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Abstract. This paper is devoted to the decomposition of Faulhaber polynomials
Sm(z) into iterated integrals. It has been noticed, by the way, that these polynomials
provide the primary example of so-called semihyperbolic polynomials. There are also
presented some interesting properties concerning the number of complex roots (as well
as the real roots) of translated Faulhaber polynomials S, (x) = Sy, () + ?f;’ff , where
By +1 denotes the respective Bernoulli number for each m < 1024. Three of these
properties are particularly intriguing. 1° If a polynomial S}, ;(x) has more nonreal
complex roots than S}, (z) does then their number is always greater than 4 for all
m < 1023. 2° If S5, Sy . q,...,5) ;. have the same number of nonreal complex roots
but 57 .., possesses more such roots and S;;_; possesses less such roots then either
k=4ork=>5forall k,n € N, n+k <1024. 3° If S} has 12 nonreal complex
roots less than S, and simultaneously 16 less than S}, ., and 4 more than S},
then either £k = 19 or k = 20 for every k,n € N, 11 < n and k + n < 1024. The
authors are convinced — and the results of numerical calculations seem to confirm this
opinion — that all the properties hold for infinitely many values of n € N. Similar
observations concerning the real roots of polynomials S; are also presented in the
paper. Furthermore, the envelopes of the complex roots distributions of polynomials

S} (x) are generated for some special values of m.
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1. Introduction

While working on the monograph [15] Witula has formulated the following problem:

Question. Given a number m € N find all sequences {a;.c}mJrl C R such that

n Tm Z1 n
m!/ dxm/ dz,y,—1 .. / dzg = Z k™ (1)
Am41 a a1 k=1

m

for every n € N.

The goal of this paper is to solve the above problem, or more precisely, to find its
connection with the problem of the decomposition of Faulhaber polynomials S, (z)
into iterated integrals. To this aim recall that polynomials S,,(z) are defined in the
following way

1 o /m4+1
Sm(x) = —— Btk N 2
(@) m+1kZ_o< B men, 2

where Bk’s are the modified Bernoulli numbers [7, 15, 16] with initial values By = 1,

B = 2, By = %, By = —%, Bg = 4—12 and Byi+1 = 0, k € N. These polynomials
satisfy the condition
Sp(n) =Y K™
k=1
for m,n € N.
The Faulhaber polynomials are the primary examples of so-called semihyperbolic

dk
polynomials!, i.e. polynomials p € R[z] such that all derivatives —, 0 < k < §

possess at least one real root, where ¢ denotes the degree of p. Note that in this case
(and only in this case) there exist a, a9, ...,as € R such that

A/ dmg/ de_145-- / dxl——()
X _1+46

where A denotes the leading coefficient of p (see [8]?).

Iterated integrals of this type represent the volumes of some polyhedrons all faces
of which are triangular and one coordinate of one of the vertices is a variable. However
this is not the subject of consideration here3.

1 Recall that a polynomial is said to be hyperbolic provided that all its roots are real. The Faulhaber
polynomials represent an example of a family of polynomials which are semihyperbolic, but not
hyperbolic.

2 Actually [8] constitutes the second part of this article.

3 It is worth mentioning that expressing a special function as an iterated integral is studied by nu-
merous scientists, such is in the case with the classical multiple zeta values. See also the Vinogradov-
Korobov method of estimation of some exponential integrals in Ivi¢’s monograph [9, Chapter 6].
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1.1. Technical preliminaries

Consider the function

x Tm Tl
fm(x) = m!/ dxm/ dz,y,—1 .. / dzg, z € R,
Am 41 QAm al

where m € N and ay, ..., a1 are reals. It is easy to see that f,,(x) is a polynomial
of degree m 4+ 1. Our main aim is to find all possible numbers ai,as,...am,+1 such
that f,(z) = S (x). We have

p x Tm—p x1
%;fo) = m!/ da:m_p/ dem—1-p .. / dzg

m+1l—p m—p
derlfm(x)
for every p = 0,1,...,m, and et m!. Then the coefficient of z? in f,,(z)
xm
is equal to
1 dPfo(z m! [0 Fmor o
H% » — F/ dxm_p/ dzm—1-p .. / dzg
. = . Am41—p Am—p ay
1 d™ T (@) m! 1
f =0,1,... d = = - Com-
or every p ylyooo,m, an (m+ 1) dzmtl le—o (m+1)! m+1 o

paring the above equalities with the corresponding coefficients of the polynomial

S (z) we get
0 Tom—1 T1
m!/ dxm/ dom_s.. / dzg =0 (3)
Am 41 a al

m—1
and
m! /0 Tm—p 1 1 m+1
e dxm,p/ dxmflfp .. / dxo = — Bm+1,p,
p! Am+1-p am—p a m+1\m+1-p
i.e. 0
Tm—p 1 B 1
dz _/ dzx _1_.../ dxozu
/amﬂp e, T (m+1—p)!

for every p=1,2,..., m. After rescaling the subscript m+ 1 — p := k we get

0 Th—1 T1 B
/ dxk,1 / dxk,Q .. / dxo = k—f (4)
ar ak—1 a1 ’

for every k = 1,2,...,m. Hence we can see that values of sought numbers a;,
i =1,2,...,k do not depend on m, whenever m > k and by some straightforward

1 1 1
calculations we easily find a; = —g 2 € {E(—?):I: \/g)}, az € { -1, —5,0}.
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Assume that we have already found the numbers ai,as,...,a; for some
j€{1,2,...,m —1}. Then, if we want to find the values of a;41 we must solve the
equation

/dx]/ dz;_1 . / dzo = JH) (5)

for y. It is an algebraic equation of degree j + 1. Let Aj_l,_l be the set of its solutions
(we assume Aj i to be the set of all complex solutions since we know nothing about
the real ones). To solve (5) we need the following auxiliary result.

Lemma 1.1. For every j = 1,2,... the following identity holds

v o Si—1(x) B,
dri_1.. / drg = —2 + =L 6
/Gj R S B D TR (©)
Proof. The proof follows by induction with respect to j.

We have " B, B
by

Assume that for some [ € N we have

¥ it o Si—i(x) By
dxl_l/ dx;_a .. / dzg = + —.
/al a1 a (-1 !
Then we obtain

xT ZT 1
/ dxl/ dxl_l.../ dﬂ:o
ap41 ap ai
0 x] x1 x x €1
:/ dxl/ dxl_l.../ da:o—i—/ dxl/ dxl_l.../ dxg
apiq ap ai 0 ap a

(6) B gﬁ S,(x) B
- (z+l+11)!+/0 ((3—11; )de (0

By (2) we have
S 1( I—k 1 - l tlAi-k
B 1 B
/(l—l)dt z—1 / Z<> P R
_ 1 1 [+1 i1k _ Si(t) — Bit
_l!<<l+1kz_0< k )B’“t Bit|+C=—7—+C (§

* S \(w) B Si(z) — Si(0)  Si()
/0 ((2—11;! g e = SR = S ©)

Therefore equality (6) is satisfied for j = + 1. This completes the proof. O

and hence
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Corollary 1.2. For every j =1,2,... the equation (5) is equivalent to

Bji1
Sj(y)z—jji~

Proof. From (6) and (9) we get

0 ZTj T
/ dxj / dxj,1 .. / d$0
Y a; ai

_ [0 (Simale) | BN, _ S0 =Si) __Si)
- [ () B, - SO-S0 S0,

The only remaining problem is to determine the value of a,,11. Note that f,,(am11)
=0, SO a,,+1 must satisfy the condition

Sm(am41) = 0. (11)

Thus @, +1 could be any real root of polynomial S,, (). Since for any m € N we have
Sm(0) = S,,(—1) = 0, therefore 0 or —1 may be possible values of a,1.

2. The form of sets A;

Fix m € N and set A1 = {_71} For every j = 1,2,...,m — 1 determine the set
Ajiq of all y satisfying the equation

B
Sily) = =4 (12)

Let A,,+1 be the set of all roots of the polynomial S, (). In particular, {—1,0} C
Ap41. We note that if j > 2 is even, then by (12) the set A;1; is the same for every
m>j.

2.1. Modified Faulhaber polynomials
Consider the translated Faulhaber polynomials
Sy (x) := Sp(z) + M, m € Np.
The polynomial S} () is divisible by z(xz 4+ 1)(2z + 1) if m > 2 is even (Faulhaber

was aware of this fact only for some selected values of m, for more information see
[5, 6, 11, 12]). Clearly S3,,(z) = Sam(x).
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Setting

_ S5m ()
Tom () = x(z +1)(2z + 1) (13)

we get the following relation (see [11]):

tie- 1) =12 ) m

for every m € N, m > 2. Therefore the function R 3 @ + Thy, (z — 1) is even. It turns
out that, likewise, every function R > z — S5, . (z — 1), m € N, is even. These facts
can be observed in Figures 4, 5 and 6 where the symmetries — both axial and polar
— of the sets of roots of the appropriate polynomials are clearly visible. The above
observations follow from the properties of an even real polynomial ¢(x): if a complex
number z is a root of multiplicity k of ¢(x) then Z, —z and —Z are roots of multiplicity

k of q(x) as well. Moreover,
(m+1)S;,(z) = Bg1(z + 1),

where B,,(x) denotes the m-th Bernoulli polynomial. This relation implies also that
facts presented below, concerning the number of complex and real roots of polynomials
Sr.(x), are analogical as for the case of Bernoulli polynomials By,41(z) for every
m € N.

2.2. Remarks on the roots of the polynomials S* (x)

In this section we present several facts obtained solely by numerical computations.
They concern the number of nonreal complex roots of the polynomials S} (z) and
the number of the real roots of S} (). We observed and described some rules for the
growth of the number of the roots.

If 5 <m < 10 then polynomials S}, (z) possess only four complex roots: ¢, 1, Cm,1,
Cm,2; Cm,2, such that

Imep, 1 =Imey,2 and Recpma=—-1—Recp 1. (15)

All the other roots are real. The subsequent polynomials have similar properties: for
11 < m < 15 the polynomials S}, (z) have two quadruples of roots of type (15),
whereas for 16 < m < 20 there are three quadruples of roots of this type and so on.

Moreover for each m € N the number of nonreal complex roots of the polynomial
Sk, () either is the same or increases by 4 in comparison with the number of nonreal
complex roots of the polynomial S}, _;(x). However this property cannot be treated
as a rule. Starting from S§(z), the results of numerical computations of the number of
nonreal complex roots of the successive polynomials S (x) are presented below. Each
row refers to 21 consecutive polynomials; furthermore we use the following notation:
the number a of successive polynomials S} (x) x the number b of nonreal complex
roots possessed by each of a consecutive polynomials. For instance the starting element
5 x 0 means that each of polynomials Sg,..., S} has no nonreal complex roots.
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The table of nonreal complex roots of S} (x), n < 1024

(Polynomials are counted consecutively in rows, from left to right, according to the
first factor of product a x b. An element a X b of the table corresponds to a successive
polynomials S} (x), all of which have b nonreal complex roots).

5x0, 6x4, 5x8, 5Hx12

6 x 16, 5x20, 5x24, 5x28,

6 x 32, 5x36, 5x40, 5x 44,

6 x 48, 5x52, 5x56, 5 x60,+— This symbol means that each
5x64, 6x68, 5x72, 5xT76, of five successive polynomials
5x80, 5x84, 6x88, 5x92 S79,580s - - -, Sg3 possesses
5x 96, 5x100,6 x 104, 5 x 108, the same number of 60
5x 112, 5 x 116, 6 x 120, 5 x 124, nonreal complex roots.
5x 128, 5 x 132, 5 x 136, 6 x 140,

5 x 144, 5 x 148, 5 x 152, 6 x 156,

5 x 160, 5 x 164, 5 x 168, 5 x 172, «— 11th row

6 x 176, 5 x 180, 5 x 184, 5 x 188,

6 x 192, 5 x 196, 5 x 200, 5 x 204,

6 x 208, 5 x 212, 5 x 216, 5 x 220,

5 x 224, 6 x 228, 5 x 232, 5 x 236,

5 x 240, 6 x 244, 5 x 248, 5 x 252,

5 x 256, 5 x 260, 6 x 264, 5 x 268,

5 x 272, 5 x 276, 6 x 280, 5 x 284,

5 x 288, 5 x 292, 5 x 296, 6 x 300,

5 x 304, 5 x 308, 5 x 312, 6 x 316,

5 x 320, 5 x 324, 5 x 328, 6 x 332,

5 x 336, 5 x 340, 5 x 344, 5 x 348, +— 22nd row

6 x 352, 5 x 356, 5 x 360, 5 x 364,

6 x 368, 5 x 372, 5 x 376, 5 x 380,

5 x 384, 6 x 388, 5 x 392, 5 x 396,

5 x 400, 6 x 404, 5 x 408, 5 x 412,

5 x 416, 5 x 420, 6 x 424, 5 x 428,

5 x 432, 5 x 436, 6 x 440, 5 x 444,

5 x 448, 5 x 452, 5 x 456, 6 x 460,

5 x 464, 5 x 468, 5 x 472, 6 x 476,

5 x 480, 5 x 484, 5 x 488, 5 x 492, +— 31st row

6 x 496, 5 x 500, 5 x 504, 5 x 508,

6 x 512, 5 x 516, 5 x 520, 5 x 524,

6 x 528, 5 x 532, 5 x 536, 5 x 540,

5 x 544, 6 x 548, 5 x 552, 5 x 556,

5 x 560, 6 x 564, 5 x 568, 5 x 572,

5 x 576, 5 x 580, 6 x 584, 5 x 588,

5 %592, 5 x 596, 6 x 600, 5 x 604,

5 x 608, 5 x 612, 5 x 616, 6 x 620,

5 x 624, 5 x 628, 5 x 632, 6 x 636,
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5 x 640, 5 x 644, 5 x 648, 5 x 652, <— 41st row
6 x 656, 5 x 660, 5 x 664, 5 x 668,
6 x 672, 5 X 676, 5 x 680, 5 x 684,
5 x 688, 6 x 692, 5 x 696, 5 x 700,
5 x 704, 6 x 708, 5 x 712, 5 x 716,
5x 720, 6 x 724, 5 x 728, 5 x 732,
5 % 736, 5 x 740, 6 x 744, 5 x 748,
5 x 752, 5 x 756, 6 x 760, 5 x 764,
5 x 768, 5 x 772, 5 x 776, 6 x 780.

Remark 2.1. The calculations were performed to a precision of 30000 sign digits.*

Rules of increase in the number of nonreal complex roots of polynomials
Sh(x)

1° The symbol 5 x ... occurs three or four times in each row of the table presented
above. Moreover, the symbol 6 X ... appears in all rows except for the 11th, 22nd,
31st and 41st rows. In other words, every row of the table of nonreal complex roots
of polynomials S*(x), n < 1024, contains 21 successive polynomials S} (z), except
for the 11th, 22nd, 31st and 41st rows where there are 20 of them.

2° Let ncr (S} (z)) stand for the number of nonreal complex roots of polynomial S} (),
for every n € N. Then either ncr (S}, (x)) = ncr (S;(x)) or ner (S;,(z)) =
4 4 ner (Sk(x)) for each n € N, n < 1024.

3° (Generalisation of the first rule) Fix k,n € N. If ncr (S7_,.(2)) = 12+ ncr (S} (z))
and ner (S (2)) = 44-ner (S;_;(z)) and ner (S7 ;4 (2)) = 44ncr (S5, . (x)) then

n

either £ = 19 or k = 20, whenever n > 11 and k + n < 1024.

We have also noticed some regularities concerning the number of real roots of
polynomials S} (). Namely, for the polynomials S} (z), 0 < n < 4, the number of real
roots increases with n from 1 to 5, in case of the polynomials S’ (z), 7 < n < 11, the
number of real roots increases with n from 4 to 8, etc. To denote this we shall use an
arrow i.e. the symbol .

4 The reason for using such a high accuracy is the arithmetic nature of the Bernoulli numbers.
Namely, let B2, = Nan /D2y, represent the 2n-th Bernoulli number, where Na,, is the numerator,
Dgy, is the denominator and the numbers Na,,, D2y, are relatively prime, i.e. GCD(Nayp, Dan) = 1.
By the von Staudt-Clausen Theorem, the denominator Da,, is the product of distinct primes r; such
that (r; — 1)|2n. It was proven in [14] that if p > 7 is a prime number and 2p — 1 is also prime then

Nop—
'ﬂ > 91072 > 8981.
Nop
Note that for p = 7 we obtain
N 691
227 s q0n2
Nig 7

It is a conjecture that the ratio Nap—2
Nap

’ for primes p is unbounded. Besides, it is known that for

each n € N the following inequality holds (see [1]):

2(2n)! 22n—1 2(2n)!
< |B < 5" .
(2m)2n | B2n| 22n—1 _ 1 (27)2n

Let us emphasize that there is an interesting Akiyama-Tanigawa algorithm for computing Bernoulli
numbers in the analogous way like in Pascal’s triangle for computing binomial coefficients — see [10].
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We present these observations in the form of a table similar to the one for the
nonreal complex roots.

The table of real roots of successive polynomials S} (x), n < 1024

x (1 75), 6><(2/‘7) 5><(4/‘8) 5x (5 79),

x (6 7 10), x (7 712), x (9 7 13), 5 x (10 7 14),
x (11 ~15), 6x (12 ,717), 5x (14 718), 5x (15 719),
x (16 720), 6x (17 722), 5x (19 723), 5x (20 ~24),

x (21 25), 6x (22 27), 5x (24 7 28), 5 x (25 7 29),

x (26 730), 5x (27 731), 6x (28 733), 5x (30 734),

x (31 35), 5x(32,736), 6x(33,738), 5x (35 739),

x (36 40), 5x (37 ~41), 6x (38 743), 5x (40 7 44),

x (41 745), 5x (42 /46), 5x (43 /47), 6 x (44 7 49),

x (46 7 50), 5x (47 ~51), 5x (48 /52), 6x (49 S 54),

x (51 #55), 5x (52 ,56), 5x (53 ,57), 5 x (54 758),« 11th row
x (55 7 60), 5x (57 761), 5x (58 ,762), 5x (59 763),

x (60 7 65), 5x(62,766), 5x(63,767), 5x (64 ,768),

x (65 ~70), 5x (67 771), 5x(68,772), 5x (69 773),

x (70 2 74), 6x (71 /76), 5x (73 A77), 5x (74 /78),

x (75 779), 6x (76 ~81), 5x (78 /82), 5x (79 /83),

x (80 ,84), 5x (81 ,85), 6x(82,787), 5x (84 788),

x (85 ,89), 5x (86,190), 6x (87 ,192), 5x (89 793),

x (90 1 94), 5x(91,795), 5x(92,796), 6x (93 798),

x (95 1 99), 5x (96 7 100), x (97 ,101), 6 x (98 7 103),
x (100 104) x (101 7 105), 5 x (102 7 106), 6 x (103 7 108),
x (105 7 109), 5 x (106 7 110), 5 x (107 A~ 111), 5 x (108 7 112), + 22nd row
x (109 ~114), 5 x (111 ~115), 5 x (112 7 116), 5 x (113 7 117),
x (114 7 119), 5 x (116 7 120), 5 x (117~ 121), 5 x (118 7 122),
x (119 7 123), 6 x (120 7 125), 5 x (122 7 126), 5 x (123 7 127),
x (124 7 128), 6 x (125 7 130), 5 x (127 7 131), 5 x (128 7 132),
x (129 7 133), 5 x (130 7 134), 6 x (131 7 136), 5 x (133 7 137),
x (134 7 138), 5 x (135 7 139), 6 x (136 7 141), 5 x (138 7 142),
x (139 7 143), 5 x (140 7 144), 5 x (141 * 145), 6 x (142 7 147),
x (144 7 148), 5 x (145 7 149), 5 x (146 7 150), 6 x (147 7 152),
x (149 7 153), 5 x (150 7 154), 5 x (151 7 155), 5 x (152 7 156),  31st row
x (153 7 158), 5 x (155 7 159) 5 x (156 7 160), 5 x (157 7 161),
x (158 7 163), 5 x (160 7 164) 5 x (161 7 165), 5 x (162 7 166),
x (163 7 168), 5 x (165 7 169) 5 x (166 7 170), 5 x (167 7 171),
x (168 7 172), 6 x (169 7 174) 5 x (171 7 175), 5 x (172 7 176),
x (173 2 177), 6 x (174 7 179) 5 x (176 7 180), 5 x (177 7 181),
x (178 7 182), 5 x (179 7 183) 6 x (180 7 185), 5 x (182 7 186),
x (183 7 187), 5 x (184 7 188) 6 x (185 7 190), 5 x (187 7 191),
x (188 7 192), 5 x (189 7 193) 5 x (190 7 194), 6 x (191 7 196),
x (193 7 197), 5 x (194 7 198) 5 x (195 7 199), 6 x (196 7 201),
x (198 7 202), 5 x (199 7 203) 5 x (200 7 204), 5 x (201 7 205), + 41st row
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6 x (202 207), 5 x (204 7 208) 5
6 x (207 7 212), 5 x (209 7 213) 5
5x (212 1 216), 6 x (213 * 218) 5
5x (217 1 221), 6 x (218 *223) 5
5 x (222 1 226), 6 x (223 * 228) 5
5 x (227 1 231), 5 x (228 1 232) 6
5 x (232 7 236), 5 x (233 1 237) 6
5 x (237 1 241), 5 x (238 7 242) 5

x (205 7 209), 5 x (206 7 210),
x (210 7 214), 5 x (211 7 215),
x (215 7 219), 5 x (216 7 220),
x (220 *224), 5 x (221 7 225),
x (225 229), 5 x (226 7 230),
x (229 " 234), 5 x (231 7 235),
x (234 7 239), 5 x (236 7 240),
x (239 7 243), 6 x (240 7 245).

In the following table we give examples of polynomials S* () and their roots for
some selected values of m € Np.

real roots (all combinations

m S () of signs + should be taken into account)
1 1
0 —(2c 41 -
2( x+1) 3
1, 1
1 —(62° + 6z + 1) —(-3+V3)
12 6
2 1(+1)(2 +1) -1
—xz(x x -1, ——,
6 2
3 L (302* + 602 + 302 — 1) 2 (415 (15 £2v30) — 15
120 30
4 L (e + 1)(20 +1)(32° + 32 — 1) _1,-10,L (731[\/21)
30 2776
1 11
10 %w(w+l)(2w+1)(w2+w71)>< 717757075(71i\/5),

X (32% + 92° 4 22* — 1123 + 322 + 10z — 5)

—1.51868, 0.51868

=)

6 5
s (422° + 1262°+
+1052* — 2122 + 1)

1 8 7 6
510 (30z + 12027 + 1402°+

—70z* + 2027 — 1)

1 10 9 8
o (669@ +3302° + 4952%+

—4622° + 3302* — 9922 + 5)

—0.7524, —0.2475

—1.2472, —0.7506
—0.2493, 0.2472

—1.5739, —1.2499, —0.75015
—0.2498,0.2499, 0.5739

Rules of increase in the number of real roots of polynomials S} (x)

1° As in the case of nonreal complex roots, 5 X ... appears three or four times in each

row of the table of real roots of S} (z) and the symbol 6 x ...

occurs in all rows

except the 11th, 22nd, 31st and 41st rows.

2° Let rr (S (x)) stand for the number of real roots of polynomial S (z). Then either
r (i, (z)) = 1411 (S5(2)) or 11 (S,
n < 1024. Furthermore, if rr (S, ,(z)) = k + rr(S;(z)) and simultaneously
1 (S (@) < rr(S: i, (x)) and rr(
or k=5 for every k,n € N, k+n < 1024.

3° In each row of the table of real roots of polynomials S (x) there are either 20 or
21 successive polynomials S} (z).

1(2)) = rr(S;(x)) — 3 for each n € N,

*_1(x)) > 11 (S;(x)) then either k = 4

n—1
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Now, for each m € N, set

S2m+1 (Z‘)
Tomy1(z) := 2@+ 12

Note that the functions Ts,,(x) have been already defined in (13).

Now all the coefficients of T}, (z) are rational, so one can express them as irreducible
fractions, multiply 7}, (x) by their least common denominator and then divide, if
necessary, by the greatest common factor of the numerators of the fractions. Then
we obtain the new polynomial denoted henceforth by T¥(z), all coefficients of which
are integers with the greatest common divisor equal to 1. Furthermore, T (z) can
be treated as a polynomial in variable (22 + x — a) for every @ € C and n € N,
n > 4 (see [11]). The sequence {a,}, where a,, := A251926(n) := the remainder in
the division of T (z) by 2? + x — 1 for every n > 4 (A251926 means the number of
the respective sequence in Sloane’s OEIS) is of a special interest since a,, is equal also
to the remainder in the division of @, (x) by 2 + x — 1 for every n > 4, where

S,(z), if ne2N-1,

Q)= {2 o

The first 25 elements of this sequence are: 2, 1, 1, 1, 1, 0, 0, 1, 37, —60, —5, 37, 174,
—955, —10545, 38610, 176297, —322740, —205420, 4512655, 56820585, —104019264,
—25907081, 94854194, 1141847218.

Below we present the triangle of coefficients of polynomials 77 (x), for 4 < n < 17,
treated as the polynomials in the variable 22 + z — 1:

2, 3,

1, 2,

1, 3, 3,

1, 2, 3,

1, 4, 9, 9,

0, 2, 1, 2,

0, 1, 9, 2, 3,
1, =2 9, 0, 2,

37, 83, —155, 385, 0, 105,
—60, 194, —208, 174, —25, 30,

~5, -8, 38 —34, 24, -3, 3,
37, 114, 139, —84, 37, —6, 3,
174, 291, —1250, 1300, —655, 245, —35, 15,
—955, 2054, —3558, 2244, —855, 240, —35, 10.

For example the sequence 1,—2,5,0,2 (8th row of the triangle) corresponds to the
decomposition

Th(z)=1-2"+2—1)+5@* +2 - 1) +2(2* + 2 — 1)~
We also observe the specific relations

Ti(x) —Ti(x)=2*+2 = ay—az=1,
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@) —Ti(@) =2 +o -1 = a=as,
Ty(z) = (> + o —1)(22* + 42 — 2> =32 +3) = ay=0.
The remainder R, in the division of T)*(z) by #? + z has been discussed by

D.E. Knuth in [11]. In Section 7 of [11] he proved that R, is equal to the numer-
ator of (22")32(,1_1) for every n € N.

2.3. Figures

In the following figures there are presented the distributions of nonreal complex
roots which we will refer to as “complex roots” for short of selected polynomials S7, (x)

and 57, (z — 3).

L
5
‘,
h

— Im(z)

ol 10 20 30 40 5

Fig. 1. Parabolas approximating the locations of the complex roots of SZ, (x) from positive quadrant
(i.e. Re(z) > 0 and I'm(z) > 0) for selected values of m

In Fig. 1 the respective parabolas have the following equations (starting from the
bottom):

m = 50: y = 3.0426 + 0.25066z — 0.06974522;

m = 100: y = 6.0301 + 0.251092 — 0.035904z;
m = 150: y = 9.0404 + 0.24541z — 0.02410422;
m = 200: y = 12.013 + 0.24901z — 0.01840922;
m = 250: y = 15.009 + 0.24801z — 0.014823z2;
m = 300: y = 17.976 + 0.25073z — 0.012489z2;
m = 350: y = 20.968 + 0.250362 — 0.010751z2.
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Im(z)
arg 3=2.82564 I arg 2/~ 0.69472
04
|2T>1.73117 L |2| 5/0.84023
02
L L L L L L L L L L L L L L L L L L L L L L Re(Z)
-15 -10 -05 I 0.5
-0.2¢
|zl ="1.73117 L |z] =Q.84023
~04}
argz= 3.45753 i arg zx 5.58845
Fig. 2. Distribution of the complex roots of S} (x)
Im(z)
arg zxxgr — 0.43901 = 2.70257 r arg z =40.43901
g al g
|=1.26540 | (2] = 1.26549
02}
L 1 L L L L 1 L L L L L L L L L 1 L L L L 1 L Re(z)
-15 -1.0 I 0.0 0.5
~02}
(2| = 1.26549 I | = 1.26549
—04"}
argz= —2.70257 [ argz = Q43901

Fig. 3. Distribution of the complex roots of S;,(z — %) = TllBll(x + %)
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In Fig. 4-6 the external collection of numbers represents the moduli of the respec-
tive roots, whereas the internal collection represents their arguments.

Im(z)
3
2 48 1.0988
2
256527 0.83831
427915 362654
69 0618
0 . 2,96163
8474 , J— 041579
98259 6 3128 0.23388
00 2 ;____ﬁm_ 0.0626
43 A41 257748 86338
055 -1 296183
5968 656468
417915 382854
9 24487
-2 5.
400569 5184
-3
Fig. 4. The distribution of the complex roots of 53, (x)
Im(z)
3
5769 066389
41558 0726
388147 388147
61991 052167
331709 3.31709
9524 2.9989 2.9989 0:34634
%5 77688 77688 o
60
209166 >4
> \‘ — 2
9522 77688 77688 =6-18939
o574 2.9989 29989 —6.34634
331709 - 331709
61991 ~0.52167
388147 388147
_247 Q.72
558 " 6
—245769 25.98389
-3

Fig. 5. Distribution of the complex roots of S5, (x — %) = 3—13B33 (z + %)
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