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Abstract. This paper is devoted to the decomposition of Faulhaber polynomials
Sm(x) into iterated integrals. It has been noticed, by the way, that these polynomials
provide the primary example of so-called semihyperbolic polynomials. There are also
presented some interesting properties concerning the number of complex roots (as well

as the real roots) of translated Faulhaber polynomials S∗
m(x) = Sm(x) + Bm+1

m+1 , where
Bm+1 denotes the respective Bernoulli number for each m ≤ 1024. Three of these
properties are particularly intriguing. 1◦ If a polynomial S∗

m+1(x) has more nonreal
complex roots than S∗

m(x) does then their number is always greater than 4 for all
m ≤ 1023. 2◦ If S∗

n, S∗
n+1,. . . ,S∗

n+k have the same number of nonreal complex roots
but S∗

n+k+1 possesses more such roots and S∗
n−1 possesses less such roots then either

k = 4 or k = 5 for all k, n ∈ N, n + k ≤ 1024. 3◦ If S∗
n has 12 nonreal complex

roots less than S∗
n+k and simultaneously 16 less than S∗

n+k+1 and 4 more than S∗
n−1,

then either k = 19 or k = 20 for every k, n ∈ N, 11 ≤ n and k + n ≤ 1024. The
authors are convinced – and the results of numerical calculations seem to confirm this
opinion – that all the properties hold for infinitely many values of n ∈ N. Similar
observations concerning the real roots of polynomials S∗

n are also presented in the
paper. Furthermore, the envelopes of the complex roots distributions of polynomials
S∗
m(x) are generated for some special values of m.
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1. Introduction

While working on the monograph [15] Witu la has formulated the following problem:

Question. Given a number m ∈ N find all sequences {ak}m+1
k=1 ⊂ R such that

m!

∫ n

am+1

dxm

∫ xm

am

dxm−1 . . .

∫ x1

a1

dx0 =

n
∑

k=1

km (1)

for every n ∈ N.

The goal of this paper is to solve the above problem, or more precisely, to find its
connection with the problem of the decomposition of Faulhaber polynomials Sm(x)
into iterated integrals. To this aim recall that polynomials Sm(x) are defined in the
following way

Sm(x) =
1

m + 1

m
∑

k=0

(

m + 1

k

)

Bkx
m+1−k, m ∈ N, (2)

where Bk’s are the modified Bernoulli numbers [7, 15, 16] with initial values B0 = 1,
B1 = 1

2 , B2 = 1
6 , B4 = − 1

30 , B6 = 1
42 and B2k+1 = 0, k ∈ N. These polynomials

satisfy the condition

Sm(n) =

n
∑

k=1

km

for m,n ∈ N.
The Faulhaber polynomials are the primary examples of so-called semihyperbolic

polynomials1, i.e. polynomials p ∈ R[x] such that all derivatives
dkp

dxk
, 0 ≤ k < δ

possess at least one real root, where δ denotes the degree of p. Note that in this case
(and only in this case) there exist α1, α2, . . . , αδ ∈ R such that

A

∫ x

αδ

dxδ

∫ xδ

α−1+δ

dx−1+δ · · ·
∫ x2

α1

dx1 =
1

δ!
p(x),

where A denotes the leading coefficient of p (see [8]2).
Iterated integrals of this type represent the volumes of some polyhedrons all faces

of which are triangular and one coordinate of one of the vertices is a variable. However
this is not the subject of consideration here3.

1 Recall that a polynomial is said to be hyperbolic provided that all its roots are real. The Faulhaber
polynomials represent an example of a family of polynomials which are semihyperbolic, but not
hyperbolic.
2 Actually [8] constitutes the second part of this article.
3 It is worth mentioning that expressing a special function as an iterated integral is studied by nu-
merous scientists, such is in the case with the classical multiple zeta values. See also the Vinogradov-
Korobov method of estimation of some exponential integrals in Ivič’s monograph [9, Chapter 6].



Iterated integrals of Faulhaber polynomials. . . 203

1.1. Technical preliminaries

Consider the function

fm(x) = m!

∫ x

am+1

dxm

∫ xm

am

dxm−1 . . .

∫ x1

a1

dx0, x ∈ R,

where m ∈ N and a1, . . . , am+1 are reals. It is easy to see that fm(x) is a polynomial
of degree m + 1. Our main aim is to find all possible numbers a1, a2, . . . am+1 such
that fm(x) ≡ Sm(x). We have

dpfm(x)

dxp
= m!

∫ x

am+1−p

dxm−p

∫ xm−p

am−p

dxm−1−p . . .

∫ x1

a1

dx0

for every p = 0, 1, . . . ,m, and
dm+1fm(x)

dxm+1
= m!. Then the coefficient of xp in fm(x)

is equal to

1

p!

dpfm(x)

dxp

∣

∣

∣

x=0
=

m!

p!

∫ 0

am+1−p

dxm−p

∫ xm−p

am−p

dxm−1−p . . .

∫ x1

a1

dx0

for every p = 0, 1, . . . ,m, and
1

(m + 1)!

dm+1fm(x)

dxm+1

∣

∣

∣

x=0
=

m!

(m + 1)!
=

1

m + 1
. Com-

paring the above equalities with the corresponding coefficients of the polynomial
Sm(x) we get

m!

∫ 0

am+1

dxm

∫ xm−1

am−1

dxm−2 . . .

∫ x1

a1

dx0 = 0 (3)

and

m!

p!

∫ 0

am+1−p

dxm−p

∫ xm−p

am−p

dxm−1−p . . .

∫ x1

a1

dx0 =
1

m + 1

(

m + 1

m + 1− p

)

Bm+1−p,

i.e.
∫ 0

am+1−p

dxm−p

∫ xm−p

am−p

dxm−1−p . . .

∫ x1

a1

dx0 =
Bm+1−p

(m + 1− p)!

for every p = 1, 2, . . . ,m. After rescaling the subscript m + 1− p := k we get

∫ 0

ak

dxk−1

∫ xk−1

ak−1

dxk−2 . . .

∫ x1

a1

dx0 =
Bk

k!
(4)

for every k = 1, 2, . . . ,m. Hence we can see that values of sought numbers ai,
i = 1, 2, . . . , k do not depend on m, whenever m ≥ k and by some straightforward

calculations we easily find a1 = −1

2
, a2 ∈

{1

6
(−3±

√
3)
}

, a3 ∈
{

− 1,−1

2
, 0
}

.
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Assume that we have already found the numbers a1, a2, . . . , aj for some
j ∈ {1, 2, . . . ,m− 1}. Then, if we want to find the values of aj+1 we must solve the
equation

∫ 0

y

dxj

∫ xj

aj

dxj−1 . . .

∫ x1

a1

dx0 =
Bj+1

(j + 1)!
(5)

for y. It is an algebraic equation of degree j + 1. Let Aj+1 be the set of its solutions
(we assume Aj+1 to be the set of all complex solutions since we know nothing about
the real ones). To solve (5) we need the following auxiliary result.

Lemma 1.1. For every j = 1, 2, . . . the following identity holds

∫ x

aj

dxj−1 . . .

∫ x1

a1

dx0 =
Sj−1(x)

(j − 1)!
+

Bj

j!
. (6)

Proof. The proof follows by induction with respect to j.
We have

∫ x

a1

dx0 = x +
B1

1!
= S0(x) +

B1

1!
.

Assume that for some l ∈ N we have
∫ x

al

dxl−1

∫ xl−1

al−1

dxl−2 . . .

∫ x1

a1

dx0 =
Sl−1(x)

(l − 1)!
+

Bl

l!
.

Then we obtain

∫ x

al+1

dxl

∫ xl

al

dxl−1 . . .

∫ x1

a1

dx0

=

∫ 0

al+1

dxl

∫ xl

al

dxl−1 . . .

∫ x1

a1

dx0 +

∫ x

0

dxl

∫ xl

al

dxl−1 . . .

∫ x1

a1

dx0

(6)
=

Bl+1

(l + 1)!
+

∫ x

0

(Sl−1(xl)

(l − 1)!
+

Bl

l!

)

dxl. (7)

By (2) we have

∫

Sl−1(t)

(l − 1)!
dt =

1

(l − 1)!

∫

1

l

l−1
∑

k=0

(

l

k

)

Bkt
l−kdt =

1

l!

l−1
∑

k=0

(

l

k

)

Bk

tl+1−k

l + 1− k
+ C

=
1

l!

(

(

1

l + 1

l
∑

k=0

(

l + 1

k

)

Bkt
l+1−k

)

−Blt

)

+ C =
Sl(t)−Blt

l!
+ C, (8)

and hence
∫ x

0

(Sl−1(xl)

(l − 1)!
+

Bl

l!

)

dxl =
Sl(x)− Sl(0)

l!
=

Sl(x)

l!
. (9)

Therefore equality (6) is satisfied for j = l + 1. This completes the proof. ⊓⊔
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Corollary 1.2. For every j = 1, 2, . . . the equation (5) is equivalent to

Sj(y) = −Bj+1

j + 1
.

Proof. From (6) and (9) we get

∫ 0

y

dxj

∫ xj

aj

dxj−1 . . .

∫ x1

a1

dx0

=

∫ 0

y

(

Sj−1(xj)

(j − 1)!
+

Bj

j!

)

dxj =
Sj(0)− Sj(y)

j!
= −Sj(y)

j!
. (10)

⊓⊔

The only remaining problem is to determine the value of am+1. Note that fm(am+1)
= 0, so am+1 must satisfy the condition

Sm(am+1) = 0. (11)

Thus am+1 could be any real root of polynomial Sm(x). Since for any m ∈ N we have
Sm(0) = Sm(−1) = 0, therefore 0 or −1 may be possible values of am+1.

2. The form of sets Aj

Fix m ∈ N and set A1 = {−1
2 }. For every j = 1, 2, . . . ,m − 1 determine the set

Aj+1 of all y satisfying the equation

Sj(y) = −Bj+1

j + 1
. (12)

Let Am+1 be the set of all roots of the polynomial Sm(x). In particular, {−1, 0} ⊂
Am+1. We note that if j ≥ 2 is even, then by (12) the set Aj+1 is the same for every
m ≥ j.

2.1. Modified Faulhaber polynomials

Consider the translated Faulhaber polynomials

S∗
m(x) := Sm(x) +

Bm+1

m + 1
, m ∈ N0.

The polynomial S∗
m(x) is divisible by x(x + 1)(2x + 1) if m ≥ 2 is even (Faulhaber

was aware of this fact only for some selected values of m, for more information see
[5, 6, 11, 12]). Clearly S∗

2m(x) = S2m(x).
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Setting

T2m(x) :=
S∗
2m(x)

x(x + 1)(2x + 1)
(13)

we get the following relation (see [11]):

T2m

(

x− 1

2

)

= T2m

(

− x− 1

2

)

(14)

for every m ∈ N, m ≥ 2. Therefore the function R ∋ x 7→ T2m

(

x− 1
2

)

is even. It turns

out that, likewise, every function R ∋ x 7→ S∗
2m+1

(

x− 1
2

)

, m ∈ N, is even. These facts
can be observed in Figures 4, 5 and 6 where the symmetries – both axial and polar
– of the sets of roots of the appropriate polynomials are clearly visible. The above
observations follow from the properties of an even real polynomial q(x): if a complex
number z is a root of multiplicity k of q(x) then z, −z and −z are roots of multiplicity
k of q(x) as well. Moreover,

(m + 1)S∗
m(x) = Bm+1(x + 1),

where Bm(x) denotes the m-th Bernoulli polynomial. This relation implies also that
facts presented below, concerning the number of complex and real roots of polynomials
S∗
m(x), are analogical as for the case of Bernoulli polynomials Bm+1(x) for every

m ∈ N.

2.2. Remarks on the roots of the polynomials S
∗

m
(x)

In this section we present several facts obtained solely by numerical computations.
They concern the number of nonreal complex roots of the polynomials S∗

n(x) and
the number of the real roots of S∗

n(x). We observed and described some rules for the
growth of the number of the roots.

If 5 ≤ m ≤ 10 then polynomials S∗
m(x) possess only four complex roots: cm,1, cm,1,

cm,2, cm,2, such that

Im cm,1 = Im cm,2 and Re cm,2 = −1− Re cm,1. (15)

All the other roots are real. The subsequent polynomials have similar properties: for
11 ≤ m ≤ 15 the polynomials S∗

m(x) have two quadruples of roots of type (15),
whereas for 16 ≤ m ≤ 20 there are three quadruples of roots of this type and so on.

Moreover for each m ∈ N the number of nonreal complex roots of the polynomial
S∗
m(x) either is the same or increases by 4 in comparison with the number of nonreal

complex roots of the polynomial S∗
m−1(x). However this property cannot be treated

as a rule. Starting from S∗
0 (x), the results of numerical computations of the number of

nonreal complex roots of the successive polynomials S∗
n(x) are presented below. Each

row refers to 21 consecutive polynomials; furthermore we use the following notation:
the number a of successive polynomials S∗

n(x) × the number b of nonreal complex
roots possessed by each of a consecutive polynomials. For instance the starting element
5× 0 means that each of polynomials S∗

0 , . . . , S
∗
4 has no nonreal complex roots.
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The table of nonreal complex roots of S∗
n

(x), n ≤ 1024

(Polynomials are counted consecutively in rows, from left to right, according to the
first factor of product a× b. An element a× b of the table corresponds to a successive
polynomials S∗

n(x), all of which have b nonreal complex roots).

5× 0, 6× 4, 5× 8, 5× 12,
6× 16, 5× 20, 5× 24, 5× 28,
6× 32, 5× 36, 5× 40, 5× 44,
6× 48, 5× 52, 5× 56, 5× 60,←− This symbol means that each
5× 64, 6× 68, 5× 72, 5× 76, of five successive polynomials
5× 80, 5× 84, 6× 88, 5× 92, S∗

79, S
∗
80, . . . , S

∗
83 possesses

5× 96, 5× 100, 6× 104, 5× 108, the same number of 60
5× 112, 5× 116, 6× 120, 5× 124, nonreal complex roots.
5× 128, 5× 132, 5× 136, 6× 140,
5× 144, 5× 148, 5× 152, 6× 156,
5× 160, 5× 164, 5× 168, 5× 172,←− 11th row
6× 176, 5× 180, 5× 184, 5× 188,
6× 192, 5× 196, 5× 200, 5× 204,
6× 208, 5× 212, 5× 216, 5× 220,
5× 224, 6× 228, 5× 232, 5× 236,
5× 240, 6× 244, 5× 248, 5× 252,
5× 256, 5× 260, 6× 264, 5× 268,
5× 272, 5× 276, 6× 280, 5× 284,
5× 288, 5× 292, 5× 296, 6× 300,
5× 304, 5× 308, 5× 312, 6× 316,
5× 320, 5× 324, 5× 328, 6× 332,
5× 336, 5× 340, 5× 344, 5× 348,←− 22nd row
6× 352, 5× 356, 5× 360, 5× 364,
6× 368, 5× 372, 5× 376, 5× 380,
5× 384, 6× 388, 5× 392, 5× 396,
5× 400, 6× 404, 5× 408, 5× 412,
5× 416, 5× 420, 6× 424, 5× 428,
5× 432, 5× 436, 6× 440, 5× 444,
5× 448, 5× 452, 5× 456, 6× 460,
5× 464, 5× 468, 5× 472, 6× 476,
5× 480, 5× 484, 5× 488, 5× 492,←− 31st row
6× 496, 5× 500, 5× 504, 5× 508,
6× 512, 5× 516, 5× 520, 5× 524,
6× 528, 5× 532, 5× 536, 5× 540,
5× 544, 6× 548, 5× 552, 5× 556,
5× 560, 6× 564, 5× 568, 5× 572,
5× 576, 5× 580, 6× 584, 5× 588,
5× 592, 5× 596, 6× 600, 5× 604,
5× 608, 5× 612, 5× 616, 6× 620,
5× 624, 5× 628, 5× 632, 6× 636,
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5× 640, 5× 644, 5× 648, 5× 652,←− 41st row
6× 656, 5× 660, 5× 664, 5× 668,
6× 672, 5× 676, 5× 680, 5× 684,
5× 688, 6× 692, 5× 696, 5× 700,
5× 704, 6× 708, 5× 712, 5× 716,
5× 720, 6× 724, 5× 728, 5× 732,
5× 736, 5× 740, 6× 744, 5× 748,
5× 752, 5× 756, 6× 760, 5× 764,
5× 768, 5× 772, 5× 776, 6× 780.

Remark 2.1. The calculations were performed to a precision of 30000 sign digits.4

Rules of increase in the number of nonreal complex roots of polynomials

S∗
n

(x)

1◦ The symbol 5 × . . . occurs three or four times in each row of the table presented
above. Moreover, the symbol 6× . . . appears in all rows except for the 11th, 22nd,
31st and 41st rows. In other words, every row of the table of nonreal complex roots
of polynomials S∗

n(x), n ≤ 1024, contains 21 successive polynomials S∗
n(x), except

for the 11th, 22nd, 31st and 41st rows where there are 20 of them.
2◦ Let ncr (S∗

n(x)) stand for the number of nonreal complex roots of polynomial S∗
n(x),

for every n ∈ N. Then either ncr
(

S∗
n+1(x)

)

= ncr (S∗
n(x)) or ncr

(

S∗
n+1(x)

)

=
4 + ncr (S∗

n(x)) for each n ∈ N, n < 1024.
3◦ (Generalisation of the first rule) Fix k, n ∈ N. If ncr

(

S∗
n+k(x)

)

= 12 + ncr (S∗
n(x))

and ncr (S∗
n(x)) = 4+ncr

(

S∗
n−1(x)

)

and ncr
(

S∗
n+k+1(x)

)

= 4+ncr
(

S∗
n+k(x)

)

then
either k = 19 or k = 20, whenever n ≥ 11 and k + n ≤ 1024.

We have also noticed some regularities concerning the number of real roots of
polynomials S∗

n(x). Namely, for the polynomials S∗
n(x), 0 ≤ n ≤ 4, the number of real

roots increases with n from 1 to 5, in case of the polynomials S∗
n(x), 7 ≤ n ≤ 11, the

number of real roots increases with n from 4 to 8, etc. To denote this we shall use an
arrow i.e. the symbol ր.

4 The reason for using such a high accuracy is the arithmetic nature of the Bernoulli numbers.
Namely, let B2n = N2n/D2n represent the 2n-th Bernoulli number, where N2n is the numerator,
D2n is the denominator and the numbers N2n, D2n are relatively prime, i.e. GCD(N2n, D2n) = 1.
By the von Staudt-Clausen Theorem, the denominator D2n is the product of distinct primes ri such
that (ri − 1)|2n. It was proven in [14] that if p > 7 is a prime number and 2p− 1 is also prime then

∣

∣

∣

∣

N2p−2

N2p

∣

∣

∣

∣

> 910π2 > 8981.

Note that for p = 7 we obtain
∣

∣

∣

∣

N12

N14

∣

∣

∣

∣

=
691

7
> 10π2.

It is a conjecture that the ratio
∣

∣

∣

N2p−2

N2p

∣

∣

∣

for primes p is unbounded. Besides, it is known that for

each n ∈ N the following inequality holds (see [1]):

2(2n)!

(2π)2n
< |B2n| <

22n−1

22n−1 − 1
·

2(2n)!

(2π)2n
.

Let us emphasize that there is an interesting Akiyama-Tanigawa algorithm for computing Bernoulli
numbers in the analogous way like in Pascal’s triangle for computing binomial coefficients – see [10].
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We present these observations in the form of a table similar to the one for the
nonreal complex roots.

The table of real roots of successive polynomials S∗
n

(x), n ≤ 1024

5× (1ր 5), 6× (2ր 7), 5× (4ր 8), 5× (5ր 9),
5× (6ր 10), 6× (7ր 12), 5× (9ր 13), 5× (10ր 14),
5× (11ր 15), 6× (12ր 17), 5× (14ր 18), 5× (15ր 19),
5× (16ր 20), 6× (17ր 22), 5× (19ր 23), 5× (20ր 24),
5× (21ր 25), 6× (22ր 27), 5× (24ր 28), 5× (25ր 29),
5× (26ր 30), 5× (27ր 31), 6× (28ր 33), 5× (30ր 34),
5× (31ր 35), 5× (32ր 36), 6× (33ր 38), 5× (35ր 39),
5× (36ր 40), 5× (37ր 41), 6× (38ր 43), 5× (40ր 44),
5× (41ր 45), 5× (42ր 46), 5× (43ր 47), 6× (44ր 49),
5× (46ր 50), 5× (47ր 51), 5× (48ր 52), 6× (49ր 54),
5× (51ր 55), 5× (52ր 56), 5× (53ր 57), 5× (54ր 58),← 11th row
6× (55ր 60), 5× (57ր 61), 5× (58ր 62), 5× (59ր 63),
6× (60ր 65), 5× (62ր 66), 5× (63ր 67), 5× (64ր 68),
6× (65ր 70), 5× (67ր 71), 5× (68ր 72), 5× (69ր 73),
5× (70ր 74), 6× (71ր 76), 5× (73ր 77), 5× (74ր 78),
5× (75ր 79), 6× (76ր 81), 5× (78ր 82), 5× (79ր 83),
5× (80ր 84), 5× (81ր 85), 6× (82ր 87), 5× (84ր 88),
5× (85ր 89), 5× (86ր 90), 6× (87ր 92), 5× (89ր 93),
5× (90ր 94), 5× (91ր 95), 5× (92ր 96), 6× (93ր 98),
5× (95ր 99), 5× (96ր 100), 5× (97ր 101), 6× (98ր 103),
5× (100ր 104), 5× (101ր 105), 5× (102ր 106), 6× (103ր 108),
5× (105ր 109), 5× (106ր 110), 5× (107ր 111), 5× (108ր 112),← 22nd row
6× (109ր 114), 5× (111ր 115), 5× (112ր 116), 5× (113ր 117),
6× (114ր 119), 5× (116ր 120), 5× (117ր 121), 5× (118ր 122),
5× (119ր 123), 6× (120ր 125), 5× (122ր 126), 5× (123ր 127),
5× (124ր 128), 6× (125ր 130), 5× (127ր 131), 5× (128ր 132),
5× (129ր 133), 5× (130ր 134), 6× (131ր 136), 5× (133ր 137),
5× (134ր 138), 5× (135ր 139), 6× (136ր 141), 5× (138ր 142),
5× (139ր 143), 5× (140ր 144), 5× (141ր 145), 6× (142ր 147),
5× (144ր 148), 5× (145ր 149), 5× (146ր 150), 6× (147ր 152),
5× (149ր 153), 5× (150ր 154), 5× (151ր 155), 5× (152ր 156),← 31st row
6× (153ր 158), 5× (155ր 159) 5× (156ր 160), 5× (157ր 161),
6× (158ր 163), 5× (160ր 164) 5× (161ր 165), 5× (162ր 166),
6× (163ր 168), 5× (165ր 169) 5× (166ր 170), 5× (167ր 171),
5× (168ր 172), 6× (169ր 174) 5× (171ր 175), 5× (172ր 176),
5× (173ր 177), 6× (174ր 179) 5× (176ր 180), 5× (177ր 181),
5× (178ր 182), 5× (179ր 183) 6× (180ր 185), 5× (182ր 186),
5× (183ր 187), 5× (184ր 188) 6× (185ր 190), 5× (187ր 191),
5× (188ր 192), 5× (189ր 193) 5× (190ր 194), 6× (191ր 196),
5× (193ր 197), 5× (194ր 198) 5× (195ր 199), 6× (196ր 201),
5× (198ր 202), 5× (199ր 203) 5× (200ր 204), 5× (201ր 205),← 41st row
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6× (202ր 207), 5× (204ր 208) 5× (205ր 209), 5× (206ր 210),
6× (207ր 212), 5× (209ր 213) 5× (210ր 214), 5× (211ր 215),
5× (212ր 216), 6× (213ր 218) 5× (215ր 219), 5× (216ր 220),
5× (217ր 221), 6× (218ր 223) 5× (220ր 224), 5× (221ր 225),
5× (222ր 226), 6× (223ր 228) 5× (225ր 229), 5× (226ր 230),
5× (227ր 231), 5× (228ր 232) 6× (229ր 234), 5× (231ր 235),
5× (232ր 236), 5× (233ր 237) 6× (234ր 239), 5× (236ր 240),
5× (237ր 241), 5× (238ր 242) 5× (239ր 243), 6× (240ր 245).

In the following table we give examples of polynomials S∗
m(x) and their roots for

some selected values of m ∈ N0.

m S∗

m(x)
real roots (all combinations

of signs ± should be taken into account)

0
1

2
(2x + 1) −1

2

1
1

12
(6x2 + 6x + 1)

1

6
(−3 ±

√
3)

2
1

6
x(x+ 1)(2x + 1) −1,−1

2
, 0

3
1

120
(30x4 + 60x3 + 30x2 − 1)

1

30

(

±
√

15
(

15 ± 2
√
30
)

− 15

)

4
1

30
x(x+ 1)(2x+ 1)(3x2 + 3x − 1) −1,− 1

2
, 0,

1

6

(

−3 ±
√
21
)

10

1

66
x(x + 1)(2x + 1)(x2 + x − 1)×

×(3x6 + 9x5 + 2x4 − 11x3 + 3x2 + 10x − 5)

−1,− 1

2
, 0,

1

2
(−1 ±

√
5),

−1.51868, 0.51868

5

1

252

(

42x
6
+ 126x

5
+

+105x4 − 21x2 + 1
)

−0.7524,−0.2475

7

1

240

(

30x8 + 120x7 + 140x6+

−70x4 + 20x2 − 1
)

−1.2472,−0.7506

−0.2493, 0.2472

9

1

660

(

66x10 + 330x9 + 495x8+

−462x6 + 330x4 − 99x2 + 5
)

−1.5739,−1.2499,−0.75015

−0.2498, 0.2499, 0.5739

Rules of increase in the number of real roots of polynomials S∗
n

(x)

1◦ As in the case of nonreal complex roots, 5× . . . appears three or four times in each
row of the table of real roots of S∗

n(x) and the symbol 6 × . . . occurs in all rows
except the 11th, 22nd, 31st and 41st rows.

2◦ Let rr (S∗
n(x)) stand for the number of real roots of polynomial S∗

n(x). Then either
rr
(

S∗
n+1(x)

)

= 1 + rr (S∗
n(x)) or rr

(

S∗
n+1(x)

)

= rr (S∗
n(x)) − 3 for each n ∈ N,

n < 1024. Furthermore, if rr
(

S∗
n+k(x)

)

= k + rr (S∗
n(x)) and simultaneously

rr
(

S∗
n+k+1(x)

)

< rr
(

S∗
n+k(x)

)

and rr
(

S∗
n−1(x)

)

> rr (S∗
n(x)) then either k = 4

or k = 5 for every k, n ∈ N, k + n ≤ 1024.
3◦ In each row of the table of real roots of polynomials S∗

n(x) there are either 20 or
21 successive polynomials S∗

n(x).
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Now, for each m ∈ N, set

T2m+1(x) :=
S2m+1(x)

x2(x + 1)2
.

Note that the functions T2m(x) have been already defined in (13).
Now all the coefficients of Tn(x) are rational, so one can express them as irreducible

fractions, multiply Tn(x) by their least common denominator and then divide, if
necessary, by the greatest common factor of the numerators of the fractions. Then
we obtain the new polynomial denoted henceforth by T ∗

n(x), all coefficients of which
are integers with the greatest common divisor equal to 1. Furthermore, T ∗

n(x) can
be treated as a polynomial in variable (x2 + x − a) for every a ∈ C and n ∈ N,
n ≥ 4 (see [11]). The sequence {an}, where an := A251926(n) := the remainder in
the division of T ∗

n(x) by x2 + x − 1 for every n ≥ 4 (A251926 means the number of
the respective sequence in Sloane’s OEIS) is of a special interest since an is equal also
to the remainder in the division of Qn(x) by x2 + x− 1 for every n ≥ 4, where

Qn(x) :=

{

Sn(x), if n ∈ 2N− 1,
Sn(x)
2x+1 , if n ∈ 2N.

The first 25 elements of this sequence are: 2, 1, 1, 1, 1, 0, 0, 1, 37, −60, −5, 37, 174,
−955, −10545, 38610, 176297, −322740, −205420, 4512655, 56820585, −104019264,
−25907081, 94854194, 1141847218.
Below we present the triangle of coefficients of polynomials T ∗

n(x), for 4 ≤ n ≤ 17,
treated as the polynomials in the variable x2 + x− 1:

2, 3,
1, 2,
1, 3, 3,
1, 2, 3,
1, 4, 5, 5,
0, 2, 1, 2,
0, 1, 5, 2, 3,
1, −2, 5, 0, 2,

37, 83, −155, 385, 0, 105,
−60, 194, −208, 174, −25, 30,
−5, −8, 38, −34, 24, −3, 3,
37, −114, 139, −84, 37, −6, 3,

174, 291, −1250, 1300, −655, 245, −35, 15,
−955, 2954, −3558, 2244, −855, 240, −35, 10.

For example the sequence 1,−2, 5, 0, 2 (8th row of the triangle) corresponds to the
decomposition

T ∗
11(x) = 1− 2(x2 + x− 1) + 5(x2 + x− 1)2 + 2(x2 + x− 1)4.

We also observe the specific relations

T ∗
4 (x)− T ∗

5 (x) = x2 + x ⇒ a2 − a3 = 1,
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T ∗
6 (x)− T ∗

7 (x) = x2 + x− 1 ⇒ a4 = a5,

T ∗
9 (x) = (x2 + x− 1)(2x4 + 4x3 − x2 − 3x + 3) ⇒ a7 = 0.

The remainder Rn in the division of T ∗
n(x) by x2 + x has been discussed by

D.E. Knuth in [11]. In Section 7 of [11] he proved that Rn is equal to the numer-
ator of

(

2n
2

)

B2(n−1) for every n ∈ N.

2.3. Figures

In the following figures there are presented the distributions of nonreal complex
roots which we will refer to as “complex roots” for short of selected polynomials S∗

m(x)
and S∗

m

(

x− 1
2

)

.

0 10 20 30 40 50

5

10

15

20

Re(z)

Im(z)

Fig. 1. Parabolas approximating the locations of the complex roots of S∗

m(x) from positive quadrant

(i.e. Re(z) > 0 and Im(z) > 0) for selected values of m

In Fig. 1 the respective parabolas have the following equations (starting from the
bottom):

m = 50: y = 3.0426 + 0.25066x− 0.069745x2;
m = 100: y = 6.0301 + 0.25109x− 0.035904x2;
m = 150: y = 9.0404 + 0.24541x− 0.024104x2;
m = 200: y = 12.013 + 0.24901x− 0.018409x2;
m = 250: y = 15.009 + 0.24801x− 0.014823x2;
m = 300: y = 17.976 + 0.25073x− 0.012489x2;
m = 350: y = 20.968 + 0.25036x− 0.010751x2.
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Fig. 2. Distribution of the complex roots of S∗

10(x)

-1.5 -1.0 0.0 0.5

-0.4

-0.2

0.2

0.4

Re(z)

Im(z)

arg z = π − 0.43901 = 2.70257 arg z = 0.43901

|z| = 1.26549

|z| = 1.26549

|z| = 1.26549

|z| = 1.26549

arg z = −2.70257 arg z = −0.43901

Fig. 3. Distribution of the complex roots of S∗

10(x− 1
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) = 1

11
B11(x + 1

2
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In Fig. 4–6 the external collection of numbers represents the moduli of the respec-
tive roots, whereas the internal collection represents their arguments.
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Fig. 4. The distribution of the complex roots of S∗
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Fig. 5. Distribution of the complex roots of S∗
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Fig. 7. Distribution of the complex roots of polynomials S∗

42+3m(x), 0 ≤ m ≤ 36 (for the single
polynomial one should take into account the respective pairs of lines symmetric with respect
to the horizontal axis). Note that the imaginary axis is horizontal, and the real axis is vertical
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