

matrix R (G) of the network G. The first ranking algorithm that we propose

is the Randić-Katz centrality measure (alternatively termed as the weighted or

normalized Katz centrality measure), denoted by RKC. For a complex network

G = (V (G) , E (G)) with the vertex set V (G) where |V (G)| = n, the RKC index
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of the vertex vi ∈ V (G) is given by the subsequent expression

RKCi :=
n
∑

j=1

[

(I − αR (G))−1
]

ij
, (16)

where I is the identity matrix of order n and α is the weighted Katz parameter

which satisfies the condition 0 < α < 1
ρR(G) . Since ρ (R (G)) = 1 for any complex

network [31], it follows that 0 < α < 1. Note that the bounds imposed on α ensure

that the matrix I − αR (G) is invertible and the power series expansion of the

resolvent in the equation (16):

(I − αR (G))
−1

= I + αR (G) + α2 R2 (G) + . . .+ αl Rl (G) + . . . =

=

∞
∑

l=0

αl Rl (G) (17)

is convergent to its inverse. In our computer simulation experiments presented

in Section 5, we will test the performance of the newly proposed Randić-Katz

centrality measure calculated with four different values of α. Namely, by analogy

with the values of the Katz parameter given by the equations (5)–(8), we will test

the RKC index calculated with following four weighted Katz parameters

α0.5 =
1

2ρ (R (G))
=

1

2
, (18)

α0.85 =
0.85

ρ (R (G))
= 0.85, (19)

αrk =
1

‖R (G)‖∞ + 1
, (20)

and

αmin =
1− exp−ρ(R(G))

ρ (R (G))
= 1− exp(−1) = 1− 0.3679 = 0.6321, (21)

where ρ (R (G)) is the Randić spectral radius (always equal to one [31]) and rk is

the Randić degree. Note that in undirected networks, the ∞-norm of the product

connectivity matrix in the equation (20) is equal to the largest Randić degree of

this network.

The second ranking method that we suggest is the Randić total communica-

bility centrality measure (alternatively termed as the weighted or normalized total

communicability centrality measure), denoted by RTC. For a complex network

G = (V (G) , E (G)) with the vertex set V (G) where |V (G)| = n, the Randić
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total communicability centrality measure of the vertex vi ∈ V (G) is given by the

following formula

RTCi :=

n
∑

j=1

[

expR(G)
]

ij
. (22)

Note that the measure defined by the equation (22) is different from the centrality

index proposed in [4] which is also based on the term expR(G). Namely, the

centrality index introduced in [4] can be viewed as a vertex-deleted measure, i.e.,

it quantifies the reduction in the global communicability of the networkG if a single

vertex is removed.

The conceptual justification for using in the equations (16) and (22) the nor-

malized adjacency matrix R (G) instead of the dichotomous adjacency matrix

A (G) is the same as the reasoning included in [14]. Namely, from the fact that

the Randić matrix of any complex network contains the connectivity information

reflecting the strength of connections between its nodes, it can be hypothesized

that the centrality measures defined by the equations (16) and (22) will be more

effective in identifying influential nodes in complex networks than their A (G)-

based counterparts. A similar methodological approach in defining new centrality

measures was adopted by the authors of [42] who claimed that ”[b]y dichotomizing

the network, much of the information contained in a weighted network dataset is

lost, and consequently, the complexity of the network topology cannot be described

to the same extent or richly”.

Since the matrix resolvent (I−αM(G))−1 and the matrix exponential expM(G),

where M (G) ∈ {A (G) , R (G)} can be viewed as two alternative network commu-

nicability functions, we will collectively refer to the ranking algorithms given by

the equations (3), (13), (16) and (22) as the communicability-based centrality in-

dices. Moreover, the ranking methods given by the equations (3) and (13) are

collectively referred to as the adjacency-based centrality indices (shortly, as the

A (G)-based measures) or as the original communicability-based centrality mea-

sures, whereas the ranking algorithms given by the equations (16) and (22) are

collectively referred to as the Randić matrix-based centrality measures (shortly, as

the R (G)-based measures) or as the weighted (normalized) communicability-based

centrality measures.

In order to illustrate how the newly defined indices work, consider the small

graph G in Figure 1.
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Fig. 1. The sample network G with five nodes

The product connectivity matrix of the graph G has the form

R (G) =





















1 2 3 4 5

1 0 0.3536 0.2887 0.3536 0.5

2 0.3536 0 0.4082 0 0

3 0.2887 0.4082 0 0.4082 0

4 0.3536 0 0.4082 0 0

5 0.5 0 0 0 0





















.

The largest Randić degree ofG is equal to 1.4958. Therefore, the αrk parameter

is equal to 0.4007 and the resolvent (I − α0.4007R (G))
−1

is identified with the

following two-dimensional array

(I − α0.4007R (G))
−1

=





















1 2 3 4 5

1 1.1211 0.1902 0.1919 0.1902 0.2246

2 0.1902 1.0605 0.2054 0.0605 0.0381

3 0.1919 0.2054 1.0894 0.2054 0.0384

4 0.1902 0.0605 0.2054 1.0605 0.0381

5 0.2246 0.0381 0.0384 0.0381 1.0450





















.

By applying the row sum operation to the above resolvent, we obtain the following

scores of the RKC (αrk) index: RKC1 (α0.4007) = 1.9181, RKC2 (α0.4007) =

1.5548, RKC3 (α0.4007) = 1.7306, RKC4 (α0.4007) = 1.5548, RKC5 (α0.4007) =

1.3843. Similarly, the RKC index can be calculated for other values of α. In turn,
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the exponential of R (G) has the form

expR(G) =





















1 2 3 4 5

1 1.3409 0.4762 0.4929 0.4762 0.5542

2 0.4762 1.1705 0.5136 0.1705 0.1059

3 0.4929 0.5136 1.2508 0.5136 0.1033

4 0.4762 0.1705 0.5136 1.1705 0.1059

5 0.5542 0.1059 0.1033 0.1059 1.1316





















.

Then, by applying the row sum operation, we obtain the subsequent scores of the

RTC index: RTC1 = 3.3403, RTC2 = 2.4366, RTC3 = 2.8742, RTC4 = 2.4366,

RTC5 = 2.0008.

It is worth noting that the values of the TC index calculated on the empirical

complex networks are in an unreasonable numerical range. For instance, the min-

imum and maximum values of the TC measure for the US airport 2010 network

(cf. Table 2) are equal to 7.6077e+ 41 and to 1.2388e+ 49, respectively. In turn,

the minimum and maximum values of the newly suggested RTC measure for the

same network are equal to 1.1644 and 7.4177, respectively. Therefore, it is appar-

ent that the novel RTC index is more handy in prioritizing nodes in real-world

complex networks than its unweighted counterpart.

4. The datasets and computational methodology

Our numerical simulation experiments testing the performance of the commu-

nicability-based centrality measures are carried out on four real-world complex net-

works. The Roget network (the semantic network) is based on Roget’s Thesaurus

of English [9], the E-mail network (the communication network) is the network of

e-mail exchanges between members of the University Rovira and Virgili [21], the

US political blogs network (the web network) is the network of hyperlinks between

weblogs on US politics [1], the US airport 2010 network (the transportation net-

work) is the network of flights among all commercial airports in US in 2010 derived

from the U.S. Bureau of Transportation Statistics Transtats site [41]. All networks

are treated as undirected and unweighted. If the network is disconnected, then

only its giant component is used in the simulation experiments. The basic statis-

tical parameters of these actual networks are listed in Table 2. Recall that many

real-world networks are claimed to be scale-free [17, 38]. Therefore, we decided

to carry out our simulation experiments on four actual networks whose degree
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sequences follow the power law [16,46]. This means that the probability of finding

a node having k links to other nodes decays as a negative power of the degree, i.e.,

P (k) ∼ k−γ . The applicability of the original communicability-based indices as

well as their newly suggested normalized counterparts is not restricted to a specific

domain. Consequently, to validate their performance we selected the exemplary

networks from the recent network science literature and from different disciplines.

Thus, the semantic network Roget belongs to a wider class of conceptual graphs;

the communication network E-mail can be classified as a social network [38]; the

web graph US political blogs can be viewed as an informational network, whereas

the transportation network US airport 2010 can be reckoned as an infrastructural

network. These complex networks possess a wide variety of statistical properties

(cf. Table 2) and together constitute a rather heterogeneous sample of empirical

graphs. Moreover, these networks were frequently used to test the effectiveness of

other recently proposed centrality measures [16,24,25,46]. Besides the real-world

networks, we will also validate the performance of the communicability-based cen-

trality indices on two typical generative models: the Erdős-Rényi random graph

model, denoted by ER, and the Barabási-Albert random graph model, denoted by

BA [15, 17]. The ER model is constructed using the G (n,m) scheme where n is

the number of nodes and m is the number of links in the resulting graph. In turn,

to construct the BA model, we start with a single node in the first time step.

Then, we add one vertex in each time step and the new vertex initiates m edges

to old vertices according to the preferential attachment mechanism. In this paper,

we set m to 7. The basic statistical parameters of the ER and BA networks are

also contained in Table 2. In the deliberate attack simulation experiments, we

will use a single realization of each type of random network. This is motivated

by the fact that the authors of [26] observed ”[. . . ]that there is very little variance

in the values of the V -index [i.e., the robustness index] obtained from different

network realizations. Thus, the robustness results obtained from a single realiza-

tion of a given type of network provide a true picture of the general robustness of

networks of that type”. In Subsection 5.1, we will use the ensemble composed of

100 random undirected trees generated according to the random citation growing

graph model [15]. This ensemble is denoted by RCGG and its basic statistical

parameters are listed in Table 2.

Moreover, in our comparative analyses, we will use as null models four ran-

domly rewired model networks corresponding to four empirical networks. These

model networks have the degree sequences identical with their real-world counter-

parts and are denoted by roget.rand, email.rand, blogs.rand and airport.rand. In

order to generate these models, we employed the algorithm proposed by F. Viger
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Table 2
The statistical parameters of four empirical networks and three generative
model networks. In the case of the RCGG model, the results are averages

based on 100 simulation trials

Index Roget E-mail US US ER BA RCGG
political airport
blogs 2010

n 994 1133 1222 1572 1000 1000 100
m 3640 5451 16714 17214 6972 6972 99
〈k〉 7.3239 9.6222 27.3552 21.9008 13.944 13.944 1.98
kmax 28 71 351 314 27 452 7.54
Vk 0.6638 0.9706 1.4038 2.0309 0.263 2.5343 0.6806
Gk 0.3557 0.4911 0.622 0.743 0.1486 0.4515 0.3264
γ 1.4831 1.4584 1.0694 1.0464 − 0.9536 1.9133
ITOP 9891.4 11436.8 12346.5 15860.4 9965.8 9965.8 622.7

orb 1.003 1.0244 1.0489 1.1973 1 1 1.2
C 0.1338 0.1663 0.226 0.3841 0.0125 0.0439 0
Q (w) 0.4638 0.5307 0.4253 0.2255 0.1891 0.1001 0.7401

and M. Latapy. This algorithm is implemented in [15] and described in [51, p. 24].

The basic statistical parameters of the model networks are included in Table 3.

In Tables 2 and 3, the symbols 〈k〉, kmax, Vk, Gk, γ, ITOP , orb, C and Q (w)

refers to the average degree, the maximum degree, the coefficient of variation (i.e.,

the ratio of the standard deviation to the mean) of the degree distribution [8],

the Gini index of the degree distribution [8], the power law exponent of the de-

gree distribution [8], total topological information content, the average number of

nodes per one orbit of Aut (G), the global clustering coefficient (i.e., the ratio of

triangles and connected triples) and the modularity with respect to the walktrap

community finding algorithm [15].

In order to evaluate the resolution (i.e., the granularity) of the tested ranking

methods, the monotonicity, denoted by M , and the percentage of uniquely defined

metric, denoted by PUD, of a ranking vector R are used. Both resolution metrics

are described in [51, p. 20]. Recall that for any ranking vector R, M(R)∈ [0, 1]

and PUD(R) ∈ [0%, 100%]. The higher the values of both metrics are, the more

granular the ranking vector R is.

One way of evaluating the performance of a vertex significance ranking algo-

rithm is based on removing highest ranked (with respect to this algorithm) nodes

and observing the remaining network [2,23–26,51]. In the network science litera-



60 P. Wilczek

Table 3
The statistical parameters of four randomly rewired model net-
works with the preserved degree distribution. The results are

averages based on 50 simulation trials

Index roget.rand email.rand blogs.rand airport.rand

ITOP 9893.5 11458.5 12477.1 16288.4

orb 1.0019 1.0158 1.0205 1.1067
C 0.0126 0.0281 0.1492 0.2343
Q (w) 0.2173 0.122 0.028 0.0283

ture, this procedure is known as the deliberate (i.e., intensional, targeted) attack

on the network. Accordingly, we will quantify the performance of the tested rank-

ing methods in identifying influential nodes in complex networks by deleting one

by one the top 20% of the nodes from six exemplary networks according to the

importance ranking lists generated by these methods. Thus, in each step of the

attack, we will delete only one node from the network according to the centrality-

induced ranking list and then we will calculate on the post-attack network the

following parameters

1) the number of isolated nodes,

2) the number of connected components,

3) the relative size of the giant component,

4) the decline rate of the network efficiency.

These evaluation parameters, after the removal of the top-k most important ver-

tices, are denoted by Isok(G), Ck(G), r(k) and ε(k), respectively. The mathemat-

ical definitions of the r(k) and ε(k) parameters are contained in [51, pp. 21–22].

We will repeat the procedure of removing the top-k most significant vertices for

k ranging from 1 to about 20% of the node in each exemplary network and after

each step of the attack, we will record the above four evaluation parameters. For

the sake of comparison, after all steps of the attack, the values of the Isok(G) and

Ck(G) parameters are summed up. Accordingly, the quantities
k
∑

k=1

Isok (G) and

k
∑

k=1

Ck (G) represent the accumulation of the network damages caused by the at-

tack strategy after k steps of the attack (cf. Tables 5, 6, 9 and 10). Undoubtedly,



A comparative performance analysis. . . 61

the higher both cumulative quantities are, the more efficient the attack scenario

is. In the network science literature, the plots of the functions r(k) and ε(k) are

known as the robustness curve and the efficiency decline curve, respectively. Such

plots corresponding to the attack schemes guided by the tested centrality mea-

sures are included in Figures 3–6. Besides the visual comparison of the r(k) and

ε(k) plots generated by the ranking algorithms under consideration, we will also

calculate the areas under the robustness and efficiency decline curves correspond-

ing to each attack protocol (cf. Tables 7, 8, 11 and 12). Undoubtedly, the lower

(higher) the area under the robustness (the efficiency decline curve) is, the better

the ranking method is.

In order to estimate the ranking consistency of the centrality indices under

study, we will use the Kendall τ rank correlation coefficient. The mathematical

definition of this metric can be found in [51, pp. 22-23] with the appropriate ranges

indicating the strength of the relationship between two rankings.

In order to evaluate the robustness of the node importance ranking algorithms

considered in the present work in the face of three types of the random link er-

rors, we will follow the methodology used in [33, 39]. In the present study, we

will focus on three random link errors models. In a nutshell, each model relies on

the following procedure: We start with the true (i.e., original, error-free) network

and calculate the centrality index on it. This centrality index is referred to as

the true (i.e., original, error-free) centrality index and is denoted by Ctrue. Then,

we perturb (i.e., distort) the network and calculate the new centrality index on it.

This new centrality index is referred to as the noisy (i.e., perturbed, distorted, erro-

neous) centrality index and is denoted by Cnoisy . Finally, we measure the Kendall

τ rank correlation coefficient between the true and noisy centrality scores, i.e.,

τ (Ctrue, Cnoisy). Thus, in the current paper, we will identify the robustness of

the vertex significance ranking algorithm C with the values of τ (Ctrue, Cnoisy).

Undoubtedly, the higher the values of τ (Ctrue, Cnoisy) are, the more robust the

centrality measure C is. In our simulation experiments, we will perturb the net-

work according to three models (mechanisms). In the first model, we will delete

from the original network k randomly chosen edges where k ranges from 0.5% to

10% (with the step of 0.05%). This mechanism is called the random edge removal

model. In the second model, we will add to the network k randomly chosen edges

where k ranges from 0.5% to 10% (with the step of 0.05%). This mechanism

is called the random edge addition model. In the third model, we will randomly

rewire edges with the probability p ranging from 0.005 to 0.1 with the step of

0.005. This mechanism is called the random rewiring model. In all cases, we will
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also measure the Pearson correlation coefficient r between the intensity of the

perturbing factor and the variation in the values of τ (Ctrue, Cnoisy).

All computations included in the present paper were conducted in the R pro-

gramming language [7, 13, 15, 27, 28, 36,44, 49].

5. The results and discussion

In this section, we will comparatively juxtapose the original and weighted

communicability-based centrality measures with respect to their resolution, effi-

ciency in identifying crucial nodes in complex networks, rank correlations, robust-

ness and assortativeness. In our comparative analyses, the classical DC measure

will be used as a reference metric. Our analyses are focused on the centrality in-

dices defined by the equations (3), (13), (16) and (22). The Katz index is calculated

with respect to the values of the attenuation parameter given by the equations

(5)–(8), whereas the Randić-Katz measure is calculated according to the values

of the weighted attenuation parameter given by the equations (18)–(21). These

values are listed in Tables 1 and 2 in [52]. Thus, we will consider four numerical

instances of the KC index as well as four numerical instances of the RKC index.

5.1. The resolution of the tested ranking methods

The resolution quantified by the M and PUD metrics of the communicability-

based centrality indices as well as the DC measure evaluated on the empirical

and model networks is summarized in Table 4. The detailed measurements are

contained in Tables 3–12 in [52].

These data indicate that the granularity of the original communicability-based

indices is (approximately) equal to the granularity of their normalized counter-

parts. Moreover, in all cases, the resolution of all communicability-based ranking

methods is higher in the rewired datasets than in the actual datasets. This prop-

erty is especially noticeable when the granularity is estimated by the PUD metric.

In turn, in both generative models, all communicability-based centrality indices are

perfectly monotonous. The values of the Katz parameter given by the equations

(5)–(8) and its weighted variant given by the equations (18)–(21) have no influ-

ence on the resolution of the resolvent-based measures (cf. Tables 3–10 in [52]).

Moreover, it can be observed that, in comparison to the resolution attained by

the communicability-based centrality indices, the granularity of the DC measure
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Table 4
The numerical ranges of the monotonicity and uniquely defined metric quanti-
fying the granularity of the tested ranking methods. The symbol − denotes the

dash

Index Empirical Rewired ER BA

networks networks
M PUD M PUD M PUD M PUD

A (G)-based > 0.99 78.12 > 0.999 85.96 1 100 1 100
−99.6 −99.78

R (G)-based > 0.99 79.2 > 0.999 86.76 1 100 1 100
−99.6 −99.71

DC 0.8486 0.4 0.8486 0.4 0.8544 0.1 0.4774 3.7
−0.9328 −4.77 −0.9328 −4.77

is very low (cf. Tables 11 and 12 in [52]). The above regularities are noticed in all

network datasets.

In order to try to find some correlations between the structure of a complex

network and the resolution of the communicability-based centrality indices defined

on that network, we propose some general heuristic guidelines. Namely, we hy-

pothesize that the granularity of a centrality measure defined on the network G

may depend on the partition of the node set V (G) of G. The most fundamental

method of inducing the partition of the vertex set V (G) is based on automor-

phic mappings of the vertices of the network G. Recall that an automorphism of

a complex networkG is an isomorphism of G onto itself (for the definition of an iso-

morphism cf. [50, p. 26]). The set of all automorphisms of a network constitutes

an automorphism group, denoted by Aut (G), of this network. The occurrence

of an automorphism depends on the presence of equivalent nodes which can be

mapped automorphically onto each other, that is, they can interchange preserving

the adjacency relations within the network. Accordingly, automorphically equiva-

lent nodes cannot be distinguished only in terms of the network structure. Hence,

it can be claimed that automorphically equivalent nodes should be regarded to

fulfill the same role within the network. A subset of V (G) formed by all mu-

tually equivalent nodes is called an orbit of the network nodes. The so-called

total topological information content, denoted by ITOP (G), of a complex network

G = (V (G) , E (G)) with the vertex set V (G) where |V (G)| = n is defined by the

following condition [48]:

ITOP (G) := n log2 n−

g
∑

i=1

|orbi| log2 |orbi| , (23)
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where |orbi| is the number of automorphically equivalent vertices of i-th type

(i.e., the cardinality of the i-th orbit) and {orbi | 1 ≤ i ≤ g} is the collection of

all orbits of Aut (G). The higher the value of ITOP (G) is, the less nodes within

the network G can be regarded as topologically equivalent. Moreover, we propose

to consider the average number of nodes per one orbit of Aut (G), denoted by

orb (G), as a new graph-theoretical invariant. Formally, for a complex network

G = (V (G) , E (G)) whose vertex set V (G) is partitioned into the collection of

orbits {orbi | 1 ≤ i ≤ g}, this descriptor is defined by the formula

orb (G) : =
1

g

g
∑

i=1

|orbi| . (24)

The values of orb (G) range from 1 to n. If G is an identity graph, then orb (G) =

1, i.e., each orbit of Aut (G) is a singleton and, consequently, all nodes in G

are topologically distinguishable from each other. On the other hand, if G is

a symmetric graph on n vertices, then orb (G) = n, i.e., all nodes in G belong

to the same orbit of Aut (G) and, consequently, they are topologically equivalent.

Accordingly, the higher the value of orb (G) is, the more vertices within the network

G can be considered as topologically equivalent. The first observation that has

to be made is that the values of the newly suggested descriptor orb (G) in the

actual datasets (in which the resolution of the communicability-based measures

is lower) are higher than in the rewired datasets (in which the resolution of the

communicability-based indices is higher). In turn, the values of ITOP (G) are lower

in the empirical datasets than in the rewired datasets. Thus, it can be conjectured

that, at least for some networks and some centrality measures, the resolution of

a ranking algorithm is negatively (positively) correlated with the values of orb (G)

(of ITOP (G)) estimated on the underlying network. To our best knowledge, in

the network science literature, there are no attempts to elucidate the differential

resolution of vertex ranking algorithms in a causal way. Therefore, we first decided

to test our hypothesis on simple synthetic networks. Namely, we estimated the

granularity of the TC andKC (αk) indices as well as their normalized counterparts

on the ensemble of 100 undirected trees generated according to the random citation

growing graph model (cf. Section 4). Figure 2 displays the relationship (with

the corresponding values of the Pearson correlation coefficients r) between the

resolution of the TC and KC (αk) measures quantified on the RCGG model and

the values of the ITOP (G) and orb (G) descriptors evaluated on this model.

The monotonicity of the TC and KC (αk) indices in the RCGG model ranges

from 0.9847 to 0.9964 and from 0.9803 to 0.9964 (respectively), whereas their
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Fig. 2. The relationship between the resolution of the TC and KC centrality indices
estimated on the RCGG model and the values of the ITOP and orb descriptors of
this model. The resolution is quantified by the M and PUD metrics. The KC

centrality index is calculated with respect to the attenuation parameter αk. r is
the Pearson correlation coefficient. In all subplots in the left panel, the x axis
corresponds to the values of ITOP , whereas in all subplots in the right panel, the
x-axis corresponds to the values of orb.

weighted counterparts from 0.9803 to 0.9964 and from 0.9831 to 0.996, respec-

tively. In turn, the granularity quantified by the PUD metric of the TC and

KC (αk) algorithms ranges from 51% to 85% and from 46% to 84% (respec-

tively), whereas their normalized variants from 47% to 85% and from 47% to

83%, respectively. From Figure 2, it can be inferred that the resolution of both

ranking methods estimated on the RCGG model is positively highly or very highly

correlated with the ITOP (G) invariant. In turn, the newly proposed descriptor

orb (G) is negatively highly or very highly correlated with the granularity of the
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TC and KC (αk) measures. The linear correlations between the graph-theoretical

descriptors given by the equations (23) and (24) and the resolution of the RTC

and RKC (αrk) algorithms are very similar, i.e., the values of r for the linear

correlations between ITOP (G) and the M (RTC)), PUD (RTC), M (RKC (αrk))

and PUD (RKC (αrk)) values are equal to 0.9529, 0.9243, 0.9487 and 0.9185, re-

spectively. In turn, the values of r for the linear correlations between orb (G) and

the M (RTC) and PUD (RTC), M (RKC (αrk)) and PUD (RKC (αrk)) values

are equal to −0.897, −0.9598, −0.8936 and −0.9583, respectively. Accordingly, it

can be uttered that, at least for some complex networks and some ranking algo-

rithms, the more topologically equivalent nodes a network contains, the lower the

granularity of the centrality measure estimated on that network is. Moreover, in

both cases, it can be observed that ITOP (G) is a better predictor of the granular-

ity quantified by the M metric, while orb (G) is a better predictor of the ganularity

quantified by the PUD metric. Therefore, the introduction of the orb (G) descrip-

tor seems to be justified. Note that the above heuristic rules relating the number

of topologically equivalent nodes within the network with the resolution of the

node significance ranking algorithms estimated on that network does not refer to

any other graph-theoretical invariants (like, for instance, the connectivity) and,

consequently, these heuristic guidelines attempting to elucidate the granularity of

the communicability-based centrality measures are, in substance, purely algebraic.

The above ideas establishing a bridge between algebraic and quantitative graph

theory will be further explored in a separate work.

5.2. The intensional attack simulation experiments

In the deliberate attack simulation experiments carried out in the current sub-

section, we will juxtapose the communicability-based centrality indices derived

from the adjacency matrices with their weighted counterparts. All simulations

are carried out on four empirical networks and on two generative model networks

presented in Table 2.

In the first series of our simulation experiments, we will analyse the perfor-

mance of the A (G)-based centrality measures. Table 5 lists the cumulative values

of the Isok(G) parameter for the attack scenarios guided by the tested ranking

algorithms.

From this table, it follows that, in all network datasets, all numerical instances

of the KC index give (approximately) the same results. Also, it is straightforward

to observe that, in all cases with the exception of the ER model, the KC measure

considerably outperforms the TC measure. In the empirical datasets, with respect
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Table 5
The accumulation of the damages in six exemplary networks (quantified by
the number of isolated nodes in the post-attack graphs) triggered by the
attacks based on the original communicability-based centrality indices. The

most aggressive scenarios are marked in bold

Index Roget E-mail US political US airport ER BA
blogs 2010

TC 887 11774 19618 103569 0 15388
KC (αmin) 915 15241 30525 130598 0 28217

KC (αk) 917 15245 30525 130598 0 28217

KC (α0.5) 917 15245 30525 130598 0 28217

KC (α0.85) 915 15244 30525 130598 0 28217

to the cumulative values of the Isok(G) parameter, the improvement attained by

the KC index over the TC index is in the range from 3.27% (the Roget network)

to 35.73% (the US political blogs network). In the ER and BA models, this

improvement is equal to 0% and 45.47%, respectively.

Table 6 includes the cumulative values of the Ck (G) parameter for the attack

schemes driven by the tested ranking methods.

Table 6
The accumulation of the damages in six exemplary networks (quantified by
the number of connected components in the post-attack graphs) triggered by
the attacks based on the original communicability-based centrality indices.

The most aggressive scenarios are marked in bold

Index Roget E-mail US political US airport ER BA
blogs 2010

TC 1485 12585 21205 109673 200 17103
KC (αmin) 1542 16158 32300 137909 200 32818
KC (αk) 1546 16162 32300 137909 200 32819

KC (α0.5) 1546 16162 32300 137909 200 32819

KC (α0.85) 1542 16161 32300 137909 200 32819

Also in this case, all numerical variants of the KC metric give (approximately)

the same results. Furthermore, it is evident that, in all cases with the exception of

the ER model, the KC metric yields the better results than the TC metric. In the

actual datasets, with respect to the cumulative values of the Ck (G) parameter,

the improvement achieved by the KC index over the TC index ranges from 3.95%
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(the Roget network) to 34.35% (the US political blogs network). In the ER and

BA models, this betterment is equal to 0% and 47.89%, respectively.

Now, we will study the impact of removing the most vital nodes on the relative

size of the giant component. Figure 3 presents the relationship between the number

of nodes removed from the network and the relative size of the giant component.
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Fig. 3. The relative size of the giant component as a function of the number of nodes
removed from six exemplary networks subjected to the attacks guided by the TC
index as well as by four numerical instances of the KC index. In all subplots, the
x axis corresponds to the number of nodes removed from the network and the y

axis corresponds to the reletavie size of the giant component

In turn, Table 7 contains the areas under the robustness curves corresponding

to each attack protocol from Figure 3.

These data indicate that, in all network datasets, the attack scenarios based on

four numerical versions of the KC index are (approximately) equally destructive
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Table 7
The accumulation of the damages in six exemplary networks (quantified by the
area under the robustness curve) triggered by the attacks based on the original
communicability-based centrality indices. The most aggressive scenarios are

marked in bold

Index Roget E-mail US US ER BA

political airport

blogs 2010

TC 176.922 194.2908 201.1227 207.2452 179.0005 160.0215
KC (αmin) 176.7757 191.0327 191.91 188.2634 179.0005 137.509
KC (αk) 176.7696 191.0291 191.91 188.2634 179.0005 137.507

KC (α0.5) 176.7696 191.0291 191.91 188.2634 179.0005 137.507

KC (α0.85) 176.7757 191.03 191.91 188.2634 179.0005 137.507

to the network connectivity. In Figure 3, the robustness curves corresponding to

these attack scenarios are visually indistinguishable from each other. Moreover,

it can be seen that, in all cases with the exception of the ER model, the attacks

guided by the KC index are more effective in dismantling the networks than the

attacks driven by the TC index. In the ER model, all attacks protocols are equally

deleterious to the network integrity and, consequently, all robustness curves are

visually indistinguishable from each other. In the real-world datasets, with re-

spect to the area under the robustness curve, the betterment attained by the KC

measure over the TC measure ranges from 0.09% (the Roget network) to 4.58%

(the US political blogs network). In the ER and BA models, this improvement is

equal to 0% and 14.07%, respectively.

Figure 4 shows the relationship between the number of vertices deleted from

the network and the decline rate of the network efficiency. In turn, Table 8 includes

the areas under the efficiency decline curves corresponding to each attack schemes

from Figure 4.

These data indicate that, in all datasets, the attack scenarios based on four

numerical instances of the KC metric are (approximately) equally aggressive to

the network connectivity and, consequently, it is impossible to visually distin-

guish between the corresponding efficiency decline curves. Furthermore, these

data demonstrate that the attack schemes driven by the KC metric produce the

better results than the attacks driven by the TC metric. The above regularity

is noticed in all six network datasets. In the real-world datasets, with respect to

the area under the efficiency decline curve, the refinement attained by the KC

index over the TC index is in the range from 14.79% (the US airport network)
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Fig. 4. The decline rate of the network efficiency as a function of the number of nodes
removed from six exemplary networks subjected to the attacks guided by the TC
index as well as by four numerical instances of the KC index. In all subplots, the
x axis corresponds to the number of nodes removed from the network and the y

axis corresponds to the decline rate of the network efficiency

to 30.95% (the Roget network). In the ER and BA models, this improvement is

equal to 8.06% and 15.69%, respectively.

All in all, it can be claimed that the intensional attack simulation experiments

presented in the current subsection unambiguously demonstrated that, in all net-

work datasets, the choices of the Katz parameter given by the equations (5)–(8)

do not affect the effectiveness of the KC index in dismantling the networks. These

experiments also showed that, in the actual network datasets and in the BA model,

the KC vertex significance ranking algorithm is more effective in attacking the

networks than the TC algorithm. In turn, in the ER model, with respect to
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Table 8
The accumulation of the damages in six exemplary networks (quantified by
the area under the efficiency decline curve) triggered by the attacks based on
the original communicability-based centrality indices. The most aggressive

scenarios are marked in bold

Index Roget E-mail US US ER BA

political airport

blogs 2010

TC 29.8577 57.0609 68.9312 182.5766 9.8824 121.1165
KC (αmin) 43.2322 74.9148 96.6421 214.2714 10.7488 143.6549
KC (αk) 43.2417 74.9212 96.6421 214.2714 10.7487 143.6558

KC (α0.5) 43.2422 74.9212 96.6421 214.2714 10.7487 143.6558

KC (α0.85) 43.2323 74.9203 96.6421 214.2714 10.7489 143.6558

three evaluation criteria, i.e., the Isok (G), Ck (G) parameters and the area under

the robustness curve, all attack strategies guided by the communicability-based

centrality indices are equally hazardous to the network coherence, while with re-

spect to the area under the efficiency decline curve, the KC centrality measure

outperforms the TC measure.

In the second series of our simulation experiments, we will analyse the perfor-

mance of the R (G)-based centrality measures. As a reference centrality measure,

we will use the DC index.

Table 9 contains the cumulative values of the Isok (G) parameter for the attack

protocols guided by the tested weighted ranking methods as well as by the DC

measure.

Table 9
The accumulation of the damages in six exemplary networks (quantified by the
number of isolated nodes in the post-attack graphs) triggered by the attacks
based on the weighted communicability-based centrality indices and on the

DC index. The most aggressive scenarios are marked in bold

Index Roget E-mail US political US airport ER BA
blogs 2010

RTC 2979 21401 41815 162064 0 28314
RKC (αmin) 2365 19626 38580 157437 0 28392

RKC (αrk) 3141 22208 44151 165180 0 28321
RKC (α0.5) 2743 20762 40607 160239 0 28379
RKC (α0.85) 1617 17385 34334 148893 0 28324
DC 946 15432 30613 130930 0 28174



72 P. Wilczek

From this table, it follows that, in all empirical datasets, the RKC (αrk)

index outperforms all other centrality indices. In addition, it can be observed

that, in the actual network datasets, the attack scenarios based on the RTC

index have the second best attack effect. Moreover, it is evident that, in all

datasets with the exception of the ER model, the weighted communicability-based

ranking algorithms give the better or significantly better results than the DC

index. On the other hand, the scores from Table 9 indicate that, among the

communicability-based centrality measures, when the nodes are deleted from the

network according to the importance ranking lists produced by the RKC (α0.85)

index, then the network has the worst fragmentation effect. This regularity was

observed in all real-world network datasets. In these networks, with respect to

the cumulative values of the Isok (G) parameter, the improvement achieved by

the RKC (αrk) index over the RTC, KC and DC indices is in the range from

1.89% (the US airport 2010 network) to 5.29% (the US political blogs network)

and from 20.94% (the US airport 2010 network) to 70.81% (the Roget network)

as well as from 20.73% (the US airport 2010 network) to 69.88% (the Roget

network), respectively. In turn, the improvement attained by the RTC index

over its unweighted version is in the range from 36.09% (the US airport 2010

network) to 70.22% (the Roget network). In the ER model, all attack schemes

are equally aggressive to the network unity and the performance of the weighted

communicability-based centrality indices is the same as the performance of their

original forms. In the BAmodel, the improvement achieved by the best normalized

resolvent-based measure over the best original resolvent-based measure and over

the DC index is equal to 0.62% and 0.77%, respectively. In turn, the refinement

attained by the RTC measure over its unweighted counterpart is equal to 45.65%.

Table 10 presents the cumulative values of the Ck (G) parameter for the attack

schemes guided by the considered weighted centrality metrics as well as by the

DC metric.

The scores from this table indicate that, in all empirical networks, the attack

strategies guided by the RKC (αrk) measure are the most effective in degrading

the networks. On the other hand, the attack strategies driven by the RTC measure

possess the second best attack effect. Moreover, in all cases with the exception

of the ER model, the normalized communicability-based centrality measures out-

perform or remarkably outperform the DC measure. In the empirical datasets,

among the indices defined by the matrix functions, the RKC (α0.85) measure per-

forms the worst. In these datasets, with respect to the cumulative values of the

Ck (G) parameter, the betterment attained by the RKC (αrk) measure over the

RTC, KC and DC measures ranges from 1.72% (the US airport 2010 network)
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Table 10
The accumulation of the damages in six exemplary networks (quantified by the
number of connected components in the post-attack graphs) triggered by the
attacks based on the weighted communicability-based centrality indices and on

the DC index. The most aggressive scenarios are marked in bold

Index Roget E-mail US political US airport ER BA
blogs 2010

RTC 4558 22832 44207 171435 200 32990
RKC (αmin) 3763 21012 40809 166520 200 32977
RKC (αrk) 4731 23683 46688 174439 200 32987
RKC (α0.5) 4246 22170 42955 169563 200 33028

RKC (α0.85) 2684 18620 36343 156566 200 32946
DC 1588 16367 32408 138279 200 32716

to 5.31% (the US political blogs network) and from 20.94% (the US airport 2010

network) to 67.32% (the Roget network) as well as from 20.73% (the US airport

2010 network) to 66.43% (the Roget network), respectively. In turn, the bet-

terment attained by the RTC measure over its unweighted instance ranges from

36.03% (the US airport 2010 network) to 67.42% (the Roget network). In the

ER model, all attack protocols are equally destructive to the network connectivity

and the efficiency of the weighted communicability-based indices is the same as the

efficiency of their original variants. In the BA model, the betterment attained by

the best normalized resolvent-based index over the best original resolvent-based

index and over the DC index is equal to 0.63% and 0.94%, respectively. In turn,

the betterment attained by the RTC index over the TC index is equal to 48.16%.

Next, we will analyse the influence of deleting the most crucial nodes on the

relative size of the giant component. Figure 5 presents the relationship between

the number of nodes removed from the network and the relative size of the gi-

ant component. In turn, Table 11 lists the areas under the robustness curves

corresponding to each attack scenario from Figure 5.

These data demonstrate that, in all actual networks, the attack strategies

based on the RKC (αrk) index are the most harmful to the network connectivity.

Consequently, in all empirical datasets, the RKC (αrk) index outperforms all

other node significance ranking algorithms. Moreover, in the real-world networks,

the attack protocols based on the RTC index have the second best attack effect.

It can be observed that, in all actual datasets, the attack schemes driven by the

centrality indices defined via the matrix functions are decisively more deleterious
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Fig. 5. The relative size of the giant component as a function of the number of nodes
removed from six exemplary networks subjected to the attacks guided by the
weighted communicability-based centrality indices as well as by the DC index.
In all subplots, the x axis corresponds to the number of nodes removed from the
network and the y axis corresponds to the relative size of the giant component

to the network connectivity than the attacks driven by the DC index. Among the

newly proposed normalized communicability-based centrality metrics, the RKC

(α0.85) index produces the poorest results. The above regularity was recorded in

all real-world network datasets. In these datasets, with respect to the area under

the robustness curve, the refinement achieved by the RKC (αrk) metric over the

RTC, KC and DC metrics ranges from 0.11% (the Roget network) to 1.23% (the

US political blogs network) and from 2.44% (the Roget network) to 13.38% (the

US airport 2010 network) as well as from 2.31% (the Roget network) to 13.24%

(the US airport 2010 network), respectively. In turn, the refinement achieved by
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Table 11
The accumulation of the damages in six exemplary networks (quantified by the
area under the robustness curve) triggered by the attacks based on the weighted
communicability-based centrality indices and on the DC index. The most ag-

gressive scenarios are marked in bold

Index Roget E-mail US US ER BA

political airport

blogs 2010

RTC 172.6413 184.6161 181.4992 164.0795 179.0005 136.921

RKC (αmin) 173.6434 186.1311 184.5098 166.7856 179.0005 137.4195
RKC (αrk) 172.4552 183.8027 179.2709 163.0808 179.0005 137.169
RKC (α0.5) 173.0468 185.2048 182.5912 164.9545 179.0005 137.232
RKC (α0.85) 175.082 188.4131 188.3822 172.4517 179.0005 137.3675
DC 176.7153 190.8314 191.7971 187.965 179.0005 137.5485

the RTC metric over its unweighted form ranges from 2.42% (the Roget network)

to 20.83% (the US airport 2010 network). In the ER model, all attack scenarios

are equally detrimental to the network coherence and, consequently, the robustness

curves corresponding to these attack schemes are visually indistinguishable from

each other. Moreover, the R (G)-based centrality measures are equally effective in

degrading the networks as the A (G)-based centrality measures. In the BA model,

all numerical variants of the RKC index are (approximately) equally effective

in attacking the networks. Moreover, the RKC measure give (approximately)

the same results as the DC measure and its unweighted variant. In turn, the

refinement attained by the RTC ranking algorithm over its unweighted version

and over the DC algorithm is equal to 14.44% and 0.46%, respectively.

Figure 6 presents the relationship between the number of vertices deleted from

the network and the decline rate of the network efficiency. In turn, Table 12

includes the areas under the efficiency decline curves corresponding to each attack

scheme from Figure 6.

These data show that, in the empirical datasets, all weighted communicability-

based ranking methods considerably outperform their original variants as well as

the DC algorithm. Namely, in these datasets, with respect to the area under the

efficiency decline curve, the improvement attained by the normalized resolvent-

based centrality measures over their unweighted forms and over the DC measure

is in the range from 8.51% (the US airport 2010 network) to 15% (the US political

blogs network) and from 8.41% (the US airport 2010 network) to 14.82% (the US

political blogs network), respectively. In turn, the improvement achieved by the

RTC measure over its unweighted variant is in the range from 22.05% (the US



76 P. Wilczek

0.0

0.1

0.2

0.3

0.4

0 50 100 150 200

Roget

0.0

0.2

0.4

0.6

0 50 100 150 200

E−mail

0.0

0.2

0.4

0.6

0 50 100 150 200 250

US political blogs

0.00

0.25

0.50

0.75

1.00

0 100 200 300

US airport 2010

0.00

0.03

0.06

0.09

0.12

0 50 100 150 200

ER

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200

BA

Centrality
RTC

RKC (αmin)
RKC (αrk)

RKC (α0.5)
RKC (α0.85)

DC

Fig. 6. The decline rate of the network efficiency as a function of the number of nodes
removed from six exemplary networks subjected to the attacks guided by the
weighted communicability-based centrality indices as well as by the DC index.
In all subplots, the x axis corresponds to the number of nodes removed from the
network and the y axis corresponds to the decline rate of the network efficiency

airport 2010 network) to 38.55% (the Roget network). Furthermore, in the ER

model, the refinement attained by the best normalized resolvent-based centrality

measure over the best original resolvent-based measure and over the DC index

is equal to 5.69% and 3.66%, respectively. In turn, the improvement achieved

by the RTC index over its unweighted form and over the DC algorithm is equal

to 13.29% and 3.66%, respectively. In the BA model, all numerical instances of

the RKC index produce (approximately) the same results as the DC index and

their original versions. Moreover, the betterment achieved by the RTC algorithm
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Table 12
The accumulation of the damages in six exemplary networks (quantified by
the area under the eficiency decline curve) triggered by the attacks based on
the weighted communicability-based centrality indices and on the DC index.

The most aggressive scenarios are marked in bold

Index Roget E-mail US US ER BA

political airport

blogs 2010

RTC 48.5872 84.1488 111.4528 234.2109 11.3966 143.8439

RKC (αmin) 48.3705 83.2272 108.175 233.1285 11.3135 143.8333
RKC (αrk) 48.5667 84.4713 113.6907 234.056 11.3973 143.7122
RKC (α0.5) 48.6052 83.8585 110.3517 233.9009 11.3679 143.8386
RKC (α0.85) 47.065 80.3485 102.9144 229.0105 11.1934 143.8198
DC 44.0658 75.3853 96.84 214.5179 10.9796 143.5713

over its unweighted form is equal to 15.8%, whereas the betterment over the DC

ranking method is negligible.

All in all, from the above results, it can be inferred that the values of the

weighted Katz parameter given by the equations (18)–(21) exert the significant

influence on the performance of the newly conceptualized ranking algorithms.

Following the references [26, 38], we use the term percolation to cover any spe-

cific procedure for the node removal from the network. As is well known, for the

random uniform deletion of vertices from the network or for the targeted removal of

vertices in decreasing order of their degrees, the percolation processes on complex

networks were carefully studied and many elegant analytical results were obtained

(cf. [23,26,38] and the references cited therein). In our contribution, we study the

effect on the network structure of the intensional removal of nodes driven by sev-

eral more composite node ranking algorithms than simply the DC index. Similarly

as in [26], where the deliberate attacks guided by the degree, betweenness, close-

ness and eigenvector centrality measures were analysed, it can be claimed that

”[. . . ]since these centrality measures are subtle non-local measures of a vertex’s

significance it seems unrealistic to anticipate any all-embracing analytical theory

of the corresponding percolation process, and hence our present work is computa-

tional in nature”. Consequently, to attempt to elucidate why, in most cases, the

KC index is more effective in dismantling the network than the TC index or why,

in most cases, the normalized communicability-based measures considerably out-

perform their original variants we propose some heuristic guidelines. Namely, we

conjecture that the superiority of the KC measure over the TC measure recorded

in the actual datasets is mainly dictated by the heterogeneous degree distribu-
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tion of these network datasets. As previously stated, four real-world graphs used

in the present study can be considered as scale-free. Such networks possess few

nodes with many edges and many nodes with few edges. In the network science

literature, to quantify the heterogeneity of the degree distribution (shortly, the

degree heterogeneity), many different invariants were proposed [8]. Nevertheless,

as pointed out in [8], only two descriptors, i.e., the coefficient of variation and the

Gini coefficient are applicable to all distributions and have the desired properties

of consistency over alternations in a distribution arising from the transfer, addition

and replication principles. From the comparison of the values of the Vk and Gk

indices corresponding to the degree sequences of the exemplary networks (cf. Ta-

ble 2), it follows that, among the actual networks, the degree heterogeneity of the

Roget network is the lowest. This fact juxtaposed with the results of the deliberate

attack simulation experiments indicating that, with respect to three evaluation pa-

rameters (i.e., the Isok (G) and Ck (G) indices and the area under the robustness

curve), the improvement attained by the KC algorithm over the TC algorithm is

also the lowest, can be considered as a premise that this improvement depends on

the degree heterogeneity of the underlying graphs. To substantiate this hypothe-

sis, we carried out the intensional attacks on two generative model networks of the

same size and density. These models are generated according to the Erdős-Rényi

G (n,m) procedure (the ER model) and according to the preferential attachment

procedure of Barabási-Albert (the BA model). As is widely known, the ER model

is characterized by the Poisson degree distribution. Intuitively, such a distribution

means that most vertices possess a degree close to the average and, consequently,

can be viewed as homogeneous. From Table 2, it follows that, among all datasets,

the degree heterogeneity of the ER model quantified by the Vk and Gk invariants

is the lowest. In turn, the topology of the BA model is scale-free and, conse-

quently, the degree heterogeneity of this model is high. From the targeted attack

experiments, it can be observed that, in the ER model, the performance of all

tested centrality metrics (i.e. the TC, KC, RTC, RKC and DC indices) quanti-

tatively assessed by the three evaluation parameters (i.e., the Isok (G) and Ck (G)

indices and the area under the robustness curve) is the same which implies that

the percolation of vital nodes identified by each ranking method exert no signif-

icant impact on degrading the network structure. The similar effect was noted

in [24] where the authors juxtaposed the density centrality measure with the DIL,

gravity and closeness centrality indices. In the ER models, the results of the delib-

erate attacks guided by these ranking algorithms were summarized by the authors

of [24] by the following assertion: ”[. . . ] [t]he reason [for this effect] is mainly due

to the homogeneous degree distribution (the degrees are not so different) of such
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networks”. Thus, it can be postulated that, owning to the homogeneity of the ER

network, there is no substantial difference whether vertices are removed from this

graph according to the TC, KC, RTC, RKC or DC measures. Thus, it can be

inferred that, in the ER model, all tested ranking methods identify nodes which

are equally significant to the network connectivity. On the other hand, in the

ER model, when the performance of the considered ranking methods is quantified

by the area under the efficiency decline curve, the KC index is superior to the

TC index as well as the weighted communicability-based measures are superior

to their original counterparts and to the DC measure. Hence, in the ER model,

the post-attack graphs in the attack scenarios guided by all studied centrality

metrics have the same size (i.e., the same number of nodes) but are not isomor-

phic. This feature cannot be observed from the robustness curve but is visible

from the efficiency decline curve (cf. Figures 5 and 6). The similar phenomenon

was recorded in [24] where, with respect to the decline rate of the network effi-

ciency, the density centrality index was superior to its competitors. Therefore, it

can be concluded that, with respect to the network overall communicability, the

KC index outperforms the TC index as well as the normalized exponential-based

and resolvent-based ranking algorithms outperform their original counterparts. In

turn, in the BA model with the heterogeneous degree distribution, the effective-

ness of the attack protocols based on the KC and TC indices vary considerably.

Since the ER and BA models used in the current work possess the same size and

density, it can be claimed that the heuristic assumption attempting to explain

the superiority of the KC index over the TC index by the heterogeneity of the

degree sequences of the underlying graphs is substantiated. It should be empha-

sized that our results unambiguously showcased that, in the actual networks, the

newly proposed weighted communicability-based centrality indices are decisively

more effective in attacking the networks than the widely used classical DC algo-

rithm. In turn, in the BA model, the novel ranking algorithms are only slightly

better than the DC measure. To shed some light on these results, let us recall the

excerpt from [26] where the authors uttered that ”[. . . ] [i]t is rather striking that

degree which is a purely local centrality measure provides a more effective means

of targeting vertices than any of the other centrality measures, which are non-local

in nature and can account for the global structure of the network. We believe that

degree centrality will prove in general to be superior to other centrality measures

at exposing the vulnerability under simultaneous targeted attack of any network

which lacks certain specific structural properties that would favor the efficacy of

other centrality measures. [. . . ] In the absence of any particular structural proper-

ties the best estimator of the vulnerability of a vertex under simultaneous targeted
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attack appears to be simply the number of neighbors that the vertex has”. Thus,

it can be concluded that the BA model used in our study, although it was gen-

erated according to the preferential attachment mechanism, is essentially random

in nature and, consequently, lack any specific structural properties (for instance,

the modularity or the global clustering, cf. Table 2) that would allow other vertex

significance ranking algorithms to be superior to the DC algorithm. Accordingly,

in the random scale-free networks, the newly proposed weighted communicability-

based centrality measures are only slightly more successful in recognizing crucial

nodes than their original counterparts and the classical DC measure. In turn, in

the real-world networks, all normalized communicability-based ranking methods

remarkably outperform their A (G)-based variants as well as the DC index.

In summary, it should be emphasized that our results unquestionably show-

cased that, by substituting the dichotomous adjacency matrix by its weighted

version in the definitions of the centrality indices developed by L. Kac [29] as well

as by M. Benzi and C. Klymko [10], we arrive at the conceptualization of two

novel ranking algorithms which are able to prioritize vertices in networks more

correctly. Therefore, it can be concluded that the proposed modification of the

original TC and KC measures seems to be justified. Furthermore, it should be

indicated that our heuristic guidelines attempting to elucidate the superiority of

one communicability-based index over another or over the DC measure should be

read in the light of the reference [18]. Namely, the authors of [18] defined four new

communicability functions (two based on networks of quantum harmonic oscilla-

tors and two on networks of classical harmonic oscillators) and compared their

efficacy in several different scenarios. They remarked that ”[i]t is important to

note that it is not a matter of deciding which index is the ’correct’ one to indicate

the communication. There is indeed no standard that we can refer to in judging

the ’correctness’ of an index. It is a matter of which index is more appropriate

to a specific problem than others. In judging the appropriateness, we will have to

resort to our intuition and experience. Typically, we would make predictions from

various indices and compare them with the results of analyzing actual datasets or

sometimes even with a plausible guess”. Later on, the authors of [18] claimed

that ”[. . . ] there is no systematic way of selecting one communicability function

for a particular problem; the use of one or another of these functions relies on

the particular problem under study”. Accordingly, the remarks of E. Estrada,

N. Hatano and M. Benzi can be also applied to the communicability functions and

the centrality indices based on them which are conceptualized and analysed in our

contribution.
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5.3. The rank correlations between the tested ranking

methods

In this subsection, we will scrutinize the rank correlations quantified by the

Kendall τ rank correlation coefficient between the centrality measures defined via

the matrix functions estimated on the real-world networks and on their rewired

analogues as well as on two generative models. For a comparative purpose, we

will record the rank correlations between the communicability-based centrality

indices and the classical DC measure. In our analyses, we will characterize the

exemplary empirical networks with respect to their Kendall centrality correlation

profiles conditioned by the tested centrality metrics. This profile is identified with

a specific pattern of rank correlations between different centrality measures [45,51].

In our studies, we will follow the methodology of null models with the preserved

degree sequences. Recall that the degree distribution has become accepted as the

most fundamental network characteristic (apart from its size). Therefore, it is

a standard to compare network invariants to a null model in which the degrees

of the graph are fixed and everything else is random. Accordingly, when a ran-

domly rewired model network with the identical degree sequence as the real-world

(original) graph is used as a reference (null) object, then it is possible to obtain

information about the structure of the empirical network apart from what comes

from its degree distribution. To check if the Kendall centrality correlation pro-

files of the exemplary complex networks determined by the communicability-based

centrality indices depend on their degree distribution, we have generated for each

empirical graph the ensemble of 50 randomly rewired model networks which pos-

sess the same degree sequences as the original graphs but are less structured, i.e.,

they have the significantly lower values of C and Q (w) (cf. Table 3). In order

to quantitatively compare the rank correlation coefficients evaluated on the real-

world and rewired networks, we will calculate the corresponding z-scores. The

mathematical definition of the z-score statistics in included in [51, pp. 39–40].

Generally, it is assumed that a result is statistically significant if its corresponding

z-score is above 2 [51]. Thus, in our context, we presuppose that a given rank

correlation between two centrality measures does not depend on the degree dis-

tribution of the underlying network if its z-score is below −2 or above 2. The

detailed measurements are contained in Tables 13–27 in [52].

Table 13 summarizes the rank correlations between the original communica-

bility-based centrality indices and their weighted counterparts.

These data indicate that, in all network datasets, the rank correlations be-

tween the exponential-based measure and its normalized counterpart are lower
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Table 13
The numerical ranges of the rank correlations between the origi-
nal communicability-based centrality indices and their weighted

counterparts. The symbol − denotes the dash

Correlation Empirical Rewired ER BA
networks networks

τ (TC,RTC) 0.2289 0.6326 0.7351 0.0318
−0.6652 −0.8087

τ (KC,RKC) 0.5751 0.7263 0.824 0.3823
−0.9127 −0.9323 −0.8645 −0.4813

than the correlations between the resolvent-based indices and their weighted vari-

ants (cf. Tables 13 and 14 in [52]). Moreover, all rank correlations are higher in

the rewired datasets than in the real-world datasets. Thus, all z-scores are neg-

ative (cf. Table 15 in [52]). Furthermore, the values of the z-score statistics are

always above 2. Consequently, it can be conjectured that the rank correlations

between the communicability-based centrality indices derived from the adjacency

matrices of the empirical networks and their newly proposed weighted versions do

not depend on the degree distribution of the underlying graphs. From the fact

that the rank correlations between the original communicability-based centrality

indices and their modified counterparts rarely exceed 0.9, it can be uttered that

the novel normalized communicability-based ranking algorithms do not duplicate

the structural information contained in the ranking methods developed in [10,29].

Table 14 summarizes the rank correlations between the communicability-based

measures and the classical DC index.

These data show that, in the actual and rewired datasets as well as in the ER

model, all numerical instances of the KC index are very highly correlated with

the DC measure, whereas in the BA model the correlations τ (DC,KC) are high

(cf. Tables 16 and 17 in [52]). Thus, the KC and DC indices induce the very

similar ranking lists. This phenomenon is not surprising, since the Katz algorithm

can be perceived as a generalization of the classical degree centrality measure.

Furthermore, this similarity can explain the fact that the attack protocols guided

by both these ranking methods are (approximately) equally effective in dismantling

the networks (cf. Subsection 5.2). On the other hand, in the empirical and

rewired datasets as well as in the ER model, all numerical instances of the RKC

algorithm are highly or very highly correlated with the DC algorithm, whereas in

the BA model this correlation is moderate or high (cf. Tables 19 and 20 in [52]).
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Table 14
The numerical ranges of the rank correlations between the
communicability-based centrality indices and the DC index.

The symbol − denotes the dash

Correlation Empirical Rewired ER BA
networks networks

τ (DC, TC) 0.5544 0.7989 0.8668 0.3641
−0.814 −0.9138

τ (DC,KC) 0.96 0.9598 0.9614 0.8312
−0.9829 −0.9828

τ (DC,RTC) 0.6883 0.6606 0.9227 0.7491
−0.847 −0.9411

τ (DC,RKC) 0.8636 0.8219 0.9226 0.6958
−0.9102 −0.9708 −0.9614 −0.8299

Moreover, among the weighted resolvent-based centrality indices estimated on the

real-world and synthetic networks, the rank correlations τ (DC,RKC (αrk)) are

always the lowest, whereas the correlations τ (DC,RKC (α0.85)) are always the

highest. Thus, nodes which are crucial with respect the DC measure are, in

general, also crucial according to the RKC (α0.85) algorithm. On the other hand,

the rankings based on the DC and RKC (αrk) measures are, to a considerable

extent, divergent. These phenomena can elucidate the fact that, among the node

ranking methods analysed in Subsection 5.2, the attack schemes driven by the DC

index and all numerical instances of the KC algorithm as well as by the RKC

(α0.85) measure are the least effective in degrading the networks, whereas the

attack protocols guided by the RKC (αrk) index are the most deleterious to the

network connectivity. Therefore, it is apparent that the above rank correlation

analyses are in accordance with the results of the deliberate attack simulation

experiments from Subsection 5.2. Furthermore, the values of the z-score statistics

for the rank correlations between the weighted communicability-based centrality

indices and the DC measure are always above 2 (cf. Table 21 in [52]). This fact

exemplifies that there is no trivial relationship between the distributions of the

newly proposed centrality algorithms and the classical degree ranking algorithm.

Finally, Table 15 summarizes the rank correlations between all pairs of commu-

nicability-based centrality measures estimated on the empirical and synthetic net-

works.



84 P. Wilczek

Table 15
The numerical ranges of the pairwise rank correlations between the
communicability-based centrality indices. The symbol − denotes

the dash

Correlation Empirical Rewired ER BA
networks networks

A (G)-based 0.5916− 1 0.8278− 1 0.8978− 1 0.6033− 1
R (G)-based 0.8172 0.8570 0.9568 0.8627

−0.9858 −0.9884 −0.9982 −0.9888

From these data, it follows that the rank correlations between all pairs of

the original communicability-based indices range from moderate to perfect in the

actual datasets and in the ER model and from high to perfect in the rewired

datasets and in the BA model (cf. Tables 22 and 23 in [52]). On the other hand,

the correlations between all pairs of normalized communicability-based centrality

measures range from high to very high in the empirical and rewired datasets as

well as in the BA model, whereas in the ER model these correlations are always

very high (cf. Tables 25 and 26 in [52]). Moreover, in the vast majority of cases,

the values of the corresponding z-score statistics are above 2 (cf. Tables 24 and

27 in [52]). Therefore, it can be concluded that the rank correlations between

the communicability-based ranking algorithms are (generally) independent on the

degree distribution of the underlying graphs.

In order to further test if the overall Kendall centrality correlation profiles of the

empirical networks induced by the rank correlations between the communicability-

based centrality metrics depend on the degree sequences of the underlying graphs,

we carry out the Principal Component Analysis (PCA). In the first series of

our measurements, each network (empirical or rewired) is identified with the 10-

dimensional feature vector comprising all pairwise Kendall τ correlation coeffi-

cients between the original communicability-based centrality measures. In turn,

in the second series of our measurements, each network (empirical or rewired) is

also represented by the 10-dimensional feature vector consisting of all pairwise

Kendall τ correlation coefficients between the weighted communicability-based

centrality measures. Figures 7 and 8 display four two-dimensional projections of

the ensembles composed of 51 graphs (i.e., one real-world network and 50 rewired

networks) from the Kendall centrality correlation profile spaces determined by the

tested vertex significance ranking algorithms.
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Fig. 7. The PCA projections of the Kendall centrality correlation profile spaces deter-
mined by the original communicability-based centrality indices estimated on the
empirical and randomly rewired model networks. In all subplots, the real-world
network is denoted by the letter E and is marked by the red triangle symbol

From Figures 7 and 8, it can be seen that, in all eight two-dimensional projec-

tions, the real-world networks are always located outside the region of the Kendall

correlation profile space spanned by the randomly rewired model networks with

the conserved degree distribution. Thus, it can be uttered that the PCA outcomes

unquestionably revealed that the overall Kendall centrality correlation profiles con-

ditioned by the communicability-based node importance ranking algorithms are

able to discriminate between the real-world complex networks and their randomly

rewired counterparts with the preserved degree distribution. Therefore, it can be

concluded that the Kendall centrality correlation profiles induced by the centrality
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Fig. 8. The PCA projections of the Kendall centrality correlation profile spaces deter-
mined by the weighted communicability-based centrality indices estimated on the
empirical and randomly rewired model networks. In all subplots, the real-world
network is denoted by the letter E and is marked by the red triangle symbol

indices under study can characterize the empirical complex networks and that this

characterization can not be inferred from the degree sequences of these networks.

All in all, it can be concluded that the above rank correlation analyses clearly

showcased that there is no trivial relationship between the novel centrality mea-

sures derived from the product connectivity matrices and their original forms.

Thus, it is obvious that the newly suggested weighted communicability-based

node significance ranking algorithms do not duplicate the structural information

contained in the indices proposed by L. Katz [29] as well as by M. Benzi and

C. Klymko [10].
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5.4. The robustness of the tested ranking algorithms

Most contemporary network studies rely on the observed (i.e., measured) net-

works that may differ from the underlying (i.e., true) networks which are often

obfuscated by different measurement errors. Therefore, the issue of measurement

errors in network data is a key problem in the realm of applied network science, as

virtually all real-world network datasets are plagued by some kind of measurement

errors. Several previous works have revealed that observational errors often pos-

sess a significant influence on the accuracy of network measures calculated from

erroneous (i.e., noisy) data (cf. [33, 39] and the references cited therein).

In the present subsection, we will study the robustness of the communicability-

based centrality indices against three types of random link errors introduced in

Section 4. The detailed measurements are included in Tables 28–33 in [52].

Figures 9 and 10 present the relationship between the number of edges deleted

from the network or added to the network and the robustness quantified by

τ (Ctrue, Cnoisy) of the communicability-based centrality indices estimated on four

empirical networks.

From these data, several conclusions can be drawn. Namely, it can be observed

that in the random edge removal model, all communicability-based centrality in-

dices are more robust than in the random edge addition model. This means

that when links are added to the network, the effect on τ (Ctrue, Cnoisy) is dif-

ferent when the same amount of links are deleted from the network. The similar

asymmetrical phenomenon was recorded in [39]. Namely, the authors of the refer-

ence [39] observed that, in many cases, the robustness of several common centrality

measures was lower in the random edge addition model than in the random edge

removal model. Moreover, the intensity of the above asymmetrical phenomenon

significantly depends on the network as well as on the node importance ranking

algorithm. Furthermore, it can be noticed that when edges are deleted from the

network, the robustness of the A (G)-based centrality indices is slightly higher than

the robustness of their normalized counterparts. On the other hand, when links

are added to the network, the robustness of the A (G)-based measures is consider-

ably higher than the robustness of the R (G)-based ranking algorithms. Moreover,

it can be inferred from Figure 9 that when links are deleted from the network or

added to the network all numerical instances of the KC index are equally robust.

Thus, the choices of the Katz parameter given by the equations (5)–(8) do not af-

fect the robustness of the resolvent-based centrality measures. On the other hand,

in both models, it can be noted that, among the R (G)-based indices, the RKC

(α0.85) centrality measure is the most robust, whereas the RKC (αrk) index is
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Fig. 9. The robustness of the TC index and four numerical instances of the KC index
estimated on four empirical networks in the random edge removal model (−)
as well as in the random edge addition model (+). In all subplots, the x axis
corresponds to the number of edges deleted from the network or added to the
network and the y axis corresponds to the robustness τ (Ctrue, Cnoisy). The
results are averages based on 50 simulation trials

the least robust. The effect of the values of the weighted Katz parameter given

by the equations (18)–(21) on the robustness of the normalized resolvent-based

vertex significance ranking algorithms is moderate in the random edge removal

model and considerable in the random edge addition model.

Next, we will study the robustness of the communicability-based centrality

indices with respect to the random edge rewiring. Figures 11 and 12 present the

relationship between the rewiring probability p and τ (Ctrue, Cnoisy). Figure 11

shows that all numerical instances of the KC index are (approximately) equally
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Fig. 10. The robustness of the weighted communicability-based centrality indices esti-
mated on four empirical networks in the random edge removal model (−) as
well as in the random edge addition model (+). In all subplots, the x axis corre-
sponds to the number of edges deleted from the network or added to the network
and the y axis corresponds to the robustness τ (Ctrue, Cnoisy). The results are
averages based on 50 simulation trials

robust in the random edge rewiring model. Moreover, it can be seen that, in

the overwhelming number of cases, the robustness of the A (G)-based centrality

measures is higher than the robustness of their normalized variants. In turn, the

choices of the weighted Katz parameter given by the equations (18)–(21) strongly

affect the robustness of the normalized communicability-based ranking algorithms.

Namely, among the R (G)-based centrality indices, the RKC (αrk) index is the

least robust, whereas the RKC (α0.85) index is the most robust in the face of

the random edge rewiring. Thus, the RKC (αrk) ranking algorithm which is the
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Fig. 11. The robustness of the TC index and four numerical instances of the KC index
estimated on four empirical networks in the random edge rewiring model. In all
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correspond to the robustness τ (Ctrue, Cnoisy). The results are averages based
on 50 simulation trials

most effective in dismantling the empirical networks is simultaneously the least

robust against three types of measurement errors considered in the present work.

Therefore, it can be hypothesized that, at least for some node importance ranking

algorithms, there is a connection between the efficacy in attacking the networks

and the robustness against some random link errors.

To compare the robustness of the communicability-based ranking algorithms

to some reference metric, we will assess the robustness against three types of

measurement errors of the classical DC measure. These results are included in

Table 16.
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Fig. 12. The robustness of the weighted communicability-based centrality indices esti-
mated on four empirical networks in the random edge rewiring model. In all
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correspond to the robustness τ (Ctrue, Cnoisy). The results are averages based
on 50 simulation trials

In this table, the robustness of the DC index is quantified when m
10 links

are deleted from the network with m edges or added to the network with m

edges as well as when links in the network are rewired with p = 0.1. These data

indicate that the robustness of the DC measure is higher than the robustness

of the communicability-based ranking algorithms. Moreover, it can be noticed

that the robustness of the DC index is higher in the random edge removal model

than in the random edge addition model. Nevertheless, similarly as in the case

of the communicability-based ranking methods, the intensity of this asymmetrical

phenomenon substantially hinges on the network.
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Table 16
The robustness of the classical degree centrality measures esti-

mated on four empirical networks

Type of error Roget E-mail US political US airport
blogs 2010

Removal 0.9298 0.9517 0.9717 0.965
Addition 0.9206 0.9276 0.9242 0.8449
Rewiring 0.86 0.8927 0.9047 0.8448

Another key finding of the current contribution is that, in all cases, the intensity

of the considered measurement errors is (approximately) linearly correlated with

the variation in the values of τ (Ctrue, Cnoisy). The Pearson correlation coefficient

between the intensity of the perturbing factor and the alternations in the values

of τ (Ctrue, Cnoisy) is always above 0.94. The implication of this finding is that,

at least in principle, if the rate and type of some measurement errors in network

datasets are known, then it is possible to construct some confidence intervals

around centrality scores.

5.5. The assortativeness of the tested ranking algorithms

In this subsection, we will study the assortativeness of the real-world networks

and their rewired models with respect to the assortativity indices given by the

equations (1) and (2). In order to compare the degree and centrality assortativity

coefficients calculated on the empirical networks with some reference quantities, we

will follow the methodology of null models described in Subsection 5.3. Table 17

includes the values of the Ak(G) coefficient estimated on the real-world and rewired

networks with the corresponding z-scores.

From this table, it can be easily observed that all empirical and rewired net-

works are degree-neutral or degree-weakly disassortative. In three cases, the values

of the Ak(G) index calculated on the real-world networks are higher than the val-

ues of this index estimated on the model networks. In all cases, the absolute

values of the corresponding z-scores are above 2. Therefore, it can be uttered that

the Ak(G) coefficient of four exemplary networks does not depend on their degree

distribution. Tables 18 and 19 contain the values of the AC(G) index where C is

one of the communicability-based centrality measures estimated on the real-world

networks and on their rewired models, respectively.
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Table 17
The assortativity with respect to the degree centrality index of four empirical
and four randomly rewired model networks with the corresponding z-score
statistics. In the case of the rewired networks, the results are averages based

on 50 simulation trials

Index Roget E-mail US political blogs US airport 2010
blogs 2010

Ak(G) 0.174 0.0782 −0.2213 −0.1134

Index roget.rand email.rand blogs.rand airport.rand

Ak(G) −0.0087 −0.0193 −0.1296 −0.2632
z-score 12.4972 8.943 −20.9301 37.8161

Table 18
The assortativity with respect to the communicability-based cen-

trality indices estimated on four empirical networks

Index Roget E-mail US political US airport
blogs 2010

TC 0.475 0.344 0.1111 0.1509
KC (αmin) 0.1941 0.0865 −0.2206 −0.1118
KC (αk) 0.1823 0.0806 −0.2212 −0.1128
KC (α0.5) 0.184 0.0823 −0.221 −0.1126
KC (α0.85) 0.191 0.0852 −0.2207 −0.112
RTC −0.0819 −0.112 −0.3079 −0.3194
RKC (αmin) −0.0194 −0.0655 −0.3023 −0.3118
RKC (αrk) −0.0956 −0.1302 −0.3096 −0.3186
RKC (α0.5) −0.0589 −0.0952 −0.3073 −0.3188
RKC (α0.85) 0.0747 0.0019 −0.2807 −0.2707

In sum, Tables 18 and 19 include 40 measurements of AC(G) on the real-world

networks and 40 measurements of AC(G) on the model networks. The corre-

sponding z-scores comparing the measurements carried out on the empirical and

generated networks are included in Table 34 in [52]. These data show that the

measurements of the AC(G) coefficient classify the real-world networks into three

different assortativity levels (cf. Table 1 in Section 2): centrality-neutral (60%),

centrality-weakly assortative (5%) and centrality-weakly disassortative (35%). In

turn, the same measurements classify the rewired networks into two different as-

sortativity levels: centrality-neutral (75%) and centrality-weakly disassortative
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Table 19
The assortativity with respect to the exponential-based and resolvent-
based centrality indices derived from the adjacency and product con-
nectivity matrices of four randomly rewired model networks. The re-

sults are averages based on 50 simulation trials

Index roget.rand email.rand blogs.rand airport.rand

TC 0.1848 0.0863 −0.1166 −0.2557
KC (αmin) 0.0078 −0.014 −0.1295 −0.2632
KC (αk) −0.0025 −0.0179 −0.1296 −0.2632
KC (α0.5) −0.0005 −0.0166 −0.1296 −0.2632
KC (α0.85) 0.0053 −0.0148 −0.1295 −0.2632
RTC −0.1472 −0.1119 −0.1536 −0.2798
RKC (αmin) −0.1061 −0.0832 −0.1486 −0.2768
RKC (αrk) −0.1622 −0.1281 −0.1576 −0.2816
RKC (α0.5) −0.1325 −0.1015 −0.1519 −0.279
RKC (α0.85) −0.0544 −0.0481 −0.1420 −0.2713

(25%). Furthermore, the AC(G) index calculated with respect to the original

communicability-based centrality measures was in 80% higher in the empirical

networks than in the model networks. In turn, the AC(G) index calculated ac-

cording to the weighted forms of these node significance ranking algorithms was

in 45% higher in the real-world networks than in the synthetic networks. From

Table 34 in [52], it follows that the measurements of the AC(G) index induced by

the original communicability-based centrality measures possess always the values

of the z-scores above 2. On the other hand, the measurements of the same index

calculated according to the weighted counterparts of these measures have in 75%

of the recorded cases the values of the z-scores above 2. Consequently, it can be

claimed that, in the overwhelming majority of instances, the centrality-centrality

correlation coefficients induced by the vertex importance ranking algorithms de-

fined by the matrix functions under consideration does not depend on the degree

distribution of the underlying networks. To corroborate the hypothesis from Sec-

tion 2 stating that the assortativity coefficients based on the centrality measures

other than the DC index convey some useful information on the structural prop-

erties of the networks, we juxtaposed the scores included in Tables 18 and 19.

From this comparison, it can be inferred that the degree and centrality assorta-

tivity coefficients estimated on the actual networks have in 25% of the recorded

cases the opposite sign and in 20% of the recorded cases they classify the networks

into different assortativity levels. In turn, the same coefficients calculated on the
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rewired model networks possess in 10% of the recorded instances the opposite sign

and in all recorded instances they classify the networks into the same assortativity

level. Therefore, it can be concluded that, in many cases, the centrality-centrality

correlation coefficients conditioned by the centrality measures defined via the ma-

trix functions under study do not duplicate the structural information contained

in the degree-degree correlation coefficient and give some new structural insights

about the networks.

Thus, from the above facts and computational results included in [3,6,20,32,34,

35,53], it follows that, in many cases, the assortativity indices calculated according

to the equations (1) and (2) often vary considerably. Therefore, we propose to de-

fine the so-called centrality assortativity profile of a complex network. This profile

consists of the values of the centrality-centrality correlation coefficients induced by

the node significance ranking algorithms of interest and can be perceived as a way

to characterize the networks. Since the assortativeness of the empirical complex

networks calculated according to the equations (1) and (2) is (generally) differ-

ent, it seems especially justifiable to consider a specific pattern of the centrality

assortativity coefficients induced by several different vertex importance ranking

methods in order to gain a more accurate picture of the structural relationships

within the networks.

In order to further test if the centrality assortativity profiles of the exemplary

complex networks induced by the considered communicability-based centrality

measures depend on the degree distribution of the underlying graphs, we will

carry out the Principal Component Analysis using the randomly rewired model

networks with the preserved degree sequences as null models. In the first series

of our measurements, each network (real-world or rewired) is identified with the

5-dimensional feature vector comprising five centrality-centrality correlation in-

dices calculated with respect to the A (G)-based centrality metrics. In the second

series of our measurements, each network (real-world or rewired) is identified with

the 5-dimensional feature vector consisting of five centrality-centrality correlation

indices calculated with respect to the R (G)-based centrality indices. Figures 13

and 14 illustrate four two-dimensional projections of the ensembles composed of 51

networks (i.e., one empirical network and 50 model networks) from the centrality

assortativity profile spaces conditioned by the tested centrality metrics.

From Figures 13 and 14, it can be seen that, in all cases, the real-world networks

are located outside the region of the centrality assortativity profile space spanned

by the randomly rewired model networks with the conserved degree distribution.

Thus, it can be concluded that the PCA outcomes clearly demonstrated that the

centrality assortativity profiles determined by the communicability-based node
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Fig. 13. The PCA projections of the centrality assortativity profile spaces determined by
the original communicability-based centrality indices estimated on the empirical
and randomly rewired model networks. In all subplots, the real-world network
is denoted by the letter E and is marked by the red triangle symbol

importance rank algorithms can be used to distinguish between the empirical

complex networks and their randomly rewired counterparts possessing the same

degree sequences.

Therefore, it can be contended that the centrality assortativity profiles of the

exemplary networks conditioned by the communicability-based centrality indices

are independent on the degree distribution of the underlying graphs and can be

regarded as new (composite) structural invariants characterizing the networks.

Accordingly, it is evident that the hypothesis stating that the centrality-centrality

correlation coefficients induced by the centrality measures other than the DC

index do not duplicate the structural information contained in the degree-degree
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Fig. 14. The PCA projections of the centrality assortativity profile spaces determined
by the weighted communicability-based centrality indices estimated on the em-
pirical and randomly rewired model networks. In all subplots, the real-world
network is denoted by the letter E and is marked by the red triangle symbol

correlation coefficient is empirically corroborated and, consequently, the centrality

assortativity profile can be understood as a useful conceptual tool in complex

network mining.

6. Conclusions

The concept of a centrality measure is at the forefront of network science for

more than two decades. In the present article, we have proposed two novel ver-

tex significance ranking algorithms – the Randić-Katz centrality measure and the
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Randić total communicability centrality measure. These two newly introduced

centrality metrics can be viewed as weighted (normalized) versions of the indices

developed by L. Katz [29] as well as by M. Benzi and C. Klymko [10]. They are

defined in terms of the resolvent and exponential functions applied to the product

connectivity matrix of the network. The intensional attack simulation experiments

included in the present paper unambiguously showcased that, by substituting the

binary adjacency matrix by its weighted (normalized) version in the definitions of

the indices proposed in [10, 29], we arrive at the conceptualization of two more

accurate ranking algorithms. Furthermore, the rank correlation analyses unques-

tionably indicated that there is no trivial relationship between the novel centrality

measures derived from the product connectivity matrix and their original counter-

parts. Consequently, it can be uttered that the newly introduced centrality indices

give some novel structural insights about the networks. In our contribution, we de-

fined two novel ranking methods by using the normalized adjacency matrix where

each edge is weighted by its Randić weight. For future works, it would be inter-

esting to consider the centrality measures whose definitions are based on other

weighted adjacency matrices. For instance, the Randić weight could be replaced

by its generalized (i.e., the quantity (kikj)
r
where r is any real number) or additive

(i.e., the quantity (ki + kj)
−0.5) counterparts.

We found that, at least for some networks and some ranking algorithms, the

more topologically equivalent nodes a network contains, the lower the granularity

of the centrality measure estimated on that network is. Thus, we established

a bridge between algebraic and quantitative graph theory.

Moreover, the present paper proposes the notion of the centrality assortativity

profile of a complex network. This novel conceptual tool in network science can be

perceived as a new composite graph-theoretical invariant which globally charac-

terizes the ways in which nodes with given centrality values are connected within

the network. The computational studies illustrated that the centrality assortativ-

ity profile of a network does not duplicate the topological information contained

in the classical degree assortativity coefficient and, therefore, can be regarded as

a valuable theoretical concept in network science.

Acknowledgment

The author would like to express his thanks to the anonymous reviewer for his

valuable comments and tips.



A comparative performance analysis. . . 99

References

1. Adamic L.A., Glance N.: The political blogosphere and the 2004 US Election.

In: Proceedings of the WWW-2005 Workshop on the Weblogging Ecosystem

2005.

2. Albert R., Jeong H., Barabási A.-L.: Error and attack tolerance of complex

networks. Nature 406 (2000), 378–382.

3. Allen-Perkins A., Pastor J.M., Estrada E.: Two-walks degree assortativity in

graphs and networks. Appl. Math. Comput. 311 (2017), 262–271.

4. Andreotti J., Jann K., Melie-Garcia L., Giezendanner S., Abela E., Wiest R.,

Dierks T., Federspiel A.: Validation of network communicability metrics for

the analysis of brain structural networks. PloS ONE 9, no. 12 (2014), e115503.

5. Aprahamian M., Higham D.J., Higham N.J.: Matching exponential-based and

resolvent-based centrality measures. J. Complex Netw. 4, no. 2 (2015), 157–

176.

6. Arcagni A., Grassi R., Stefani S., Torriero A.: Higher order assortativity in

complex networks. Eur. J. Oper. Res. 262 (2017), 708–719.

7. Auguie B.: gridExtra: Miscellaneous functions for ’Grid’ graphics. R package

version 2.3 (2017). https://CRAN.R-project.org/package=gridExtra.

8. Badham J.M.: Commentary: Measuring the shape of degree distribution.

Netw. Sci. 1, no. 2 (2013), 213–225.

9. Batagelj V., Mrvar A.: Pajek datasets (2006). http://vlado.fmf.uni-lj.si/pub/

networks/data.

10. Benzi M., Klymko C.: Total communicability as a centrality measure. J. Com-

plex Netw. 1 (2013), 124–149.

11. Benzi M., Klymko C.: A matrix analysis of different centrality measures.

arXiv:1312.6722v3 (2014).
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