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Damian S LOTA, Marcin SZWEDA,
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Abstract. The paper is devoted to the considerations on determinants of the block
arrowhead matrices. At first we discuss, in the wide technical aspect, the motivation
of undertaking these investigations. Next we present the main theorem concerning the
formulas describing the determinants of the block arrowhead matrices. We discuss also
the application of these formulas by analyzing many specific examples. At the end of
the paper we make an attempt to test the obtained formulas for the determinants of
the block arrowhead matrices, but in case of replacing the standard inverses of the
matrices by the Drazin inverses.
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1. Technical introduction – motivation for discussion

Observing the mathematical models, formulated for describing various dynami-
cal systems used in the present engineering, one can notice that in many of them
the block arrowhead matrices occur. One can find such matrices in the models of
telecommunication systems [10], in robotics [18], in electrotechnics [17] and in auto-
matic control [21]. In robotics, while modelling the dynamics of the kinematic chains
of robots, or in electrotechnical problems, while modelling the electromechanical con-
verters, there is often a need to formulate some equations in the coordinate systems
different the ones in which the original model was formulated. Especially in the theory
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of electromechanical converters one applies very widely the possibility of transform-
ing the mathematical models of the electromechanical converters form the natural
coordinate systems into the biaxial coordinate systems. The main goal of these trans-
formations is to eliminate the time dependence occurring in the coefficients of mutual
inductances, to increase the number of zero elements occurring in the matrices of
the appropriate mathematical model and, in consequence, to simplify this model and
to shorten the time needed for its solution. The forms of matrices transforming the
variables, occurring in the electromechanical converters, from the natural coordinate
systems into the biaxial coordinate systems can be deduced on the way of physical
reasoning. These matrices can be also found by using the methods of determining
the eigenvalues. Formulated matrices are applied, among others in the Park, Clark
and Stanley transformations [12, 9]. Elements of the transformation matrices contain
the eigenvalues of matrices of the electromechanical converter inductance coefficients.
These matrices can have, for example, the following forms [7]:

[Ks] =

√

2

3





cosϑs1 cosϑs2 cosϑs3

sinϑs1 sinϑs2 sinϑs3
1√
2

1√
2

1√
2



 , (1)

[Kr] =

√

2

Qr



















1 cosαr cos 2αr . . . cos(Qr − 1)αr

0 − sinαr − sin 2αr . . . − sin(Qr − 1)αr

1 cos 2αr cos 4αr . . . cos 2(Qr − 1)αr

0 − sin 2αr − sin 4αr . . . − sin 2(Qr − 1)αr

...
...

...
...

...
1√
2

1√
2

1√
2

1√
2

1√
2



















, (2)

where

ϑs1 = ϑs10 +

t
∫

0

Ωx dt, (3)

ϑs2 = ϑs20 +

t
∫

0

Ωx dt = ϑs10 +
2π

3
+

t
∫

0

Ωx dt, (4)

ϑs3 = ϑs30 +

t
∫

0

Ωx dt = ϑs10 +
4π

3
+

t
∫

0

Ωx dt, (5)

whereas ϑs10, ϑs20, ϑs30 denote the initial angles between the axes of respective phases
of the stator and axis X of the biaxial system XY for moment of time t = 0; p means
the number of pole pairs, αr denotes the rotor bar pitch and Ωx describes the angular
velocity of rotation of the biaxial system XY around the stator.

Matrix of the mutual and self inductance coefficients written in the natural coor-
dinate system, that is in the phase system, possesses the block structure – it is the
full matrix of the form

M =

[

Mss Msr

MT
sr Mrr

]

. (6)

Particular forms of matrices, of this type can be found, for example, in [7].
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Method of transforming the matrix (6) of inductance coefficients into the new
coordinate system XY by using the transformation matrices (1) and (2) is as follows

[

MXY
ss

]

= [Ks] [Mss] [Ks]
T
, (7)

[

MXY
rr

]

= [Kr] [Mrr] [Kr]
T
, (8)

[

MXY
sr

]

= [Ks] [Msr] [Kr]
T
. (9)

By merging the obtained results we get the block arrowhead matrix [8], also in the
form presented in paper [17].

Matrices (1) and (2) are often used for constructing the systems for regulating
the electromechanical converters, such as the various versions of the vector control
methods for the squirrel cage induction motors [13, 19]. Thus, there is a need for de-
veloping the effective methods of calculating the determinants of the block arrowhead
matrices. Only to this issue the second part of this paper (see [17]) will be devoted.

2. The block arrowhead matrices

We use the following notation in this paper:

0 denotes the zero matrix of the respective size (of dimensions m× n),
1 denotes the identity matrix of the respective order (of order n).

We present now the main result of this paper concerning the form of determinants
of the block arrowhead matrices. In Section 3 we examine few examples illustrating
the application of the obtained relations.

Theorem 2.1.

1. Let us consider the block matrix M2 =

[

Aa×a Ba×b

Cb×a Db×b

]

. The following implications

hold:

(a) If detD 6= 0, then detM2 = detD det(A−BD−1C).
(b) If detA 6= 0, then detM2 = detAdet(D − CA−1B).

In Remark 2.2, after the proof of the above theorem, we discuss the omitted
situation when detA = detD = 0 and a 6= b.

2. Let us consider the block matrix M3 =





Aa×a Ba×b Ea×c

Cb×a Db×b 0b×c

Fc×a 0c×b Gc×c



. The following impli-

cations hold

(a) If detA 6= 0 and det(D − CA−1B) 6= 0, then

detM3 = detAdet(D − CA−1B) det(G− FA−1E −

− FA−1B(D − CA−1B)−1CA−1E). (10)
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We note that if also detD 6= 0, then for the inverse of D−CA−1B the following
Banachiewicz formula (see [1]), also called the Sherman-Morrison-Woodbury
(SMW) formula (for some more historical information see [22, subchapter 0.8]),
could be applied (see also S. Jose, K. C. Sivakumar, Moore-Penrose inverse of

perturbated operators on Hilbert Spaces, 119-131, in [2]):

(D − CA−1B)−1 = D−1 +D−1C(A −BD−1C)−1BD−1.

The matrix A − BD−1C is of order a × a and the above formula is useful in
situations when a is much smaller than b and in all other situations when certain
structural properties of D are much more simple than of D − CA−1B.

(b) If detD 6= 0 and detG 6= 0, then

detM3 = detD detGdet(A−BD−1C − EG−1F ). (11)

(c) If either rank

[

B

D

]

+ rank

[

E

G

]

≤ b + c − 1 or rank
[

C D
]

+ rank
[

F G
]

≤

b+ c− 1, then detM3 = 0.
(d) If detG 6= 0, det(A− EG−1F ) 6= 0 and D = 0, then

detM3 = detGdet(A− EG−1F ) det(−C(A− EG−1F )−1B). (12)

In the sequel, if blocks B and C of M3 are the square matrices (that is a = b)
and D = 0, then

detM3 = (−1)a detGdetB detC. (13)

At last, if

rank

[

A− EG−1F B

C 0

]

= rank

[

A− EG−1F

C

]

+ rank
[

B
]

= rank
[

C
]

+ rank
[

A− EG−1F B
]

< a+ b,

then detM3 = 0.

3. The determinant of the following arrowhead matrix

Mn =















(A11)b1×b1 (A12)b1×b2 (A13)b1×b3 . . . (A1n)b1×bn

(A21)b2×b1 (A22)b2×b2 0b2×b3 . . . 0b2×bn

(A31)b3×b1 0b3×b2 (A33)b3×b3 . . . 0b3×bn

...
(An1)bn×b1 0bn×b2 0bn×b3 . . . (Ann)bn×bn















(14)

is equal to

(a)

detMn = det

(

A11 −

n
∑

i=2

A1iA
−1

ii Ai1

)

n
∏

j=2

detAjj , (15)

whenever detAii 6= 0 for i = 2, 3, . . . , n,
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(b)

detMn = (−1)bi detAi1 detA1i

n
∏

j=2

j 6=i

detAjj , (16)

whenever there exists i ∈ {2, 3, . . . , n} such that Aii = 0 and bi = b1.

4. The determinant of arrowhead matrix (14) is equal to

detMn = detA11

n
∏

i=2

det

(

Aii −Ai1

(

A11 −

i−1
∑

j=2

A1jA
−1

jj Aj1

)−1

A1i

)

, (17)

whenever detAjj 6= 0 for each j = 1, 2, . . . , n−1 and det
(

A11−
i−1
∑

j=2

A1jA
−1

jj Aj1

)

6= 0

for each i = 3, 4, . . . , n− 1. In case of i = 2 we take

i−2
∑

j=2

A1jA
−1

jj Aj1 := 0.

Proof.

1(a). Let us consider the case when D is the non-singular matrix. Then we have
the following decomposition

M2 =

[

Aa×a Ba×b

Cb×a Db×b

]

=

[

1a×a 0a×b

0b×a Db×b

] [

Aa×a Ba×b

(D−1C)b×a 1b×b

]

.

Thus we get detM2 = detD det

[

Aa×a Ba×b

(D−1C)b×a 1b×b

]

. Next we can write

[

Aa×a Ba×b

(D−1C)b×a 1b×b

]

=

[

1a×a Ba×b

0b×a 1b×b

] [

(A− BD−1C)a×a 0a×b

(D−1C)b×a 1b×b

]

,

from which we obtain

detM2 = detD det(A−BD−1C).

1(b). Let us now assume that A is the non-singular matrix. Then the following
equality holds true

[

1a×a 0a×b

(−CA−1)b×a 1b×b

] [

Aa×a Ba×b

Cb×a Db×b

]

=

[

Aa×a Ba×b

0b×a (D − CA−1B)b×b

]

,

Since

det

[

1a×a 0a×b

(−CA−1)b×a 1b×b

]

= 1,
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thus we receive

det

[

Aa×a Ba×b

Cb×a Db×b

]

= det

[

Aa×a Ba×b

0b×a (D − CA−1B)b×b

]

= detAdet(D − CA−1B).

2(a). Let detA 6= 0 and det(D − CA−1B) 6= 0. Then we get the decomposition





1a×a 0a×b 0a×c

−CA−1

b×a 1b×b 0b×c

Uc×a Vc×b 1c×c









Aa×a Ba×b Ea×c

Cb×a Db×b 0b×c

Fc×a 0c×b Gc×c



 =

=





Aa×a Ba×b Ea×c

0b×a (D − CA−1B)b×b (−CA−1E)b×c

0c×a 0c×b Wc×c



 ,

where

U : = −V CA−1 − FA−1,

V : = FA−1B(D − CA−1B)−1,

W : = G+ UE = G− FA−1E − V CA−1E,

which implies formula (10).
2(b). Now let detD 6= 0 i detG 6= 0. Then we get the decomposition





Aa×a Ba×b Ea×c

Cb×a Db×b 0b×c

Fc×a 0c×b Gc×c









1a×a 0a×b 0a×c

(−D−1C)b×a 1b×b 0b×c

(−G−1F )c×a 0c×b 1c×c



 =

=





(A−BD−1C − EG−1F )a×a Ba×b Ea×c

0b×a Db×b 0b×c

0c×a 0c×b Gc×c



 ,

which implies formula (11).
2(c). It is a folklore.
2(d). The following decomposition can be easily verified





A B E

C 0 0

F 0 G









1 0 0

0 1 0

−G−1F 0 1



 =





A− EG−1F B E

C 0 0

0 0 G



 .

Hence we obtain detM3 = detGdet

[

A− EG−1F B

C 0

]

. Now the formula (12)

follows from 1(b).
If blocks B and C of M3 are the square matrices (that is a = b) and D = 0 then
we obtain the decomposition given below





1 0 0

0 0 1

0 1 0









A B E

C 0 0

F 0 G









1 0 0

0 0 1

0 1 0



 =





A E B

F G 0

C 0 0



 ,

which implies formula (13).
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3(a). Now let the matrices Aii, for i = 2, 3, . . . , n, be non-singular. Then we get
the following decomposition















A11 A12 A13 . . . A1n

A21 A22 0 . . . 0

A31 0 A33 . . . 0

...
An1 0 0 . . . Ann





























1 0 0 . . . 0

−A−1
22 A21 1 0 . . . 0

−A−1
33 A31 0 1 . . . 0
...

−A−1
nnAn1 0 0 . . . 1















=

=



















A11 −
n
∑

i=2

A1iA
−1

ii Ai1 A12 A13 . . . A1n

0 A22 0 . . . 0

0 0 A33 . . . 0

...
0 0 0 . . . Ann



















implying formula (15).
3(b). Now let Aii = 0 for some i ∈ {2, 3, . . . , n} and let bi = b1. We obtain the
following decomposition (where on the left hand side of the equality sign we have
the product of four matrices):

























i

0bi×bn 1bi×bi

1b2×b2

1b3×b3

. . .

i 1bn×bn 0bn×bi

. . .

1b1×b1

















































0bn×b1 1bn×bn

1b2×b2

1b3×b3

. . .

1bi×bi

. . .

1b1×b1 0b1×bn

























×

×

























A11 A12 A13 . . . A1,n−1 A1n

A21 A22 0 . . . 0 0

A31 0 A33 . . . 0 0

...
Ai1 0 . . . 0 . . . 0

..

.
An1 0 0 . . . 0 Ann

















































i

1b1×b1

1b2×b2

1b3×b3

. . .

i 0bi×bn 1bi×bi

. . .

0bn×b1 1bn×bn 0bn×bi

























=

=

























Ai1 0 0 0 . . . 0

A21 A22 0 0 . . . 0

A31 0 A33 0 . . . 0

...
An1 0 0 . . . Ann . . . 0

...
A11 A12 A13 . . . A1,n−1 . . . A1i

























,
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from which we receive

detMn = α detAi1 detA1i

n
∏

j=2

j 6=i

detAjj ,

where

α = (−1)
bn

i∑

k=2

bk+bi
i∑

k=2

bk
· (−1)

b1
n∑

k=2

bk+bn
n∑

k=2

bk
· (−1)

bn
n∑

k=i

bk+bi
n−1∑

k=i

bk
=

= (−1)
2bn

n∑

k=2

bk+bi
n∑

k=2

bk+b2
i
+b1

n∑

k=2

bk
= (−1)

2b1
n∑

k=2

bk+b2
i

= (−1)b
2

i = (−1)bi .

4. Let X denote the block matrix given below

X =















1 0

X21 1

X31 X22 1

...
...

...
. . .

Xn1 Xn2 Xn3 . . . 1















,

where

Xij =



















−Ai1

(

A11 −
i−1
∑

k=2

A1kA
−1

kk Ak1

)−1

, i > j = 1,

Ai1

(

A11 −
i−1
∑

k=2

A1kA
−1

kk Ak1

)−1

A1jA
−1

jj , i > j > 1.

Since this is the lower triangular matrix, therefore its determinant is equal to

detX = (det 1)n = 1.

Hence, of we introduce the notation Y = XMn, then the quality holds true

detMn = detX detMn = det(XMn) = detY.

Let us find matrix Y . If condition i = j = 1 is fulfilled, then we get

Y11 = 1A11 = A11.

Next, if i = j > 1, then we obtain

Yii = −Ai1

(

A11 −

i−1
∑

k=2

A1kA
−1

kk Ak1

)−1

A1i +Aii =

= Aii −Ai1

(

A11 −

i−1
∑

k=2

A1kA
−1

kk Ak1

)−1

A1i.



Determinants of the block arrowhead matrices 81

In turn, if i > j = 1, then we have

Yi1 = −Ai1

(

A11 −
i−1
∑

k=2

A1kA
−1

kk Ak1

)−1

A11 +

+
i−1
∑

l=2

Ai1

(

A11 −
i−1
∑

k=2

A1kA
−1

kk Ak1

)−1

A1lA
−1

ll Al1 +Ai1 =

= −Ai1

(

A11 −

i−1
∑

k=2

A1kA
−1

kk Ak1

)−1(

A11 −

i−1
∑

l=2

A1lA
−1

ll Al1

)

+Ai1 = 0.

And finally, for i > j > 1 we obtain

Yij = −Ai1

(

A11 −

i−1
∑

k=2

A1kA
−1

kk Ak1

)−1

A1j +

+Ai1

(

A11 −

i−1
∑

k=2

A1kA
−1

kk Ak1

)−1

A1jA
−1

jj Ajj =

= −Ai1

(

A11−

i−1
∑

k=2

A1kA
−1

kk Ak1

)−1

A1j+Ai1

(

A11−

i−1
∑

k=2

A1kA
−1

kk Ak1

)−1

A1j = 0,

from which we conclude that matrix Y is the upper triangular matrix. It means
that its determinant is equal to

detY = detA11

n
∏

i=2

det

(

Aii −Ai1

(

A11 −

i−1
∑

k=2

A1kA
−1

kk Ak1

)−1

A1i

)

,

which leads directly, in view of the previous equalities, to formula (17).

⊓⊔

Remark 2.2. If
detA = detD = 0 and a 6= b, (18)

and despite of this detM2 6= 0, then we propose to change the decomposition of
matrix M2 into blocks so that the “new” matrices A and D would satisfy relations
detA 6= 0 or detD 6= 0.

Let us only notice that in case of fulfilling conditions (18), if A = 0 and D = 0,
then

rankM2 = rankC + rankD ≤ 2min{a, b} < a+ b,

that is detM2 = 0.
Hence, if A 6= 0, then, in the worst case, after the possible permutation of the

respective rows and columns (or only the rows, or only the columns), one can get that
a11 6= 0 and take A = [a11].
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For example, let M2 =





1 1 1
1 1 0

1 0 0



 . The new decomposition into blocks





1 1 1
1 1 0
1 0 0





solves this problem.
Let us consider additionally the following example:

M2 =













0 0 0 0 1
2 1 3 1 2

3 1 1 1 4
1 0 2 1 5
1 0 0 0 0













, detM2 = 2.

Let us notice that in this example for any decomposition into blocks we always have
detA = detD = 0. Thus, for the non-singularity of blocks A or D we need to permu-
tate the rows (or the columns, alternatively). In the considered case, by replacing the
first and third rows we receive













3 1 1 1 4
2 1 3 1 2

0 0 0 0 1
1 0 2 1 5
1 0 0 0 0













.

Then the new block A is non-singular, thus, by applying item 1(b) from the above
theorem, we can calculate the determinant of matrix M2 (by keeping in mind that
the permutation of rows causes the change of sign of the determinant).

3. Examples

Example 3.1. Example of a symmetric non-singular matrix, to which one cannot
apply any of formulas (10), (11), (15) and (17):

B1 =

















1 0 1 1 2 1
0 1 −1 1 1 0

1 −1 1 1 0 0
1 1 1 1 0 0

2 1 0 0 1 0
1 0 0 0 0 1

















, detB1 = 20.

Formulas (11), (15), (17) cannot be used because matrix B1 contains the singular

block

[

1 1
1 1

]

. Moreover, one cannot apply formula (10) because matrix
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D − CA−1B =

[

1 1
1 1

]

−

[

1 −1
1 1

] [

1 1
−1 1

]

=

[

−1 1
1 −1

]

is singular.

Example 3.2. Example of a singular matrix, to which one can apply formulas (10),
(11), (15), (17):

B2 =

















2 0 1 0 1 0
0 2 0 1 0 1

1 0 1 0 0 0
0 1 0 1 0 0

1 0 0 0 1 0
0 1 0 0 0 1

















, detB2 = 0.

Example 3.3. Example of a non-singular matrix, to which one can apply formulas
(10), (11), (15), (17):

B3 =

















3 0 1 0 1 0
0 3 0 1 0 1

1 0 1 0 0 0
0 1 0 1 0 0

1 0 0 0 1 0
0 1 0 0 0 1

















, detB3 = 1.

Example 3.4. Example of a matrix with non-diagonal blocks, to which one can apply
formulas (10), (11), (15), (17):

B4 =

















1 2 2 7 1 2
2 5 1 4 3 4

2 1 1 3 0 0
7 4 3 8 0 0
1 3 0 0 2 1
2 4 0 0 1 3

















, detB4 = −14.

Example 3.5. Example of the class of matrices, to which one can apply formula
(17):















A11 A12 A13 . . . A1n

A21 A22 0 . . . 0

A31 0 A33 . . . 0

...
An1 0 0 . . . Ann















,

where

• A11 is the diagonal matrix of dimensions m×m of positive elements,
• Akk, for k = 2, 3, . . . , n − 1, are the diagonal matrices of dimensions m × m of

negative elements,
• A1k, for k = 2, 3, . . . , n, are any diagonal matrices of dimensions m×m of non-zero

elements,
• Ak1 = A1k.
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Thus in formula

detA11

n
∏

i=2

det



Aii −Ai1

(

A11 −

i−1
∑

k=2

A1kA
−1

kk Ak1

)−1

A1i





we have as follows

• Akk, for k = 2, . . . , n − 1, are non-singular since they are diagonal of negative
elements,

• A11 −
i−1
∑

k=2

A1kA
−1

kk Ak1 = A11 −
i−1
∑

k=2

A2
1kA

−1

kk , for i = 2, 3, . . . , n, are the diagonal

matrices of positive elements, therefore they are non-singular.

Remark 3.6. Analogically one can take the diagonal matrix of negative elements as
A11 and the diagonal matrices of positive elements as Akk for k = 2, 3, . . . , n− 1.

Example 3.7. Example of a matrix with rectangular blocks, to which one can apply
formulas (10), (11), (15) and (17):

B5 =

















1 0 1 1 2 3
0 1 1 4 1 1
1 1 1 0 0 0

1 4 0 1 0 0
2 1 0 0 2 0
3 1 0 0 0 3

















, detB5 = 312.

Remark 3.8. Let us consider the following arrowhead matrix of dimensions n×n of
complex elements

An =















a11 a12 a13 . . . a1n
a21 a22
a31 a33 0
...

. . .

an1 0 ann















,

where symbol 0 means that all the other respective elements of matrix An are equal
to zero. One can show inductively that the determinant of matrix An is expressed by
formula

detAn =

n
∏

i=1

aii −

n
∑

i=2

a1iai1

n
∏

j=2

j 6=i

ajj , (19)

where we define
n
∑

i=2

a1iai1
n
∏

j=2

j 6=i

ajj =

{

0 for n = 1,

a12a21 for n = 2.

One can easily notice that the formula (19) is analogue to formula (15) for the non-
block arrowhead matrices, however, what should be especially emphasized, it does not
require the assumption about non-zero elements aii for i = 2, 3, . . . , n.
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Example 3.9. Let us consider the determinant of matrix

M =

























1 −1 1 1 2 1 2 1
−1 1 0 0 1 0 0 0
1 0 1 0 0 0 1 0
1 0 0 1 3 0 0 2
5 9 0 0 1 0 0 0

−17 − 5

2
−15 3 0 1 0 0

6 0 9 0 0 0 1 0
−4 − 27

2
0 1 0 0 0 1

























.

We denote the blocks of matrix M in the following way

A =









1 −1 1 1
−1 1 0 0
1 0 1 0
1 0 0 1









, B =









2 1 2 1
1 0 0 0
0 0 1 0
3 0 0 2









, C =









5 9 0 0
−17 − 5

2
−15 3

6 0 9 0
−4 − 27

2
0 1









, D =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









.

The determinant of matrix M can be calculated by using Theorem 2.1 from item 1
(a) since detD = 1 6= 0. Thus we get

detM = detD det(A−BD−1C) = det(A−BC).

We calculate the determinant of matrix

A−BC =









1 −1 1 1
−1 1 0 0
1 0 1 0
1 0 0 1









−









2 1 2 1
1 0 0 0
0 0 1 0
3 0 0 2









·









5 9 0 0
−17 − 5

2
−15 3

6 0 9 0
−4 − 27

2
0 1









=

=









1 −1 1 1
−1 1 0 0
1 0 1 0
1 0 0 1









−









1 2 3 4
5 9 0 0
6 0 9 0
7 0 0 2









=









0 −3 −2 −3
−6 −8 0 0
−5 0 −8 0
−6 0 0 −1









.

Let us observe that matrix A−BC is the arrowhead matrix, therefore its determinant
can be easily calculated by using formula (19). We obtain

detM = det(A− BC) = det









0 −3 −2 −3
−6 −8 0 0
−5 0 −8 0
−6 0 0 −1









=

= 0− (18 · 8 + 10 · 8 + 18 · 64) = −1376.
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4. Tests with the inverse matrices in the Drazin sense

The Drazin inverse of matrix A ∈ C

n×n is defined to be the unique matrix Ad ∈
C

n×n such that

1. AdAAd = Ad,
2. AAd = AdA,
3. AdAm+1 = Am,

where m = ind(A), which means the index of A, i.e. the smallest nonnegative integer
m for which rank(Am) = rank(Am+1).

We want to try to compare the influence of using the Drazin inverse matrix in
formula (17) on the value of determinant in case of matrices not satisfying the as-
sumptions of Theorem 2.1.4.

Example 4.1. Example of a singular matrix, in case of which the application of the
Drazin invertible matrices leads to the incorrect result

B6 =

















2 0 1 0 1 0
0 1 0 1 0 1

1 0 1 1 0 0
0 1 1 1 0 0

1 0 0 0 1 0
0 1 0 0 0 1

















, detB6 = 0.

If we want to use formula (17), we have to invert matrix A22 =

[

1 1
1 1

]

. Applying the

Drazin inverse matrix we obtain Ad
22 =

[

1

4

1

4
1

4

1

4

]

(we used here the respective algorithm

for finding Ad given in [5, chapter 1.4.4, page 54]). Substituting this matrix into the
formula in place of A−1

22 we get detB6 = 2

5
, so the result is incorrect.

Example 4.2. Example of a singular matrix, to which formula (17) cannot be applied,
but when we use in the singular place the Drazin inverse matrix, we have the correct
result

B7 =

















2 0 1 0 1 0
0 1 0 1 0 1

1 0 1 0 0 0
0 1 0 1 0 0

1 0 0 0 1 0
0 1 0 0 0 1

















, detB7 = 0.

In this case the singularity results from the form of the discussed formula. So we have

B = A11 − A12A
−1

22 A
T
12 =

[

1 0
0 0

]

. Calculating the Drazin inverse matrix we receive

Bd =

[

1 0
0 0

]

and next, by using it in the formula in place of (A11 − A12A
−1
22 A

T
12)

−1

we obtain the correct result.
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Remark 4.3. In Example 4.1 the singularity occurs in the form of a singular block.
In this case as well, the application of the Drazin inverse matrix leads to the incorrect
result. In Example 4.2 the singularity results from the singularity of “a part of the
formula”, that is A11 − A12A

−1

22 A
T
12, and in this case the application of the Drazin

inverse matrix gives the correct result. Some further discussion, especially the theo-
retical one, with the use of the Drazin matrices, we decided to perform in a separate
paper.

Special supplement

After receiving the review of this paper we have discovered two more publications
and we decided to include them into the references, because we find them as essentially
connected with the investigated subject matter and really deserving to be noticed.

The first paper, by V. Katsnelson [6], concerns the application and, simultaneously,
the additional interpretation of the Herbert’s Stahl Theorem. In this paper, from
among many technical masterpieces, one can find a polynomial of two variables, called
as the polynomial pencil, being the characteristic polynomial of some explicitly given
arrow matrix (called by the Author as the matrix pencil).

The second paper, written by N. Stojković and P. Stanimirovic [15], refers to the
block matrices discussed also in our paper. Form of the determinants of the respective
block matrices is derived in this paper on the basis of the determined characteristic
polynomials of these matrices.
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14. S lota D., Trawiński T., Witu la R.: Inversion of dynamic matrices of HDD head positioning

system. Appl. Math. Modelling 35 (2011), 1497–1505.
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