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1. Introduction

In this work, we present a new approach dealing with weighted pseudo almost

periodic functions with infinite delay and their applications in evolution equations

and partial functional differential equations. Here we use the measure theory

to define an ergodic function and we investigate many interesting properties of

such functions. Weighted pseudo almost periodic functions started recently and

becomes an interesting field in dynamical systems. The study of existence of

almost periodic, asymptotically almost periodic, almost automorphic, asymptoti-

cally almost automorphic and pseudo almost periodic solutions is one of the most

attractive topics in the qualitative theory of differential equations due both to

its mathematical interest and applications in physics, mathematical biology, and

control theory, among other areas. Most of these problems need to be studied

in abstract spaces and the operators are defined over non-dense domains. In this

context the literature is very scarce (see [1, 2, 4] and the bibliography therein).

In this work, we study the existence and uniqueness of (µ, ν)-pseudo almost

periodic and automorphic solutions of infinite class for the following neutral partial

functional differential equation

u′(t) = Au(t) + L(ut) + f(t) for t ∈ R, (1)

where A is a linear operator on a Banach space X satisfying the Hille-Yosida

condition, that is, there exist M0 > 1 and ω ∈ R such that ]ω,+∞[⊂ ρ(A) and

|R(λ,A)n| 6 M0

(λ− ω)n
for n ∈ N and λ > ω,

where ρ(A) is the resolvent set of A and R(λ,A) = (λ I − A)−1 for λ ∈ ρ(A). In

sequel, without lost of generality, we suppose that M0 = 1. The phase space B
is a normed linear space of functions mapping ]−∞, 0] into X satisfying axioms

which will be described in the sequel, for every t > 0, the history ut ∈ B is defined

by

ut(θ) = u(t+ θ) for θ ∈ ]−∞, 0],

f : B → X is a continuous function and L is a bounded linear operator from B
into X . In the literature devoted to equations with finite delay, the state space is

the space of all continuous functions on [−r, 0], r > 0, endowed with the uniform

norm topology.
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When the delay is finite some recent contributions concerning pseudo almost

periodic solutions for abstract differential equations similar to equation (1) have

been made. For example in [2] the authors have shown that if the inhomogeneous

term f depends only on variable t and it is a pseudo almost periodic function,

then equation (1) has a unique pseudo almost periodic solution. In [4] the authors

have proven that if f : R × X0 → X is a suitable continuous function, where

X0 = D(A), the problem

x′(t) = Ax(t) + f(t, x(t)), t ∈ R

has a unique pseudo almost periodic solution, while in [1] the authors have treated

the existence of almost periodic solutions for a class of partial neutral functional

differential equations defined by a linear operator of Hille-Yosida type with non-

dense domain. In [3], the authors studied the existence and uniqueness of pseudo

almost periodic solutions for a first-order abstract functional differential equation

with a linear part dominated by a Hille-Yosida type operator with a non-dense

domain.

In [9], the authors introduce some new classes of functions called weighted

pseudo-almost periodic functions, which implement in a natural fashion the clas-

sical pseudo-almost periodic functions due to Zhang [15–17]. Properties of these

weighted pseudo-almost periodic functions are discussed, including a composition

result for weighted pseudo-almost periodic functions. The results obtained are

subsequently utilized to study the existence and uniqueness of a weighted pseudo-

almost periodic solution to the heat equation with Dirichlet conditions.

In [6], the authors present new approach to study weighted pseudo almost peri-

odic functions using the measure theory. They present a new concept of weighted

ergodic functions which is more general than the classical one. Then they establish

many interesting results on the functional space of such functions like complete-

ness and composition theorems. The theory of their work generalizes the classical

results on weighted pseudo almost periodic functions. More details can be found

in book [10] where the authors give basic definitions and facts, concerning the

subject discussed in the current paper.

The aim of this work is to prove the existence of (µ, ν)-pseudo almost periodic

and automorphic solutions of equation (1) when the delay is distributed on ]−∞, 0].

Our approach is based on the spectral decomposition of the phase space developed

in [3] and a new approach developped in [6].

This work is organised as follow, in Section 2 we recall some prelimary results

on spectral decomposition. In Section 3, we recall some prelimary results on
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(µ, ν)-pseudo almost periodic functions and neutral partial functional differential

equations that will be used in this work. In Section 4, we give some properties of

(µ, ν)-pseudo almost periodic functions of infinite class. In Section 5, we discuss

the main result of this paper. Using the strict contraction principle we show the

existence and uniqueness of (µ, ν)-pseudo almost periodic solution of infinite class

for equation (1). Section 6 is devoted to some applications arising in population

dynamics.

2. Variation of constants formula and spectral

decomposition

In this work, we assume that the state space (B, | · |B) is a normed linear space

of functions mapping ]−∞, 0] into X . In what follows, we give some examples of

normed linear space (B, | · |B).

Example 1. B = BC, where BC is the space of bounded continuous functions

defined from ]−∞, 0] to X , with the the following norm

|ϕ|B = sup
θ60

|ϕ(θ)| for all ϕ ∈ B.

Example 2. B = Cγ , γ > 0, where

Cγ = {ϕ ∈ C(]−∞, 0];X) : lim
θ→−∞

eγθ ϕ(θ) exist in X}

with the the following norm

|ϕ|γ = sup
θ60

∣∣eγθ ϕ(θ)
∣∣.

We assume that B satisfies the following fundamental axioms:

(A1) There exist a positive constant H and functions K(·),M(·) : R+ → R+, with

K continuous and M locally bounded, such that for any σ < 0 and a > 0, if

u : ]−∞, a] → X , uσ ∈ B, and u(·) is continuous on [σ, σ + a], then for every

t ∈ [σ, σ + a] the following conditions hold

(i) ut ∈ B,
(ii) |u(t)| 6 H |ut|B, which is equivalent to |ϕ(0)| 6 H |ϕ|B for every ϕ ∈ B,
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(iii) |ut|B 6 K(t− σ) sup
σ6s6t

|u(s)|+M(t− σ)|uσ|B.

(A2) For the function u(·) in (A1), t 7→ ut is a B-valued continuous function for

t ∈ [σ, σ + a].

(B) The space B is a Banach space.

In the whole of this work, we suppose that B satisfies axioms (A1), (A2)

and (B). We also assume that:

(C1) If (ϕn)n>0 is a sequence in B such that ϕn → 0 in B as n → +∞, then for

all θ 6 0, (ϕn(θ))n>0 converges to 0 in X .

Let C(]−∞, 0], X) be the space of continuous functions from ]−∞, 0] into X . We

suppose the following assumptions:

(C2) B ⊂ C(]−∞, 0], X).

(C3) There exists λ0 ∈ R such that, for all λ ∈ C with Reλ > λ0 and x ∈ X we

have eλ.x ∈ B, where (eλ.x)(θ) = eλθx for θ ∈ ]−∞, 0] and x ∈ X and

K0 = sup
Reλ>λ0, x∈X

x 6=0

|eλ.x|B
|x| <∞.

To equation (1), we associate the following initial value problem





d

dt
ut = Aut + L(ut) + f(t) for t > 0,

u0 = ϕ ∈ B,
(2)

where f : R+ → X is a continuous function.

Let us introduce the part A0 of the operator A in D(A) which defined by

{
D(A0) =

{
x ∈ D(A): Ax ∈ D(A)

}

A0 x = Ax for x ∈ D(A0).

We make the following assumption:

(H0) A satisfies the Hille-Yosida condition.

Lemma 3. [1] A0 generates a strongly continuous semigroup (T0(t))t>0 on D(A).



20 D. Votsia, I. Zabsonre

The phase space BA of equation (2) is defined by

BA = {ϕ ∈ B: ϕ(0) ∈ D(A)}.

For each t > 0, we define the linear operator U(t) on BA by

U(t) = vt(·, ϕ)

where vt(·, ϕ) is the solution of the following homogeneous equation





d

dt
vt = Avt + L(vt) for t > 0,

v0 = ϕ ∈ B.

Proposition 4. [3] (U(t))t>0 is a strongly continuous semigroup of linear opera-

tors on BA. Moreover, (U(t))t>0 satisfies, for t > 0 and θ ∈ ]−∞, 0], the following

translation property

(
U(t)ϕ

)
(θ) =

{ (
U(t+ θ)ϕ

)
(0) for t+ θ > 0,

ϕ(t+ θ) for t+ θ 6 0.

Theorem 5. [3] Assume that B satisfies (A1), (A2), (B), (C1) and (C2). Then

AU defined on BA by





D(AU ) =
{
ϕ ∈ C1(]−∞, 0];X) ∩ BA: ϕ

′ ∈ BA, ϕ(0) ∈ D(A)

and ϕ′(0) = Aϕ(0) + L(ϕ)
}

AUϕ = ϕ′ for ϕ ∈ D(AU ).

is the infinitesimal generator of the semigroup (U(t))t>0 on BA.

Let 〈X0〉 be the space defined by

〈X0〉 = {X0 x: x ∈ X}

where the function X0 x is defined by

(X0 x)(θ) =

{
0 if θ ∈ ]−∞, 0[ ,

x if θ = 0.
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The space BA ⊕ 〈X0〉 equipped with the norm |φ+X0 c|B = |φ|B + |c| for (φ, c) ∈
BA ×X is a Banach space and consider the extension AU defined on BA ⊕ 〈X0〉
by 




D(ÃU ) =
{
ϕ ∈ C1(]−∞, 0];X): ϕ ∈ D(A) and ϕ′ ∈ D(A)

}

ÃUϕ = ϕ′ +X0

(
Aϕ+ L(ϕ)− ϕ′

)
.

Lemma 6. [3] Assume that B satisfies (A1), (A2), (B), (C1), (C2) and (C3).

Then, ÃU satisfies the Hille-Yosida condition on BA ⊕ 〈X0〉.

Now, we can state the variation of constants formula associated to equation (2).

Let C00 be the space of X-valued continuous function on ]−∞, 0] with compact

support. We assume that:

(D) If (ϕn)n>0 is a Cauchy sequence in B and converges compactly to ϕ on

]−∞, 0], then ϕ ∈ B and |ϕn − ϕ| → 0.

Theorem 7. [3] Assume that (C1), (C2) and (C3) hold. Then the integral

solution u of equation (2) is given by the following variation of constants formula

ut = U(t)ϕ + lim
λ→+∞

∫ t

0

U(t− s) B̃λ

(
X0 f(s)

)
ds for t > 0,

where B̃λ = λ (λ I − ÃU )
−1.

Let (S0(t))t>0 be the strongly continuous semigroup defined on the subspace

B0 =
{
ϕ ∈ B: ϕ(0) = 0

}

by
(
S0(t)φ

)
(θ) =

{
φ(t + θ) if t+ θ 6 0,

0 if t+ θ > 0.

Definition 8. Assume that the space B satisfies axioms (B) and (D), B is said

to be a fading memory space, if for all ϕ ∈ B0,

∣∣S0(t)
∣∣ → 0 as t→ +∞ in B0.

Moreover, B is said to be a uniform fading memory space, if

∣∣S0(t)
∣∣ → 0 as t→ +∞.
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Lemma 9. If B is a uniform fading memory space, then we can choose the func-

tion K constant and the function M such that M(t) → 0 as t→ +∞.

Proposition 10. If the phase space B is a fading memory space, then the space

BC(]−∞, 0], X) of bounded continuous X-valued functions on ]−∞, 0] endowed

with the uniform norm topology, is continuous embedding in B. In particular B
satisfies (C3), for λ0 > 0.

For the sequel, we make the following assumption:

(H1) T0(t) is compact on D(A) for every t > 0.

(H2) B is a uniform fading memory space.

Theorem 11. [3] Assume that B satisfies (A1), (A2), (B), (C1) and (H0), (H1),

(H2) hold. Then the semigroup (U(t))t>0 is decomposed on BA as follows

U(t) = U1(t) + U2(t) for t > 0,

where (U1(t))t>0 is an exponentially stable semigroup on BA, which means that

there are positive constants α0 and N0 such that

∣∣U1(t)
∣∣ 6 N0 e

−α0t |ϕ| for t > 0 and ϕ ∈ BA

and (U2(t))t>0 is compact for for every t > 0.

We have the following result on the spectral decomposition of the phase

space BA.

Theorem 12. [3] Assume that B satisfies (A1), (A2), (B), (C1), and (H0),

(H1), (H2) hold. Then the space BA is decomposed as a direct sum

BA = S ⊕ U

of two U(t) invariant closed subspaces S and U such that the restricted semigroup

on U is a group and there exist positive constants M and ω such that

∣∣U(t)ϕ
∣∣ 6M e−ωt

∣∣ϕ| for t > 0 and ϕ ∈ S,
∣∣U(t)ϕ

∣∣ 6M eωt
∣∣ϕ| for t 6 0 and ϕ ∈ U,

where S and U are called the stable and unstable space respectively.
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3. (µ, ν)-Pseudo almost periodic functions

In this section, we recall some properties about µ-pseudo almost periodic

functions. The notion of µ-pseudo almost periodicity is a generalization of the

pseudo almost periodicity introduced by Zhang [15–17]; it is also a generalization

of weighted pseudo almost periodicity given by Diagana [9]. Let BC(R;X) be

the space of all bounded and continuous function from R to X equipped with the

uniform topology norm.

We denote by N the Lebesgue σ-field of R and by M the set of all positive

measures µ on N satisfying µ(R) = +∞ and µ([a, b]) <∞, for all a, b ∈ R, a 6 b.

Definition 13. A bounded continuous function φ : R → X is called almost pe-

riodic if for each ε > 0, there exists a relatively dense subset of R denote by

K(ε, φ,X) such that |φ(t+ τ) − φ(t)| < ε for all (t, τ) ∈ R×K(ε, φ,X).

We denote by AP (R;X), the space of all such functions.

Definition 14. Let X1 and X2 be two Banach spaces. A bounded continuous

function φ : R×X1 → X2 is called almost periodic in t ∈ R uniformly in x ∈ X1

if for each ε > 0 and all compact K ⊂ X1, there exists a relatively dense subset of

R denote by K(ε, φ,K) such that |φ(t + τ, x) − φ(t, x)| < ε for all t ∈ R, x ∈ K,

τ ∈ K(ε, φ,K).

We denote by AP (R×X1;X2), the space of all such functions.

The next lemma is also a characterization of almost periodic functions.

Lemma 15. A function φ ∈ C(R, X) is almost periodic if and only if the space of

functions {φτ : τ ∈ R}, where (φτ )(t) = φ(t+τ), is relatively compact in BC(R;X).

In the sequel, we recall some preliminary results concerning the (µ, ν)-pseudo

almost periodic functions with infinite delay.

E(R;X,µ, ν) stands for the space of functions

E(R;X,µ, ν) =
{
u ∈ BC(R;X): lim

τ→+∞

1

ν([−τ, τ ])

∫ +τ

−τ

|u(t)| dµ(t) = 0
}
.
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To study delayed differential equations for which the history belong to B, we need
to introduce the space

E(R;X,µ, ν,∞) =

=
{
u ∈ BC(R;X): lim

τ→+∞

1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈ ]−∞,t]

|u(θ)|
)
dµ(t) = 0

}
.

In addition to above-mentioned space, we consider the following spaces

E(R×X1, X2, µ, ν) =

=
{
u ∈ BC(R×X1;X2): lim

τ→+∞

1

ν([−τ, τ ])

∫ +τ

−τ

|u(t, x)|X2
dµ(t) = 0

}
,

E(R×X1;X2, µ, ν,∞) =
{
u ∈ BC(R×X1;X2):

lim
τ→+∞

1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈ ]−∞,t]

|u(θ, x)|X2

)
dµ(t) = 0

}
,

where in both cases the limit (as τ → +∞) is uniform in compact subset of X1.

In view of previous definitions, it is clear that the spaces E(R;X,µ, ν,∞) and

E(R × X1;X2, µ, ν,∞) are continuously embedded in E(R;X,µ, ν) and E(R ×
X1, X2, µ, ν), respectively. On the other hand, one can observe that a ρ-weighted

pseudo almost periodic functions is µ-pseudo almost periodic, where the measure

µ is absolutely continuous with respect to the Lebesgue measure and its Radon-

Nikodym derivative is ρ:

dµ(t) = ρ(t) dt

and ν is the usual Lebesgue measure on R, i.e. ν([−τ, τ ]) = 2τ for all τ > 0.

Example 16. [6] Let ρ be a nonnegative N -measurable function. Denote by µ

the positive measure defined by

µ(A) =

∫

A

ρ(t) dt for A ∈ N , (3)

where dt denotes the Lebesgue measure on R. The function ρ which occurs in

equation (3) is called the Radon-Nikodym derivative of µ with respect to the

Lebesgue measure on R.
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Definition 17. Let µ, ν ∈ M. A bounded continuous function φ : R → X is

called (µ, ν)-pseudo almost periodic if φ = φ1 + φ2, where φ1 ∈ AP (R, X) and

φ2 ∈ E(R;X,µ, ν).

We denote by PAP (R;X,µ, ν) the space of all such functions.

Definition 18. Let µ, ν ∈ M and X1 and X2 be two Banach spaces. A bounded

continuous function φ : R × X1 → X2 is called uniformly (µ, ν)-pseudo almost

periodic if φ = φ1+φ2, where φ1 ∈ AP (R×X1;X2) and φ2 ∈ E(R×X1, X2, µ, ν).

We denote by PAP (R×X1;X2, µ, ν), the space of all such functions.

Definition 19. µ, ν ∈ M. A bounded continuous function φ : R → X is called

(µ, ν)-pseudo almost periodic of infinite class if φ = φ1+φ2, where φ1 ∈ AP (R;X)

and φ2 ∈ E(R;X,µ, ν,∞). We denote by PAP (R;X,µ, ν,∞), the space of all such

functions.

Definition 20. µ, ν ∈ M. Let X1 and X2 be two Banach spaces. A bounded

continuous function φ : R × X1 → X2 is called uniformly (µ, ν)-pseudo almost

periodic of infinite class if φ = φ1 + φ2, where φ1 ∈ AP (R × X1;X2) and φ2 ∈
E(R×X1;X2, µ, ν,∞).

We denote by PAP (R×X1;X2, µ, ν,∞), the space of all such functions.

4. Properties of (µ, ν)-pseudo almost periodic

functions of infinite class

From µ, ν ∈ M, we formulate the following hypothese.

(H3) Let µ, ν ∈ M be such that lim sup
τ→+∞

µ([−τ, τ ])
ν([−τ, τ ]) = α <∞.

We have the following result.

Lemma 21. Assume that (H3) holds. The space E(R;X,µ, ν,∞) endowed with

the uniform topology norm is a Banach space.

Proof. We can see that E(R;X,µ, ν,∞) is a vector subspace of BC(R;X). To com-

plete the proof, it is enough to prove that E(R;X,µ, ν,∞) is closed in BC(R;X).
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Let (zn)n be a sequence in E(R;X,µ, ν,∞) such that lim
n→+∞

zn = z uniformly in R.

From ν(R) = +∞, it follows ν([−τ, τ ]) > 0 for τ sufficiently large. Let n0 ∈ N

such that for all n > n0, ‖zn − z‖∞ < ε. Let n > n0, then we have

1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈ ]−∞,t]

|z(θ)|
)
dµ(t) 6

6
1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈ ]−∞,t]

|zn(θ)− z(θ)|
)
dµ(t) +

+
1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈ ]−∞,t]

|zn(θ)|
)
dµ(t) 6

6
1

ν([−τ, τ ])

∫ +τ

−τ

(
sup
t∈R

|zn(t)− z(t)|
)
dµ(t) +

+
1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈ ]−∞,t]

|zn(θ)|
)
dµ(t) 6

6 ‖zn − z‖∞ × µ([−τ, τ ])
ν([−τ, τ ]) +

1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈ ]−∞,t]

|zn(θ)|
)
dµ(t).

We deduce that

lim sup
τ→+∞

1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈ ]−∞,t]

|z(θ)|
)
dµ(t) 6 α ε for any ε > 0.

�

From the definition of PAP (R;X,µ, ν,∞), we deduce the following result.

Proposition 22. µ, ν ∈ M. The space PAP (R;X,µ, ν,∞) endowed with the

uniform topology norm is a Banach space.

Next result is a characterization of (µ, ν)-ergodic functions of infinite class.

Theorem 23. Assume that (H3) holds and let µ, ν ∈ M and I be a bounded

interval (eventually I = ∅). Assume that f ∈ BC(R, X). Then the following

assertions are equivalent:

i) f ∈ E(R, X, µ, ν,∞).

ii) lim
τ→+∞

1

ν([−τ, τ ] \ I)

∫

[−τ,τ ]\I

(
sup

θ∈ ]−∞,t]

|f(θ)|
)
dµ(t) = 0.
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iii) For any ε > 0, lim
τ→+∞

µ
({
t ∈ [−τ, τ ] \ I: sup

θ∈ ]−∞,t]

|f(θ)| > ε
})

ν([−τ, τ ] \ I) = 0.

Proof. The proof is made like the proof of Theorem 2.13 in [6].

i) ⇔ ii) Denote by A = ν(I), B =

∫

I

(
sup

θ∈ ]−∞,t]

|f(θ)|
)
dµ(t). We have A and B ∈

R, since the interval I is bounded and the function f is bounded and continuous.

For τ > 0 such that I ⊂ [−τ, τ ] and ν([−τ, τ ] \ I) > 0, we have

1

ν([−τ, τ ] \ I)

∫

[−τ,τ ]\I

(
sup

θ∈ ]−∞,t]

|f(θ)|
)
dµ(t) =

=
1

ν([−τ, τ ]) −A

[ ∫

[−τ,τ ]

(
sup

θ∈ ]−∞,t]

|f(θ)|
)
dµ(t) −B

]
=

=
ν([−τ, τ ])

ν([−τ, τ ]) −A

[ 1

ν([−r, r])

∫

[−τ,τ ]

(
sup

θ∈ ]−∞,t]

|f(θ)|
)
dµ(t)− B

ν([−τ, τ ])
]
.

From above equalities and the fact that ν(R) = +∞, we deduce that ii) is equiv-

alent to

lim
τ→+∞

1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈ ]−∞,t]

|f(θ)|
)
dµ(t) = 0,

that is i).

iii) ⇒ ii) Denote by Aε
τ and Bε

τ the following sets

Aε
τ =

{
t ∈ [−τ, τ ] \ I: sup

θ∈ ]−∞,t]

|f(θ)| > ε
}

and

Bε
τ =

{
t ∈ [−τ, τ ] \ I: sup

θ∈ ]−∞,t]

|f(θ)| 6 ε
}
.

Assume that iii) holds, that is

lim
τ→+∞

µ(Aε
τ )

ν([−τ, τ ] \ I) = 0. (4)
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From the equality

∫

[−τ,τ ]\I

(
sup

θ∈ ]−∞,t]

|f(θ)|
)
dµ(t) =

=

∫

Aε

τ

(
sup

θ∈ ]−∞,t]

|f(θ)|
)
dµ(t) +

∫

Bε

τ

(
sup

θ∈ ]−∞,t]

|f(θ)|
)
dµ(t),

we deduce that for τ sufficiently large

1

ν([−τ, τ ] \ I)

∫

[−τ,τ ]\I

(
sup

θ∈ ]−∞,t]

|f(θ)|
)
dµ(t) 6

6 ‖f‖∞
µ(Aε

τ )

ν([−τ, τ ] \ I) + ε
µ(Bε

τ )

ν([−τ, τ ] \ I) .

By using (H3), it follows that

lim
τ→+∞

1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈ ]−∞,t]

|f(θ)|
)
dµ(t) 6 α ε for any ε > 0,

consequently ii) holds.

ii) ⇒ iii) Assume that ii) holds. From the following inequality

∫

[−τ,τ ]\I

(
sup

θ∈ ]−∞,t]

|f(θ)|
)
dµ(t) >

∫

Aε

τ

(
sup

θ∈ ]−∞,t]

|f(θ)|
)
dµ(t)

1

ν([−τ, τ ] \ I)

∫

[−τ,τ ]\I

(
sup

θ∈ ]−∞,t]

|f(θ)|
)
dµ(t) > ε

µ(Aε
τ )

ν([−τ, τ ] \ I)
1

ε ν([−τ, τ ] \ I)

∫

[−τ,τ ]\I

(
sup

θ∈ ]−∞,t]

|f(θ)|
)
dµ(t) >

µ(Aε
τ )

ν([−τ, τ ] \ I) ,

for τ sufficiently large, we obtain equation (4), that is iii). �

For µ ∈ M, we formulate the following hypotheses.

(H4) For all a, b and c ∈ R, such that 0 6 a < b 6 c, there exist δ0 and α0 > 0

such that

|δ| > δ0 =⇒ µ(a+ δ, b+ δ) > α0 µ(δ, c+ δ).

(H5) For all τ ∈ R, there exist β > 0 and a bounded interval I such that

µ({a+ τ : a ∈ A}) 6 β µ(A) when A ∈ N satisfies A ∩ I = ∅.
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We have the following results due to [6].

Lemma 24. [6] Hypothesis (H5) implies (H4).

Proposition 25. [6] µ, ν ∈ M satisfy (H4) and f ∈ PAP (R;X,µ, ν) be such

that

f = g + h

where g ∈ AP (R, X) and h ∈ E(R, X, µ, ν). Then

{g(t), t ∈ R} ⊂ {f(t), t ∈ R} (the closure of the range of f).

Corollary 26. [6] Assume that (H4) holds. Then the decomposition of a (µ, ν)-

pseudo almost periodic function in the form f = g + φ where g ∈ AP (R;X) and

φ ∈ E(R;X,µ, ν), is unique.

The following proposition is a consequence of Proposition 25.

Proposition 27. Let µ, ν ∈ M. Assume (H4) holds. Then the decomposition of

a (µ, ν)-pseudo-almost periodic function φ = φ1 + φ2, where φ1 ∈ AP (R;X) and

φ2 ∈ E(R;X,µ, ν,∞), is unique.

Proof. In fact, since as a consequence of Corollary 26, the decomposition of a (µ, ν)-

pseudo-almost periodic function φ = φ1 + φ2, where φ1 ∈ AP (R;X) and φ2 ∈
E(R;X,µ, ν), is unique. Since PAP (R;X,µ, ν,∞) ⊂ PAP (R;X,µ, ν), we get the

desired result. �

Definition 28. Let µ1, µ2 ∈ M. We say that µ1 is equivalent to µ2, denoting

this as µ1 ∼ µ2 if there exist constants α and β > 0 and a bounded interval I

(eventually I = ∅) such that

αµ1(A) 6 µ2(A) 6 β µ1(A), when A ∈ N satisfies A ∩ I = ∅.

From [6] ∼ is a binary equivalence relation on M. The equivalence class of

a given measure µ ∈ M will then be denoted by

cl(µ) =
{
̟ ∈ M: µ ∼ ̟

}
.
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Theorem 29. Let µ1, µ2, ν1, ν2 ∈ M. If µ1 ∼ µ2 and ν1 ∼ ν2, then

PAP (R;X,µ1, ν1,∞) = PAP (R;X,µ2, ν2,∞).

Proof. Since µ1 ∼ µ2 and ν1 ∼ ν2 there exist some constants α1, α2, β1, β2 > 0 and

a bounded interval I (eventually I = ∅) such that α1 µ1(A) 6 µ2(A) 6 β1 µ1(A)

and α2 ν1(A) 6 ν2(A) 6 β2 ν1(A) for each A ∈ N satisfies A ∩ I = ∅, i.e.

1

β2 ν1(A)
6

1

ν2(A)
6

1

α2 ν1(A)
.

Since µ1 ∼ µ2 and N is the Lebesgue σ-field, for τ sufficiently large, we obtain

α1 µ1

({
t ∈ [−τ, τ ] \ I: sup

θ∈ ]−∞,t]

|f(θ)| > ε
})

β2 ν1([−τ, τ ] \ I)
6

6

µ2

({
t ∈ [−τ, τ ] \ I: sup

θ∈ ]−∞,t]

|f(θ)| > ε
})

ν2([−τ, τ ] \ I)
6

6

β1 µ1

({
t ∈ [−τ, τ ] \ I: sup

θ∈ ]−∞,t]

|f(θ)| > ε
})

α2 ν1([−τ, τ ] \ I)
.

By using Theorem 23 we deduce that E(R, X, µ1, ν1,∞) = E(R, X, µ2, ν2,∞).

From the definition of a (µ, ν)-pseudo almost periodic function, we deduce that

PAP (R;X,µ1, ν1,∞) = PAP (R;X,µ2, ν2,∞). �

For µ, ν ∈ M we denote

cl(µ, ν) = {̟1, ̟2 ∈ M: µ ∼ ̟2 and ν ∼ ̟2}.

Proposition 30. [8] Let µ, ν ∈ M satisfy (H5). Then PAP (R, X, µ, ν) is in-

variant by translation, that is f ∈ PAP (R, X, µ, ν) implies fα ∈ PAP (R, X, µ, ν)

for all α ∈ R.

In what follows, we prove some preliminary results concerning the composition

of (µ, ν)-pseudo almost periodic functions of infinite class.
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Theorem 31. Let µ, ν ∈ M, φ ∈ PAP (R×X1;X2, µ, ν,∞) and h ∈ PAP (R;X1,

µ, ν,∞). Assume that there exists a function Lφ : R → [0,+∞[ satisfies

∣∣φ(t, x1)− φ(t, x2)
∣∣ 6 Lφ(t)|x1 − x2| for t ∈ R and for x1, x2 ∈ X1. (5)

If
1

ν([−τ, τ ])

∫ τ

−τ

(
sup

θ∈ ]−∞,t]

Lφ(θ)
)
dµ(t) <∞ (6)

and

lim
τ→+∞

1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈ ]−∞,t]

Lφ(θ)
)
ξ(t) dµ(t) = 0 (7)

for each ξ ∈ E(R, µ, ν) and for almost τ > 0, then the function t → φ(t, h(t))

belongs to PAP (R;X2, µ, ν,∞).

Proof. Assume that φ = φ1 + φ2, h = h1 + h2 where φ1 ∈ AP (R × X1;X2),

φ2 ∈ E(R×X1;X2, µ, ν,∞) and h1 ∈ AP (R;X1), h2 ∈ E(R;X1, µ, ν,∞). Consider

the following decomposition

φ(t, h(t)) = φ1(t, h1(t)) +
[
φ(t, h(t)) − φ(t, h1(t))

]
+ φ2(t, h1(t)).

From [7, 14], φ1(·, h1(·)) ∈ AP (R;X2). It remains to prove that both φ(·, h(·)) −
φ(·, h1(·)) and φ2(·, h1(·)) belong to E(R;X2, µ, ν,∞).

Using equation (5), it follows that

µ
({
t ∈ [−τ, τ ]: sup

θ∈ ]−∞,t]

|φ(θ, h(θ)) − φ(θ, h1(θ))| > ε
})

ν([−τ, τ ]) 6

6

µ
({
t ∈ [−τ, τ ]: sup

θ∈ ]−∞,t]

(Lφ(θ)|h2(θ)|) > ε
})

ν([−τ, τ ]) 6

6

µ
({
t ∈ [−τ, τ ]:

(
sup

θ∈ ]−∞,t]

Lφ(θ)
)(

sup
θ∈ ]−∞,t]

|h2(θ)|
)
> ε

})

ν([−τ, τ ]) .

Since h2 is (µ, ν)-ergodic of infinite class, Theorem 23 and equations (6)–(7) yield

that for the above-mentioned ε, we have

lim
τ→+∞

µ
({
t ∈ [−τ, τ ]:

(
sup

θ∈ ]−∞,t]

Lφ(θ)
)(

sup
θ∈ ]−∞,t]

|h2(θ)|
)
> ε

})

ν([−τ, τ ]) = 0,
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and then we obtain

lim
τ→+∞

µ
({
t ∈ [−τ, τ ]: sup

θ∈ ]−∞,t]

|φ(θ, h(θ)) − φ(θ, h1(θ))| > ε
})

ν([−τ, τ ]) = 0, (8)

By Theorem 23, equation (8) shows that t 7→ φ(t, h(t))−φ(t, h1(t)) is (µ, ν)-ergodic
of infinite class.

Now to complete the proof, it is enough to prove that t 7→ φ2(t, h(t)) is (µ, ν)-

ergodic of infinite class. Since φ2 is uniformly continuous on the compact set

K = {h1(t): t ∈ R} with respect to the second variable x, we deduce that for

given ε > 0, there exists δ > 0 such that, for all t ∈ R, ξ1 and ξ2 ∈ K, one has

‖ξ1 − ξ2‖ 6 δ =⇒ ‖φ2(t, ξ1(t))− φ2(t, ξ2(t))‖ 6 ε.

Therefore, there exist n(ε) ∈ N and {zi}n(ε)i=1 ⊂ K, such that

K ⊂
n(ε)⋃

i=1

Bδ(zi, δ)

and then

‖φ2(t, h1(t))‖ 6 ε+

n(ε)∑

i=1

‖φ2(t, zi)‖.

Since

∀ i ∈ {1, . . . , n(ε)} lim
τ→+∞

1

ν([−τ, τ ])

∫ τ

−τ

(
sup

θ∈ ]−∞,t]

|φ2(θ, zi)|
)
dµ(t) = 0,

we deduce that

∀ ε > 0 lim sup
τ→+∞

1

ν([−τ, τ ])

∫ τ

−τ

(
sup

θ∈ ]−∞,t]

|φ2(θ, h1(t))|
)
dµ(t) 6 ε,

which implies

lim
τ→+∞

1

ν([−τ, τ ])

∫ τ

−τ

(
sup

θ∈ ]−∞,t]

|φ2(θ, h1(t))|
)
dµ(t) = 0.

Consequently t 7→ φ2(t, h(t)) is (µ, ν)-ergodic of infinite class. �
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We have the following result.

Theorem 32. Assume that (H4) holds. Let µ, ν ∈ M and φ ∈ PAP (R;X,µ, ν,

∞), then the function t→ φt belongs to PAP (B;X,µ, ν,∞).

Proof. Assume that φ = g + h where g ∈ AP (R;X) and h ∈ E(R;X,µ, ν,∞).

Then we can see that, φt = gt + ht and gt is almost periodic. On the other hand,

we have

1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈ ]−∞,t]

[
sup

ξ∈ ]−∞,0]

|h(θ + ξ)|
])
dµ(t) 6

6
1

ν([−τ, τ ])

∫ +τ

−τ

(
sup

θ∈ ]−∞,t]

|h(θ)|
)
dµ(t),

which shows that φt belongs to PAP (B, µ, ν,∞). Thus, we obtain the desired

result. �

5. (µ, ν)-Pseudo almost periodic solutions of infinite

class

In what follows, we will be looking at the existence of bounded integral solu-

tions of infinite class of equation (1).

Theorem 33. [3] Assume that B satisfies (A1), (A2), (B), (C1), (C2) and (H1),

holds. If f ∈ BC(R;X), then there exists a unique bounded solution u of equation

(1) on R, given by

ut = lim
λ→+∞

∫ t

−∞

Us(t− s)Πs
(
B̃λX0 f(s)

)
ds+

+ lim
λ→+∞

∫ t

+∞

Uu(t− s)Πu
(
B̃λX0 f(s)

)
ds for t ∈ R,

where Πs and Πu are the projections of BA onto the stable and unstable subspaces,

respectively.
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Proposition 34. [12] Let h ∈ AP (R;X) and Γ be the mapping defined for t ∈ R

by

Γh(t) =
[

lim
λ→+∞

∫ t

−∞

Us(t− s)Πs
(
B̃λX0 h(s)

)
ds+

+ lim
λ→+∞

∫ t

+∞

Uu(t− s)Πu
(
B̃λX0 h(s)

)
ds
]
(0).

Then Γh ∈ AP (R, X).

Theorem 35. Let µ, ν ∈ M satisfy (H4) and g ∈ E(R;X,µ, ν,∞). Then Γg ∈
E(R;X,µ, ν,∞).

Proof. In fact, for τ > 0 we get

∫ τ

−τ

(
sup

θ∈ ]−∞,t]

|Γh(θ)| ds
)
dµ(t) 6

6M M̃

∫ τ

−τ

(
sup

θ∈ ]−∞,t]

∫ θ

−∞

e−ω(θ−s) |Πs| |g(s)| ds
)
dµ(t) +

+M M̃

∫ τ

−τ

(
sup

θ∈ ]−∞,t]

∫ +∞

θ

eω(θ−s) |Πu| |g(s)| ds
)
dµ(t) 6

6M M̃ |Πs|
∫ τ

−τ

sup
s∈ ]−∞,t]

|g(s)|
(

sup
θ∈ ]−∞,t]

∫ θ

−∞

e−ω(θ−s) ds
)
dµ(t) +

+M M̃ |Πu|
∫ τ

−τ

sup
s∈ ]−∞,−θ]

|g(s)|
(

sup
θ∈ ]−∞,t]

∫ +∞

θ

eω(θ−s) ds
)
dµ(t) 6

6
M M̃ |Πs|+M M̃ |Πu|

ω

∫ τ

−τ

(
sup

s∈ ]−∞,t]

|g(s)|
)
dµ(t).

Consequently

1

ν[−τ, τ ]

∫ τ

−τ

(
sup

θ∈ ]−∞,t]

(Γg)(θ)
)
dµ(t) 6

6
M M̃ |Πs|+M M̃ |Πu|

ω

( 1

ν[−τ, τ ]

∫ τ

−τ

(
sup

s∈ ]−∞,t]

|g(s)|
)
dµ(t)

)
,

which converges to zero as τ → +∞. Thus, we obtain the desired result. �
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For the existence of (µ, ν)-pseudo almost periodic solution of infinite class, we

make the following assumption.

(H6) f : R → X is in cl(µ, ν)-pseudo almost periodic of infinite class.

Proposition 36. Assume that B satisfies (A1), (A2), (B), (C1), (C2) and (H0),

(H1), (H4) and (H6) hold. Then equation (1) has a unique cl(µ, ν)-pseudo almost

periodic solution of infinite class.

Proof. Since f is a (µ, ν)-pseudo almost periodic function, f has a decomposition

f = f1 + f2, where f1 ∈ AP (R;X) and f2 ∈ E(R;X,µ, ν,∞). Using Proposition

33, Proposition 34 and Theorem 35, we get the desired result. �

Our next objective is to show the existence of (µ, ν)-pseudo almost periodic

solutions of infinite class for the following problem

u′(t) = Au(t) + L(ut) + f(t, ut) for t ∈ R, (9)

where f : R× B → X is continuous.

For the sequel, we make the following assumption.

(H7) Let µ, ν ∈ M and f : R×B → X cl(µ, ν)-pseudo almost periodic of infinite

class such that there exists a continuous function Lf : R → [0,+∞[ such

that

∣∣f(t, ϕ1)− f(t, ϕ2)
∣∣ 6 Lf(t)|ϕ1 − ϕ2|B for all t ∈ R and ϕ1, ϕ2 ∈ B

and Lf satisfies inequality (6).

Theorem 37. Assume that B is a uniform fading memory space and (A1), (A2),

(C1), (C2), (H0), (H1), (H2), (H3), (H5) and (H7) hold. If

M M̃ C sup
t∈R

(
|Πs|

∫ t

−∞

e−ω(t−s) Lf (s) ds+ |Πu|
∫ +∞

t

eω(t−s) Lf (s) ds
)
<

1

2
,

where C = max
{
sup
t∈R

|M(t)|, sup
t∈R

|K(t)|
}
, then equation (9) has a unique cl(µ, ν)-

pseudo almost periodic solution of infinite class.

Proof. Let x be a function in PAP (R;X,µ, ν,∞), from Theorem 32 the function

t → xt belongs to PAP (B, µ,∞). Hence Theorem 31 implies that the function
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g(·) := f(·, x·) is in PAP (R;X,µ,∞). Consider the mapping

H : PAP (R;X,µ, ν,∞) → PAP (R;X,µ, ν,∞)

defined for t ∈ R by

(Hx)(t) =
[

lim
λ→+∞

∫ t

−∞

Us(t− s)Πs
(
B̃λX0 f(s, xs)

)
ds+

+ lim
λ→+∞

∫ t

+∞

Uu(t− s)Πu
(
B̃λX0 f(s, xs)

)
ds
]
(0).

From Proposition 33, Proposition 34 and taking into account Theorem 35, it suf-

fices now to show that the operator H has a unique fixed point in PAP (R;X,µ, ν,

∞). Since B is a uniform fading memory space, by the Lemma 9, we can choose

the function K constant and the function M such that M(t) → 0 as t → +∞.

Let C = max
{
sup
t∈R

|M(t)|, sup
t∈R

|K(t)|
}
and x1, x2 ∈ PAP (R;X,µ, ν,∞), then we

have

∣∣Hx1(t)−Hx2(t)
∣∣ 6

6

∣∣∣ lim
λ→+∞

∫ t

−∞

Us(t− s)Πs
(
B̃λX0

[
f(s, x1s)− f(s, x1s)

])
ds
∣∣∣ +

+
∣∣∣ lim
λ→+∞

∫ t

+∞

Us(t− s)Πu
(
B̃λX0

[
f(s, x2s)− f(s, x2s)

])
ds
∣∣∣ 6

6M M̃
(
|Πs|

∫ t

−∞

e−ω(t−s) Lf (s) |x1s − x2s|B ds+

+ |Πu|
∫ +∞

t

eω(t−s) Lf (s) |x1s − x2s|B ds
)
6

6M M̃
[
|Πs|

∫ t

−∞

e−ω(t−s) Lf (s)
(
K(s) sup

06ξ6s

|x1(ξ)− x2(ξ)|+

+M(s) |x10 − x20 |B
)
ds+

+ |Πu|
∫ +∞

t

eω(t−s) Lf (s)
(
K(s) sup

06ξ6s

|x1(ξ) − x2(ξ)| +M(s) |x10 − x20 |B
)
ds
]
,
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which implies

∣∣Hx1(t)−Hx2(t)
∣∣ 6 2M M̃ C sup

t∈R

(
|Πs|

∫ t

−∞

e−ω(t−s) Lf (s) ds+

+ |Πu|
∫ +∞

t

eω(t−s) Lf (s) ds
)
|x1 − x2|.

This means that H is a strict contraction. Thus by Banach’s fixed point theorem,

H has a unique fixed point u in PAP (R;X,µ, ν,∞). We conclude that equa-

tion (9), has one and only one cl(µ, ν)-pseudo almost periodic solution of infinite

class. �

Proposition 38. Assume that B is a uniform fading memory space and (A1),

(A2), (C1), (C2), (H0), (H1), (H2), (H3) and, (H5) and f is lipschitz continuous

with respect the second argument. If

Lip(f) <
ω

2M M̃ C (|Πs|+ |Πu|)

then equation (9) has a unique cl(µ, ν)-pseudo almost periodic solution of infinite

class, where Lip(f) is the lipschitz constant of f .

Proof. Let us pose k = Lip(f), we have

∣∣Hx1(t)−Hx2(t)
∣∣ 6

6 2M M̃ C sup
t∈R

(
|Πs|

∫ t

−∞

e−ω(t−s) k ds+ |Πu|
∫ +∞

t

eω(t−s) k ds
)
|x1 − x2| 6

6
2 kM M̃ C (|Πs|+ |Πu|)

ω
|x1 − x2|.

Consequently H is a strict contraction if k <
ω

2M M̃ C (|Πs|+ |Πu|)
. �
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6. Application

For illustration, we propose to study the existence of solutions for the following

model

∂

∂t
z(t, x) =

∂2

∂x2
z(t, x) +

∫ 0

−∞

G(θ) z(t+ θ, x) dθ +
(
sin t+ sin(

√
2t)

)
+

+ arctan(t) +

∫ 0

−∞

h
(
θ, z(t+ θ, x)

)
dθ for t ∈ R and x ∈ [0, π] (10)

with conditions

z(t, 0) = z(t, π) = 0 for t ∈ R, (11)

where G : ]−∞, 0] → R is a continuous function and h : ]−∞, 0] × R → R is

continuous and lipschitzian with respect to the second argument. To rewrite

equation (10) in the abstract form, we introduce the space X = C0([0, π];R) of

continuous function from [0, π] to R+ equipped with the uniform norm topology.

Let A : D(A) → X be defined by

{
D(A) =

{
y ∈ X ∩ C2([0, π],R): y′′ ∈ X

}

Ay = y′′.

Then A satisfied the Hille-Yosida condition in X . Moreover the part A0 of A in

D(A) is the generator of strongly continuous compact semigroup (T0(t))t>0 on

D(A). It follows that (H0) and (H1) are satisfied.

The phase space B = Cγ , γ > 0 where

Cγ =
{
ϕ ∈ C(]−∞, 0];X): lim

θ→−∞
eγθ ϕ(θ) exist in X

}

with the the following norm

|ϕ|γ = sup
θ60

|eγθ ϕ(θ)|.

This space is a uniform fading memory space, that is (H2), and it satisfies (C1),

(C2).
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We define f : R× C → X and L : C → X as follows

f(t, ϕ)(x) = sin t+ sin(
√
2t) + arctan(t) +

+

∫ 0

−∞

h
(
θ, ϕ(θ)(x)

)
dθ for x ∈ [0, π] and t ∈ R,

L(ϕ)(x) =

∫ 0

−∞

G(θ)ϕ(θ)(x) dθ for θ ∈ ]−∞, 0] and x ∈ [0, π].

Let us pose v(t) = z(t, x). Then equation (10) takes the following abstract form

v′(t) = Av(t) + L(vt) + f(t, vt) for t ∈ R. (12)

Consider the measures µ and ν where its Radon-Nikodym derivative are respec-

tively ρ1, ρ2 : R → R defined by

ρ1(t) =

{
1 for t > 0,

et for t 6 0,

and

ρ2(t) = |t| for t ∈ R,

i.e. dµ(t) = ρ1(t) dt and dν(t) = ρ2(t) dt where dt denotes the Lebesgue measure

on R and

µ(A) =

∫

A

ρ1(t) dt for ν(A) =

∫

A

ρ2(t) dt for A ∈ B.

From [6] µ, ν ∈ M, µ, ν satisfy Hypothesis (H5) and sin t+sin(
√
2 t)+

π

2
is almost

periodic.

We have

lim sup
τ→+∞

µ([−τ, τ ])
ν([−τ, τ ]) = lim sup

τ→+∞

∫ 0

−τ

et dt+

∫ τ

0

dt

2

∫ τ

0

t dt

= lim sup
τ→+∞

1− e−τ + τ

τ2
= 0 <∞,

which implies that (H3) is satisfied.
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Since for all θ ∈ R,
−π
2

< arctan θ <
π

2
, then we have

1

ν([−τ, τ ])

∫ +τ

−τ

sup
θ∈ ]−∞,0]

| arctan(θ)| dµ(t) 6 π

2
× 1

ν([−τ, τ ])

∫ +τ

−τ

dµ(t) 6

6
π

2
× µ([−τ, τ ])
ν([−τ, τ ]) → 0 as τ → +∞.

It follows that t 7→ arctan t is (µ, ν)-ergodic of infinite class consequently, f is

uniformly (µ, ν)-pseudo almost periodic of infinite class. Moreover, L is a bounded

linear operator from B to X .

In fact for ϕ ∈ Cγ , we have ϕ ∈ C(]−∞, 0];X) and lim
θ→−∞

eγθ ϕ(θ) = x0 exist

in X , then there exists M > 0 such that |eγθϕ(θ)| 6 M for all θ ∈ ]−∞, 0]. We

have for x ∈ X

|L(ϕ)(x)| 6
∫ 0

−∞

∣∣G(θ)ϕ(θ)(x)
∣∣ dθ 6

6

∫ 0

−∞

∣∣e(γ+1)θ e−γθ eγθ ϕ(θ)(x)
∣∣ dθ 6M

∫ 0

−∞

eθ dθ <∞

and

|L(ϕ)(x)| 6
∫ 0

−∞

∣∣G(θ)ϕ(θ)(x)
∣∣ dθ 6

6

∫ 0

−∞

∣∣e(γ+1)θ e−γθ eγθ ϕ(θ)(x)
∣∣ dθ 6

(∫ 0

−∞

eθ dθ
)
|ϕ|γ ,

which implies that L is well defined and L is a bounded linear operator from B to

X . We suppose that there exists a function k1(·) ∈ L1(]−∞, 0];R+) such that

∣∣h(θ, x1)− h(θ, x2)
∣∣ 6 k(θ) |x1 − x2| for θ 6 0 and x1, x2 ∈ R, (13)

h(θ, 0) = 0. (14)

For example, we can take h(θ, x) = e−θ2

sin
(
x
2

)
for (θ, x) ∈ ]−∞, 0] × R and

k1(θ) = e−θ2

. We can see that h(θ, 0) = 0 and |h(θ, x1) − h(θ, x2)| 6 1
2 |x1 − x2|.

Assumptions (13) and (14) imply that f(ϕ) ∈ X . In fact, ϕ ∈ B, then

f(ϕ)(x) =

∫ 0

−∞

h
(
θ, ϕ(θ)(x)

)
dθ for x ∈ [0, π]
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and

|f(ϕ)(x)| 6
∫ 0

−∞

k1(θ)
∣∣ψ(θ)(x)

∣∣ dθ.

Consequently

|f(ψ)| 6
( ∫ 0

−∞

k1(θ) dθ
)
|ψ|B.

Moreover assumption (14) implies that

f(ψ)(0) = f(ψ)(π) = 0.

Using the dominated convergence theorem, one can show that f(ϕ) is a continuous

function on [0, π]. Moreover, for every ϕ1, ϕ2 ∈ B, we have

∣∣f(t, ϕ1)− f(t, ϕ2)
∣∣ = sup

06x6π

∣∣f(ϕ1)(x) − f(ϕ2)(x)
∣∣ 6

6 sup
06x6π

∫ 0

−∞

∣∣h
(
θ, ϕ1(θ)(x)

)
− h

(
θ, ϕ2(θ)(x)

)∣∣ dθ 6

6 sup
06x6π

∫ 0

−∞

k1(θ)
∣∣ϕ1(θ)(x) − ϕ2(θ)(x)

∣∣ dθ 6

6

(∫ 0

−∞

k1(θ) dθ
)

sup
−∞<θ60
06x6π

∣∣ϕ1(θ)(x) − ϕ2(θ)(x)
∣∣.

Consequently, we conclude that f is Lipschitz continuous and cl(µ, ν)-pseudo al-

most periodic of infinite class. Then by Proposition 38 we deduce the following

result.

Theorem 39. Under the above assumptions, equation (12) has a unique cl(µ, ν)-

pseudo almost periodic solution v of infinite class.
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