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1. Introduction

Let Σ denote the class of meromorphic functions of the form

f(z) =
1

z
+

∞
∑

n=1

an z
n (1)

which are analytic in the punctured unit disc

U∗ := {z : z ∈ C, 0 < |z| < 1} = U \ {0}. (2)

Let g ∈ Σ be given by

g(z) =
1

z
+

∞
∑

n=1

bn z
n. (3)

Then the Hadamard product (or convolution) of f and g is given by

(f ∗ g)(z) =
1

z
+

∞
∑

n=1

an bn z
n = (g ∗ f)(z). (4)

Let us consider the second order linear homogenous differential equation (see

Baricz [3, p. 7]):

z2 w′′(z) + z w′(z) + (z2 − υ2)w(z) = 0, υ ∈ C. (5)

The function wυ(z), which is called the generalized Bessel function of the first

kind of order υ, where υ is an unrestricted (real or complex) number, is defined

a particular solution of (5). The function wυ(z), has the representation

wυ(z) =

∞
∑

n=0

(−1)n

Γ(n+ 1)Γ(n+ υ + 1)

(z

2

)2n+υ

.

Let us define

Lυ =
2υ Γ(υ + 1)

z
υ

2
+1

wυ(z
1
2 ) =

1

z
+

∞
∑

n=1

(−1)n Γ(υ + 1)

4n Γ(n+ 1)Γ(n+ υ + 1)
zn.

The operator Lυ is a modification of the of the operator introduced by Deniz [4]

for analytic functions.
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By using the Hadamard product (or convolution), we define the operator Lυ

as follows:

(Lυf) (z) = Lυ(z) ∗ f(z) =
1

z
+

∞
∑

n=1

φn(υ) an z
n,

where φn(υ) =
(−1)n Γ(υ+1)

4n Γ(n+1) Γ(n+υ+1) .

The operator Lυ is a modification of the operator introduced by Szasz and

Kupan [10] for analytic functions.

It is easy to verify that

z (Lυf)
′

(z) = (υ + 1) (Lυf) (z)− (υ + 2) (Lυ+1f) (z). (6)

Motivated by Sivaprasad Kumar et al. [9], Atshan et al. [2] and Venkateswarlu

et al. [11, 12], now we define a new subclass σ∗

p(η, k, υ) of
∑

.

Definition 1. For 0 6 η < 1, k > 0, we let σ∗

p(η, k, υ) be the subclass of
∑

consisting of functions of the form (1) and satisfying the analytic criterion

−Re

(

z(Lυf(z))
′

Lυf(z)
+ η

)

> k

∣

∣

∣

∣

z(Lυf(z))
′

Lυf(z)
+ 1

∣

∣

∣

∣

. (7)

In order to prove our results wee need the following lemmas [1].

Lemma 2. If η is a real number and ω is a complex number then

Re(ω) > η ⇐⇒
∣

∣ω + (1− η)
∣

∣−
∣

∣ω − (1 + η)
∣

∣ > 0.

Lemma 3. If ω is a complex number and η, k is a real numbers, then

−Re(ω) > k |ω + 1|+ η ⇐⇒ ∀ θ ∈ [−π, π] : −Re
(

ω (1 + k eiθ) + k eiθ
)

> η.

The main object of this paper is to study some usual properties of the geometric

function theory such as the coefficient bounds, extreme points, radii of meromor-

phic starlikeness and convexity for the class σ∗

p(η, k, υ). Further, we obtain partial

sums and neighborhood properties for the class also.
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2. Coefficient estimates

In this section, we obtain necessary and sufficient condition for a function f to

be in the class σ∗

p(η, k, υ).

Theorem 4. Let f ∈
∑

be given by (1). Then f ∈ σ∗

p(η, k, υ) if and only if

∞
∑

n=1

[

n (k + 1) + (k + η)
]

φn(υ) an 6 (1− η). (8)

Proof. Let f ∈ σ∗

p(η, k, υ). Then by Definition 1 and using Lemma 3, it is enough

to show that

−Re

{(

z(Lυf(z))
′

Lυf(z)

)

(1 + k eiθ) + k eiθ
}

> η, −π 6 θ 6 π. (9)

For convenience

C(z) = −
[

z(Lυf(z))
′
]

(1 + k eiθ)− k eiθ Lυf(z),

D(z) = Lυf(z).

That is, the equation (9) is equivalent to

−Re

(

C(z)

D(z)

)

> η.

In view of Lemma 2, we only need to prove that

∣

∣C(z) + (1− η)D(z)
∣

∣−
∣

∣C(z)− (1 + η)D(z)
∣

∣ > 0.

Therefore

∣

∣C(z) + (1− η)D(z)
∣

∣ > (2 − η)
1

|z|
−

∞
∑

n=1

[

n (k + 1) + (k + η − 1)
]

φn(υ) an |z|
n

and

∣

∣C(z)− (1 + η)D(z)| 6 η
1

|z|
+

∞
∑

n=1

[

n (k + 1) + (k + η + 1)
]

φn(υ) an |z|n.
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It is to show that

∣

∣C(z) + (1− η)D(z)
∣

∣−
∣

∣C(z)− (1 + η)D(z)
∣

∣ >

> 2 (1− η)
1

|z|
− 2

∞
∑

n=1

[

n (k + 1) + (k + η)
]

φn(υ) an |z|
n > 0,

by the given condition (8). Conversely suppose f ∈ σ∗

p(η, k, υ). Then by Lemma 2,

we have (9).

Choosing the values of z on the positive real axis the inequality (9) reduces to

Re















(1− η) 1
z2 +

∞
∑

n=1

[

n (1 + k eiθ) + (η + k eiθ)
]

φn(υ) z
n−1

1
z2 +

∞
∑

n=1
φn(υ) an zn−1















> 0.

Since Re(−eiθ) > −|eiθ| = −1, the above inequality reduces to

Re















[1− η] 1
r2

+
∞
∑

n=1

[

n (1 + k) + (η + k
]

φn(υ) an r
n−1

1
r2

+
∞
∑

n=1
φn(υ rn−1















> 0.

Letting r → 1− and by the mean value theorem, we have obtained the inequal-

ity (8). �

Corollary 5. If f ∈ σ∗

p(η, k, υ) then

an 6
(1 − η)

[

n (1 + k) + (η + k)
]

φn(υ)
. (10)

Theorem 6. If f ∈ σ∗

p(η, k, υ) then for 0 < |z| = r < 1:

1

r
−

(1− η)

(2 k + η + 1)φ1(υ)
r 6 |f(z)| 6

1

r
+

(1 − η)

(2 k + η + 1)φ1(υ)
r. (11)

This result is sharp for the function

f(z) =
1

z
+

(1− η)

(2 k + η + 1)φ1(υ)
z. (12)



6 S.M. Popade et al.

Proof. Since f(z) = 1
z
+

∞
∑

n=1
an z

n, we have

|f(z)| =
1

r
+

∞
∑

n=1

an r
n 6

1

r
+ r

∞
∑

n=1

an. (13)

Since n > 1, (2 k + η + 1)φ1(υ) 6
[

n (k + 1) + (k + η)
]

φn(υ), using Theorem 4,

we have

(

2 k + η + 1
)

φ1(υ)
∞
∑

n=1

an 6

∞
∑

n=1

[

n (k + 1) + (k + η)
]

φn(υ) 6 (1− η)

=⇒

∞
∑

n=1

an 6
(1− η)

(2 k + η + 1)φ1(υ)
.

Using the above inequality in (13), we have

|f(z)| 6
1

r
+

(1− η)

(2 k + η + 1)φ1(υ)
r and |f(z)| >

1

r
−

(1− η)

(2 k + η + 1)φ1(υ)
r.

The result is sharp for the function f(z) = 1
z
+ (1−η)

(2 k+η+1) φ1(υ)
z. �

Corollary 7. If f ∈ σ∗

p(η, k, υ) then

1

r2
−

(1 − η)

(2 k + η + 1)φ1(υ)
6 |f ′(z)| 6

1

r2
+

(1 − η)

(2 k + η + 1)φ1(υ)
.

The result is sharp for the function given by (12)

3. Extreme points

Theorem 8. Let f0(z) =
1
z
and

fn(z) =
1

z
+

∞
∑

n=1

(1− η)

[n (1 + k) + (η + k) ]φn(υ)
zn, n > 1. (14)

Then f ∈ σ∗

p(η, k, υ) if and only if it can be expressed in the form

f(z) =

∞
∑

n=0

un fn(z), un > 0 and

∞
∑

n=1

un = 1. (15)
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Proof. Suppose f(z) can be expressed as in (15). Then

f(z) =
∞
∑

n=0

un fn(z) = u0 f0(z) +
∞
∑

n=1

un fn(z) =

=
1

z
+

∞
∑

n=1

un

(1− η)
[

n (1 + k) + (η + k)
]

φn(υ)
zn.

Therefore

∞
∑

n=1

un

(1− η)
[

n (1 + k) + (η + k)
]

φn(υ)

[

n (1 + k) + (η + k)
]

φn(υ)

(1− η)
zn =

=

∞
∑

n=1

un = 1− u0 6 1.

So by Theorem 4, f ∈ σ∗

p(η, k, υ).

Conversely suppose that f ∈ σ∗

p(η, k, υ). Since

an 6
(1− η)

[

n (1 + k) + (η + k)
]

φn(υ)
, n > 1.

We set un = [n (1+k)+(η+k)] φn(υ)
(1−η) an, n > 1 and u0 = 1 −

∞
∑

n=1
un. Then we have

f(z) =
∞
∑

n=0
un fn(z) = u0 f0(z) +

∞
∑

n=1
un fn(z). Hence the results follows. �

4. Radii of meromorphically starlike and convexity

Theorem 9. Let f ∈ σ∗

p(η, k, υ). Then f is meromorphically starlike of order δ

(0 6 δ 6 1) in the unit disc |z| < r1, where

r1 = inf
n

[

(1− δ)

(n+ 2− δ)

[n (1 + k) + (η + k)]φn(υ)

(1− η)

]
1

n+1

, n > 1.

The result is sharp for the extremal function f(z) given by (14).
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Proof. The function f ∈ σ∗

p(η, k, υ) of the form (1) is meromorphically starlike of

order δ is the disc |z| < r1 if and only if it satisfies the condition

∣

∣

∣

∣

z f ′(z)

f(z)
+ 1

∣

∣

∣

∣

< (1− δ). (16)

Since

∣

∣

∣

∣

z f ′(z)

f(z)
+ 1

∣

∣

∣

∣

6

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

n=1
(n+ 1)an z

n+1

1 +
∞
∑

n=1
an zn+1

∣

∣

∣

∣

∣

∣

∣

∣

6

∞
∑

n=1
(n+ 1)|an| |z|

n+1

1−
∞
∑

n=1
|an| |z|n+1

.

The above expression is less than (1 − δ) if
∞
∑

n=1

(n+2−δ)
(1−δ) an |z|

n+1 < 1. Using the

fact that f(z) ∈ σ∗

p(η, k, υ) if and only if

∞
∑

n=1

[

n (1 + k) + (η + k)
]

φn(υ)

(1− η)
an 6 1.

Thus, (16) will be true if

(n+ 2− δ)

(1− δ)
|z|n+1 <

[

n (1 + k) + (η + k)
]

φn(υ)

(1− η)

or equivalently

|z|n+1 <
(1− δ)

(n+ 2− δ)

[

n (1 + k) + (η + k)
]

φn(υ)

(1− η)

which yields the starlikeness of the family. �

The proof of the following theorem is analogous to that of Theorem 9, and so

we omit the proof.

Theorem 10. Let f ∈ σ∗

p(η, k, υ). Then f is meromorphically convex of order δ

(0 6 δ 6 1) in the unit disc |z| < r2, where

r2 = inf
n

[

(1 − δ)

n (n+ 2− δ)

[

n (1 + k) + (η + k)
]

φn(υ)

(1− η)

]
1

n+1

, n > 1.

The result is sharp for the extremal function f(z) given by (14).
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5. Partial sums

Let f ∈
∑

be a function of the form (1). Motivated by Silverman [7] and

Silvia [8], we define the partial sums fm defined by

fm(z) =
1

z
+

m
∑

n=1

an z
n, m ∈ N. (17)

In this section we consider partial sums of function from the class σ∗

p(η, k, υ)

and obtain sharp lower bounds for the real part of the ratios of f to fm and f ′ to

f ′

m.

Theorem 11. Let f ∈ σ∗

p(η, k, υ) be given by (1) and define the partial sums f1(z)

and fm(z) by

f1(z) =
1

z
and fm(z) =

1

z
+

m
∑

n=1

|an| z
n, m ∈ N \ {1}. (18)

Suppose also that
∞
∑

n=1
dn |an| 6 1, where

dn >







1, if n = 1, 2, · · · ,m,
[n (1+k)+(η+k)] φn(υ)

(1−η) , if n = m+ 1,m+ 2, . . .
(19)

Then f ∈ σ∗

p(η, k, υ). Furthermore

Re

(

f(z)

fm(z)

)

> 1−
1

dm+1
(20)

and

Re

(

fm(z)

f(z)

)

>
dm+1

1 + dm+1
. (21)

Proof. For the coefficient dn given by (19) it is not difficult to verify that

dm+1 > dm > 1. (22)
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Therefore we have

m
∑

n=1

|an|+ dm+1

∞
∑

n=m+1

|an| 6

∞
∑

n=1

|an| dm 6 1 (23)

by using the hypothesis (19). By setting

g1(z) = dm+1

(

f(z)

fm(z)
−

(

1−
1

dm+1

))

= 1 +

dm+1

∞
∑

n=m+1
an z

n−1

1 +
∞
∑

n=1
|an| zn−1

then it sufficient to show that

Re
(

g1(z)
)

> 0, z ∈ U, or

∣

∣

∣

∣

g1(z)− 1

g1(z) + 1

∣

∣

∣

∣

6 1, z ∈ U,

and applying (23), we find that

∣

∣

∣

∣

g1(z)− 1

g1(z) + 1

∣

∣

∣

∣

6

dm+1

∞
∑

n=m+1
|an|

2− 2
m
∑

n=1
|an| − dm+1

∞
∑

n=m+1
|an|

6 1, z ∈ U,

which ready yields the assertion (20) of Theorem 11. In order to see that

f(z) =
1

z
+

zm+1

dm+1
(24)

gives sharp result, we observe that for

z = re
iπ

m that
f(z)

fm(z)
= 1−

rm+2

dm+1
→ 1−

1

dm+1
as r → 1−.

Similarly, if we takes g2(z) = (1 + dm+1)
(

fm(z)
f(z) − dm+1

1+dm+1

)

and making use of

(23), we denote that

∣

∣

∣

∣

g2(z)− 1

g2(z) + 1

∣

∣

∣

∣

<

(1 + dm+1)
∞
∑

n=m+1
|an|

2− 2
m
∑

n=1

|an| − (1 − dm+1)
∞
∑

n=m+1

|an|

which leads us immediately to the assertion (21) of Theorem 11.
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The bound in (21) is sharp for each m ∈ N with extremal function f(z) given

by (24). �

The proof of the following theorem is analogous to that of Theorem 11, so we

omit the proof.

Theorem 12. If f ∈ σ∗

p(η, k, υ) be given by (1) and satisfies the condition (8)

then

Re

(

f ′(z)

f ′

m(z)

)

> 1−
m+ 1

dm+1

and

Re

(

f ′

m(z)

f ′(z)

)

>
dm+1

m+ 1 + dm+1
,

where

dn >







n, if n = 2, 3, · · · ,m,
[n(1+k)+(η+k)]φn(υ)

(1−η) , if n = m+ 1,m+ 2, . . .

The bounds are sharp with the extremal function f(z) of the form (12).

6. Neighborhoods for the class σ∗ξ
p (η, k, υ)

In this section, we determine the neighborhood for the class σ∗ξ
p (η, k, υ) which

we define as follows

Definition 13. A function f ∈
∑

is said to be in the class σ∗ξ
p (η, k, υ) if there

exits a function g ∈ σ∗

p(η, k, υ) such that

∣

∣

∣

f(z)

g(z)
− 1

∣

∣

∣
< 1− ξ, z ∈ E, 0 6 ξ < 1. (25)

Following the earlier works on neighbourhoods of analytic functions by Good-

man [5] and Ruscheweyh [6], we define the δ−neighbourhoods of function f ∈
∑

by

Nδ(f) =

{

g ∈
∑

: g(z) =
1

z
+

∞
∑

n=1

bn z
n and

∞
∑

n=1

n |an − bn| 6 δ

}

. (26)



12 S.M. Popade et al.

Theorem 14. If g ∈ σ∗

p(η, k, υ) and

ξ = 1−
δ (2 k + η + 1)φ1(υ)

(2 k + η + 1)φ1(υ)− (1 − η)
(27)

then Nδ(g) ⊂ σ∗ξ
p (η, k, υ).

Proof. Let f ∈ Nδ(g). Then we find from (26) that

∞
∑

n=1

n |an − bn| 6 δ (28)

which implies the coefficient inequality

∞
∑

n=1

|an − bn| 6 δ, n ∈ N. (29)

Since g ∈ σ∗

p(η, k, υ), we have

∞
∑

n=1

bn 6
(1− η)

(2 k + η + 1)φ1(υ)
. (30)

So that

∣

∣

∣

∣

f(z)

g(z)
− 1

∣

∣

∣

∣

<

∞
∑

n=1
|an − bn|

1−
∞
∑

n=1
bn

=
δ (2 k + η + 1)φ1(υ)

(2 k + η + 1)φ1(υ)− (1− η)
= 1− ξ

provided ξ is given by (27). Hence by definition, f ∈ σ∗ξ
p (η, k, υ) for ξ given by

which completes the proof. �
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