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Abstract. The presented paper is a continuation of research devoted to the inves-
tigation of efficiency of some reconstructive computer tomography algorithms with
the incomplete input data set. The new issues discussed in this elaboration are the
results concerning the stability of these algorithms applied for examining the objects
with non-transparent elements. In paper [14] the effectiveness of the considered al-
gorithms has been also investigated, however the problem of stability was omitted.
In the current paper we return to this problem.
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1. Introduction

Aim of the computer tomography is the reconstruction of the internal structure of
an object without disturbing its construction, on the basis of examination with the
aid of hard radiation rays (projection). The computer tomography is recently applied
in many fields. The most known area of its application is certainly the medicine – the
present-day computer tomographs, used in medicine, are able to execute over million
of projections and by the resolution at the level of micrometers they may obtain the
complete reconstruction within the time less than one minute. Such good results can
be received not only because of the efficient algorithms but also thanks to the proper
specification of the problem enabling to apply the most useful algorithm. However,
there are some situations when there is no possibility to execute the required number
of projections or their quality is not good enough or even both. The good example
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of such situation is the examination of the coal layer before its exploitation. Aim
of this examination is to uncover some potential dangers which may threaten the
health and safety of the workers (for example, the natural reservoirs of compressed
gas) or to detect some economically undesirable geological inclusions (for example,
the high content of rocks in the coal layers). With respect to the limited access to
the coal layer as well as to its size, the application of classical algorithms, used in
the medical tomography, may be impossible. Therefore one should either introduce
some adaptations of these algorithms by taking into account the specificity of such
problems or else, some new algorithms should be proposed. In the second case the
usefulness of such algorithms suppose to be certainly investigated.

2. Ideas of the computer tomography

Possibility of using the computer tomography algorithms is grounded, among oth-
ers, on the fact that each kind of material is characterized by some capability for
absorbing the energy of the hard radiation ray. When we expose the given object to
the hard radiation, the ray of this radiation loses its initial energy proportionally to
the sum of covered distances within this object and proportionally to the, mentioned
before, absorbtion coefficient of the material, the object is made of. The equation
expressing these losses (for the two-dimensional tomography) on the strait line road
L may be of the form

p ≡ ln
I0

I
=

∫

L

f(x, y)dL, (1)

where f(x, y) is the function of density distribution (function describing the internal
structure of the object), I0 denotes the initial intensity of radiation, I means the final
intensity and p denotes the projection.

In the early 20th century the Austrian mathematician Johann Radon proved in
paper [33] that the image (two-dimensional as well as three-dimensional) of a given
object can be reconstructed on the basis of infinite number of projections and the
formula for determining this reconstruction can be found in the mentioned Radon’s
paper [33], as well as in the paper written by Sigurdur Helgason [23]. Obviously in
reality we are not able to get the infinite number of projections, therefore we have to
base on the data obtained from the finite number of projections (determined on the
ground of finite number of scanning angles and the finite number of rays in one beam).
Frank Natterer in paper [30] showed that the formulas derived by Radon and Helgason
do not guarantee the unique reconstruction of the structure of a considered object.
In the mentioned paper, and also in papers [27, 28], there are given the conditions
connecting the reconstructed function with the number of projections required to
ensure the uniqueness of reconstruction.

Certainly the determination of the projection, itself, do not pose the problems (es-
pecially from the mathematical point of view) – in practise one just exposes the given
object to the radiation and then one measures, according to the idea taken from for-
mula (1), the ratio of the final and initial intensity of radiation. Much more difficult
task consists in inverting this process, that is in reconstructing the function f(x, y)
on the basis of obtained projections p. This kind of task is solved with the aid of
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appropriate algorithms which can be divided into two groups: the analytic algorithms
and the algebraic algorithms. The first group, including the analytic algorithms, is
grounded on such concepts as, among others, the Fourier transform, the Radon trans-
formation and the reverse projection (see, for example, [4, 17, 26]). Unfortunately,
the assumptions which must be satisfied for the analytic algorithms, especially for
the incomplete input data, do not make possible to use these algorithms in case of
problems investigated in this paper (for details please see the paper [32]).

Thus, for solving the problems with the incomplete information, discussed in sec-
tion 3, the algebraic algorithms must be applied. Of course, the possibility of using
these algorithms must be first verified, but it is already done, for example in [21, 22].

3. Problem of the incomplete information

In the classical algorithms of computer tomography it is assumed that the pro-
jections can be obtained at the sufficiently enough number of scanning angles (for
the beams of rays formed in the shape of fan or for the parallel beams, because in
case of the modern spiral medical computer tomographs the concept of the scanning
angle is not so clear any more, and for the sufficiently enough number of rays in one
beam. In some technical problems, because of the size, localization or limited access
to the investigated object, the assumption about the number of projections and their
“quality” (the scanning angles) cannot be fulfilled. An example of such situation,
as we mentioned already in the Introduction, is the examination of the coal layer
when the access to this layer is strongly limited. In such case we will distinguish two
systems of collecting the projections. The first considered system is the 1 × 1, 1 × 1
system, in which the sources and the detectors are located on the opposite sides of
the examined object but the radiation beam is detected only on the side opposite to
the side where the transmitters are placed. The second system, especially important
in examination of such objects like the coal layer, the access to which is only from
two of its sides, is the 1× 1 system. In this system the ray transmitters are situated
only on one side of the investigated object and the detectors are located only on the
opposite side. Both systems are illustrated in Figure 1, in which symbol 1 denotes the
sources (transmitters), symbol 2 – the examined object, 3 – the rays and 4 denotes
the detectors.

As we can see, especially in case of system 1× 1, the data received in the described
way deviate significantly from the required information – the data are strongly “one-
sided” and the number of data is strongly limited (with regard to the specific condi-
tions in the coal mines). Therefore we call such case as the problem of the incomplete
information (incomplete set of input data).

As we mentioned before, the existing algorithms may fail in the above described
situation. It has been proven (experimentally) that the analytic algorithms do not
deal with the problems of incomplete information, whereas the algebraic algorithms,
properly optimized and adapted, may be applied, theoretically at least, for solving
these kinds of problems, also in case of objects with non-transparent elements. In order
to justify the practical usage of these algorithms their stability should be investigated,
that is their resistance to the noises, and it is the purpose of this elaboration.
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Fig. 1. Systems of collecting the data: system 1 × 1, 1 × 1 and system 1 × 1

4. Algebraic algorithms

In class of the algebraic algorithms ART (Algebraic Reconstruction Techniques –
to learn more about these algorithms please see, for example, the papers [1, 4, 13, 15,
17, 32]) we assume, for the start, that we introduce the discretization of the region
containing the examined object (the most often having the form of a square) into
the sufficiently big number of congruent squares (pixels) so that the function f(x, y),
describing the distribution of density, in each of these discretization squares possesses
some constant (unknown) value and so that the reconstructed function f(x, y) can
be presented in the form of the following finite linear combination of the distribution
constants and the basis functions

f(x, y) ≈

N
∑

i=1

fibi(x, y), (2)

where fi ∈ R, i = 1, 2, . . . , N , are the unknown (constant) coefficients of the distri-
bution, {bi(x, y)}, i = 1, 2, . . . , N , are the basis functions and N = n2 denotes the
number of pixels (n describes the density of discretization). In our case the set of
basis functions is of the form

bi(x, y) =

{

1, when point (x, y) belongs to the interior of the i-th pixel,

0, in opposite case.

By applying the Radon transform to equation (2) (in the discrete case, when we have
in formula (1) the straight lines Lj representing the single rays) we get

pj ≈

N
∑

i=1

fiaij , (3)
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where pj , j = 1, 2, . . . ,m, denote the projection values, m means the number of
projections, fi, i = 1, 2, . . . , N , are the distribution coefficients, N = n2 denotes the
number of pixels and aij describes (geometrically) the length of the common part of
the j-th ray and the i-th pixel. Certainly, there is many sets of functions which can
be selected as the set of basis functions (see, for example, [24, 31]) depending on the
physical character of the investigated phenomenon.

The obtained formula (3) gives the ground for the family of algebraic algorithms.
On its basis the following system of equations is constructed

Ax = p, (4)

where A = (aij) is the coefficient matrix of dimension m × N (each element of
this matrix denotes the length of the common part of the j-th ray and the i-th
pixel), x = {x1, x2, . . . , xN}T is the vector of unknown elements (each element of
this vector denotes the value of the density distribution function in the given pixel),
p = {p1, p2, . . . , pm}T means the projection vector (each element of this vector denotes
the value of the successive projection connected with the total loss of energy of the
given ray) and T denotes the transpose operation.

As we have mentioned before, the construction of the above system of equations is
the common part of the family of algebraic algorithms, whereas the difference between
these algorithms lies in the method of solving this system.

4.1. Algorithms ART and ART -3

The coefficient matrix A of the system of equations (4) has certain features causing
that the application of classical methods for solving the systems of linear equations
became definitely ineffective or even impossible. These features are, among others, the
dimension – the considered matrix is strongly non-square matrix of a very big dimen-
sion, it has much more rows than columns, the matrix is the sparse matrix, that is
the most of its elements are the zero elements and the non-zero elements are arranged
in non-ordered way. Algorithms discussed in this section are based on the method of
solving the systems of linear equations proposed in 1937 by Stefan Kaczmarz [25],
which certainly was not originally connected with the computer tomography. The au-
thor proved the convergence of developed algorithms for the systems with a (unique)
solution under additional assumption that the matrix of the solved system of equa-
tions is the square matrix. The main idea of the Kaczmarz algorithm is illustrated in
Figure 2.

So, the considered algorithm consists in sequential projecting the previous approx-
imation of the solution on the successive hyperplanes under the assumption that the
initial (zero) solution x(0) is fixed and as the hyperplane Hi we understand here each
row of system (4):

Hi = {x ∈ R
N : (ai,x) = pi},

where ai, i = 1, 2, . . . ,m, is the i-th row of matrix A, pi, i = 1, 2, . . . ,m, denotes
the i-th projection and symbol (·, ·) means the classic scalar product of vectors from
space R

N .
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Fig. 2. Geometric interpretation of the Kaczmarz algorithm

Algorithm ART is the special case of the algorithm developed 33 years later by
Gordon, Bender and Herman [13] for the needs of computer tomography, based on the
Kaczmarz algorithm and applied for the three-dimensional problem. Tanabe in [34]
proved the convergence of this algorithm also for the rectangular systems which gave
the mathematical grounds for applying this procedure for the problems of computer
tomography.

Algorithm ART can be presented in the following steps:
— selection of the initial solution which can be realized in many ways, for instance
by taking into account some information about the expected solution (for example,
we may know that no element of the solution vector can be negative);
— determination of the successive solutions by using the formula

x(k+1) = x(k) + λk

pi − (ai,x(k))

‖ai‖2
ai, (5)

where x(k), k = 1, 2, . . ., denotes the successive solution (more precisely – the suc-
cessive approximation of solution, however we use here, for shortness, the term “so-
lution”), ai, i = 1, 2, . . . ,m, is the i-th row of matrix A, pi, i = 1, 2, . . . ,m, denotes
the i-th projection, symbol (·, ·) means the classic scalar product of vectors from
space R

N , symbol ‖ · ‖ describes the norm of vector form space R
N (in our case it is

the length of vector), λk denotes the relaxation coefficient and i = k(mod m) + 1;
— verification for the stop condition which may be, for example, executing the as-
sumed number of projections or checking whether the new solution differs significantly
from the previous one.

The described algorithm differs from the Kaczmarz algorithm in the application
of the relaxation coefficient λk. By taking λk = λ = 1 we have exactly the Kacz-
marz algorithm. Mathematically, for the fixed value of λ we deal with the respective
homothety, including its special case – the orthogonal projection – for λ = 1. In the
mentioned above papers it is proven that if λk = λ for each k, then the ART algorithm
is convergent for 0 < λ < 2, whereas Trummer in paper [35] showed the convergence
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of this algorithm for the varying relaxation coefficient λk by proving that the con-
dition for convergence is to satisfy the inequalities 0 < lim inf λk ≤ lim supλk < 2
(obviously, the convergence means here the convergence of the given system of linear
equations (4) to its solution).

Algorithm ART -3 differs from algorithm ART in the assumption of possibility for
obtaining the perturbed projections (information about the sources of such perturba-
tions and the methods of dealing with them can be found, among others, in [12, 29]).
So, instead of the system of equations (4) we solve the analogical system of inequalities

p− e ≤ Ax ≤ p+ e,

where e = [ε1, ε2, . . . , εm] denotes the vector of perturbations (noises) of the projec-
tion.

Algorithm ART -3 runs analogically like algorithm ART in three steps, however the
second step is different because the “projection” is realized according to the following
formula

x(k+1) = x(k) + Sk

ai

‖ai‖2
,

where

Sk =































0, for |pi − (ai,x(k))| ≤ εi;

pi − (ai,x(k)), for |pi − (ai,x(k))| ≥ εi;

2(pi + εi − (ai,x(k))), for pi + εi < (ai,x(k)) < pi + 2εi;

2(−pi + εi + (ai,x(k))), for pi − 2εi < (ai,x(k)) < pi − εi,

where x(k), k = 1, 2, . . ., denotes the successive solution, ai, i = 1, 2, . . . ,m, is the i-th
row of matrix A, pi, i = 1, 2, . . . ,m, denotes the i-th projection, symbol (·, ·) means
the classic scalar product of vectors from space RN , symbol ‖ ·‖ describes the norm of
vector from space RN , εi, i = 1, 2, . . . ,m, denotes the i-th element of the noise vector
and i = k(mod m) + 1.

4.2. Other algebraic algorithms

Apart from the algorithms listed in the previous section, the group of the most
popular algebraic algorithms includes also the MART algorithm (Multiplicative Al-
gebraic Reconstruction Technique – more precisely, this is the whole family of algo-
rithms) which has been examined with respect to its usefulness (the condition for
convergence is the inequality 0 < λi

kaij ≤ 1), among others, in [6, 8]. This algorithm
differs from the algorithms belonging to the ART group in such a way that the suc-
cessive approximation is created not in the form of a full vector, but as its successive
coordinates (additionally, the ART algorithms are additive, whereas the MART al-
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gorithm is multiplicative). The MART algorithm can be expressed in three steps, in
such a way that the first and third steps are the same as previously presented and
the second step is expressed by formula

x
(k+1)
j =

(

pi

(ai,x(k))

)λi
kaij

x
(k)
j ,

where x(k), k = 1, 2, . . ., denotes the next solution, x
(k+1)
j , k = 1, 2, . . ., j = 1, 2, . . . , N ,

is the j-th coordinate of the next solution, ai, i = 1, 2, . . . ,m, denotes the i-th row
of matrix A, pi, i = 1, 2, . . . ,m, means the i-th projection, symbol (·, ·) denotes the
classic scalar product of vectors from space R

N , aij is the respective element of the
coefficient matrix, λi

k denotes the relaxation coefficient and finally i = k(mod m)+ 1.
Among the other well known algebraic algorithms we may also notice, for exam-

ple, the simultaneous algorithms SITR (Simultaneous Iterative Reconstruction Tech-
niques) which use all the rows of matrix A for creating the next solution (see [11, 31]),
their improvement – the SART algorithm introduced in [2] or the group of summation
algorithms including, among others, the SUM and MSUM algorithms.

The next important group is the group of algorithms basing on the described above
algorithms but modifying them in order to improve their working (the most often by
increasing their speed of convergence). The iterative reconstruction algorithms can be
divided into the following groups (see [6]):

— the serial algorithms (discussed above algorithms ART , ART -3 and MART )
– in these algorithms the order of hyperplanes, on the basis of which the successive
solutions are computed, is predetermined;

— the parallel algorithms basing on the serial algorithms but increasing their work-
ing speed thanks to, for example, the parallel computations – the examples of such
algorithms SIRT or SMART (see [36]). Algorithms of this kind require a quite big
number of processors (equal to the number of equations in the solved system of equa-
tions (4)). If this requirement is difficult to fulfill, then we may apply the algorithms
belonging to the next group;

— the block algorithms which can be divided into two groups: the serial block
algorithms and the parallel block algorithms (see [5, 17, 32]);

— the chaotic algorithms (representing the special case of the asynchronous algo-
rithms, mathematical grounds of which are studied, among others, in papers [3, 7, 10,
34, 16]), basing on the first listed here group of the iterative algorithms, however the
choice of the order of the successive hyperplanes can be variable (or even random);

— the chaotic-block algorithms created in result of connecting both above described
ideas.

The main difference between the serial algorithms and the parallel block algorithms
results from the number of processors or the number of parallel threads which may
be used in reconstructing the given object. So, when we have the possibility of using
quite big number of processors or parallel threads (for example, in case of executing
the computations basing on the processors of the graphics card), we split the matrix
A of system (4) into the blocks so that the number of rows of the coefficient matrix is
not bigger than the number of available possible threads. Within the given block the
appropriate algorithm is executed simultaneously for each row, the obtained solutions
are properly averaged creating the initial solution for the next block. Whereas, when
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we have the possibility of executing much lower amount of parallel computations (for
example, with the aid of the threads of the central processor), we split the coefficient
matrix into blocks, the number of which corresponds with the number of available
parallel processors. Within each block the classic algebraic algorithm is sequentially
executed with the assumption of simultaneous parallel work of all blocks. The obtained
solutions (coming from each block) are properly averaged creating the initial solution
for all blocks in the next iteration. Both described approaches are illustrated on the
diagrams presented in the below figures (the serial block algorithm in Figure 3 and
the parallel block algorithm in Figure 4.

x(k) x(k+1)

Block B1 Block B2 Block BM

P1P1P1

P2P2P2

Pn1
Pn2

PnM

P 1
0 P 2

0 PM
0

Fig. 3. General scheme of the serial block algorithm

x(k)

Block B1 Block B2 Block BM

Processor P1 Processor P2 Processor PM

yk,1 yk,2 yk,M

Central processor

x(k+1)

Fig. 4. General scheme of the parallel block algorithm
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5. Previous results

The first question, that should be answered while investigating the usefulness of
the even simple basic algebraic algorithms, is whether they can be applied for the
discussed here problem of the incomplete input data 3. It appears that, after some
proper adaptation of these algorithms, it is possible to select their parameters to
obtain, quickly enough, the solution of satisfying quality, even in case of the three-
dimensional problem (see [21, 22, 32]). In Figures 5 and 6 there are presented some
exemplary results of these algorithms execution. These algorithms, as well as the
other discussed here algorithms, are tested on some class of discrete functions strictly
connected with the specificity of examined object, which may be the coal layer. With
respect to this, the two-dimensional function of the density distribution, used for
simulating the problem of considered kind, is expressed in the following form

f(x, y) =































c1, (x, y) ∈ D1 ⊂ E ⊂ R
2,

c2, (x, y) ∈ D2 ⊂ E ⊂ R
2,

...
...

cn, (x, y) ∈ Dn ⊂ E ⊂ R
2,

0, elsewhere,

where regions Di, i = 1, 2, . . . , n, are mutually disjoint and region E, within which
the examined object is located, is here in the form of a square: E = {(x, y) : − 1 ≤
x, y ≤ 1}.
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Fig. 5. Three-dimensional plots of reconstructions, together with the errors, obtained in simulation
of algorithm ART -3 in system (1 × 1) for parameters n = 20, pkt = 28, iter = 250

In Figures 5 and 6 element n denotes the density of discretization (implying the
number of pixels N = n2), pkt means the number of sources and detectors (implying
the value m = pkt2) and iter describes the number of iterations (one iteration means
here the application of the algorithm for all the rows of matrix A). The right-hand-
side figures present the plots of the absolute errors of the obtained reconstructions
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calculated as the absolute values of difference between the exact value and the recon-
structed value for each of N pixels.
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Fig. 6. Three-dimensional plots of reconstructions, together with the errors, obtained in simulation
of algorithm ART -3 in system (1 × 1, 1 × 1) for parameters n = 40, pkt = 28, iter = 35

The next examination concerned the possibility of practical usage of the, described
in previous section, chaotic, block (parallel) and chaotic-block algorithms (like, for
example, the algorithms SZB -3, RB -3, CHART -3, CHRB -3 – some of these algo-
rithms have been proposed by the authors) and then, after positive verification, their
comparison with classical algorithms. The comparative analysis and the stability ex-
amination have been executed and the results can be found, among others, in pa-
pers [18, 19, 20, 32]. In paper [14] the possibility of applying the mentioned algorithms
for investigating the objects with non-transparent elements is also tested, however the
examination of stability of the considered algorithms in solving problems of this kind
has not been done till now.

6. Stability examination

Considering the real physical problems we are obviously not able to gain the 100-
percent exact measurements. It is caused the most often by the inaccuracy of mea-
suring devices or by the simplified mathematical model of the physical phenomenon.
For example, in the computer tomography we assume that the trajectory of the ray
movement has the form of a segment. In real, because of the non-homogeneity of the
investigated object, the rays can be subject to dispersions or reflections.

The deviations, with respect to the values resulting from the theoretical consid-
erations, cased by the mentioned above elements will be called the noises. Two the
best known kinds of noises are the white noise (of the uniform distribution) and the
normal noise (of the normal distribution). Considering the physical problems we do
not usually deal with the white noise, therefore we focus now on the normal noise.

To simulate now this problem we will perturb the projection vector by the normal
noise generated on the basis of normal distribution with the fixed parameter µ = 0 and
with the various values of parameter σ connected with range of noise. The generated
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vector of noises we will be added then to the projection vector and in this way we
obtain the properly perturbed simulated measurements.

Among others in papers [14, 18, 19, 20, 32] one can find the examination of ef-
fectiveness of some classical and non-classical algorithms of computer tomography.
The performed research revealed that the investigated algorithms are stable in such
a sense that the reconstruction errors do not exceed the level of the range of noise.
In the below included figures there are presented the selected results illustrating the
stability of discussed algorithms.

2 3 4 5

0.05

0.1

0.15

0.2

noise [%]

∆

ART

ART -3

Fig. 7. Comparison of the impact of the noise on error ∆ in simulation of algorithms ART -3 and
ART in system (1 × 1, 1 × 1)

As we can see, the error ∆ determined from the formula ∆ = max
1≤i≤N

∣

∣

∣
fi − f̃i

∣

∣

∣
,

where N is the number of pixels, fi denotes the exact value of function describing the
density distribution in the i-th pixel and f̃i means the reconstructed value of function
describing the density distribution in the i-th pixel, increases linearly together with
the increasing range of normal noise. Similar situation takes place in case of algorithm
MART, as well as for the discussed algorithms simulated in system (1× 1).

Analyzing the above figures we may observe that the investigated block, chaotic
and chaotic-block algorithms are stable as well. In the presented figures s denotes the
level of normal noise, δ describes the maximal percentage error, that is δ = ∆

max
1≤i≤N

|fi|
,

n is the discretization density (N = n2 means the number of pixels) and pkt denotes
the number of sources (detectors) on one side (which implies the number of projections
and, in consequence, in dependance on the system of collecting the data, the number
of rows in system of equations (4)).

Let us proceed now to investigation of stability of the computer tomography algo-
rithms applied for examination of objects with the non-transparent elements. Similarly
as before we intend to select various functions describing the density distribution, var-
ious systems of collecting the data, various algorithms and various locations of the
non-transparent element. So, for the system (1×1, 1×1), for n = 20, pkt = 18 and 25
iterations, by using algorithm ART and by perturbing the projections with the nor-
mal noise, with the non-transparent element located at point (−0.1, 0.2), we received
the results presented in Figures 9–11.

Presented results show that even for the 5% noise the received reconstruction is
of satisfying quality. In Figure 12 there is displayed the relation between the error ∆
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and the number of iterations received for the various ranges of the noise (the ranges
of noise, as well as the other parameters, are the same as in the previously presented
results).
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Fig. 8. Relation between the error δ[%] and the number of iterations for n = 20, pkt = 18 in system
(1 × 1, 1 × 1) with and without the normal noise s obtained in the simulation of algorithms
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Fig. 9. Reconstruction and its error ∆ obtained for n = 20, pkt = 18 in system (1 × 1, 1 × 1) with
the normal noise s = 1% in the simulation of algorithm ART

The research has been of course executed for the wide range of elements influencing
the results. We have tested various functions describing the density distribution, var-
ious densities of discretization and various locations of the non-transparent element.
It turned out that in each investigated case (for the non-transparent elements of “rea-
sonable” size) the obtained reconstructions were of the same quality as presented in
Figures 9–12. Some selected reconstructions are shown in Figures 13–17.
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Fig. 10. Reconstruction and its error ∆ obtained for n = 20, pkt = 18 in system (1 × 1, 1 × 1) with
the normal noise s = 2% in the simulation of algorithm ART
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Fig. 11. Reconstruction and its error ∆ obtained for n = 20, pkt = 18 in system (1 × 1, 1 × 1) with
the normal noise s = 5% in the simulation of algorithm ART
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(1 × 1, 1 × 1) in the simulation of algorithm ART
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Fig. 13. Reconstruction and its error ∆ obtained for n = 20, pkt = 18 in system (1 × 1, 1 × 1) with
the normal noise s = 2% in the simulation of algorithm ART and non-transparent element
located at point (0.5,−0.7)
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Fig. 14. Reconstruction and its error ∆ obtained for n = 20, pkt = 18 in system (1 × 1, 1 × 1) with
the normal noise s = 2% in the simulation of algorithm ART and non-transparent element
located at point (−0.75,−0.75)
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Fig. 15. Reconstruction and its error ∆ obtained for n = 20, pkt = 18 in system (1 × 1, 1 × 1) with
the normal noise s = 2% in the simulation of algorithm ART and non-transparent element
located at point (−0.7, 0.6)
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Fig. 16. Reconstruction and its error ∆ obtained for n = 20, pkt = 18 in system (1 × 1, 1 × 1) with
the normal noise s = 2% in the simulation of algorithm ART and non-transparent element
located at point (0.5, 0.7)
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Fig. 17. Reconstruction and its error ∆ obtained for n = 40, pkt = 42, iter = 50 in system (1×1, 1×1)
with the normal noise s = 2% in the simulation of algorithm ART and non-transparent
element located at point (−0.1, 0.2)

Similar situation can be observed for system (1 × 1). Obviously, for obtaining the
reconstruction of good quality we need in this case much more iterations (the same
observation we have noticed in case of problems with no non-transparent elements).

In Figures 18–20 there are presented the selected reconstructions received by using
algorithm ART -3 together with the relations between the error ∆ and the number of
iterations. And again, we have to notice that the research has been of course executed
for the wide range of elements influencing the results, but because of the size of this
paper we present only the selected results.
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Fig. 18. Reconstruction and its error ∆ obtained for n = 20, pkt = 28 in system (1 × 1) with the
normal noise s = 1% in the simulation of algorithm ART -3 and non-transparent element
located at point (0.2,−0.6)
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Fig. 19. Reconstruction and its error ∆ obtained for n = 20, pkt = 28 in system (1 × 1) with the
normal noise s = 2% in the simulation of algorithm ART -3 and non-transparent element
located at point (0.2,−0.6)
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With the same situation we deal in case of applying the chaotic algorithm. Also
for this algorithm we have performed the extensive research showing that the chaotic
algorithm is useful in investigating the objects with the non-transparent elements and,
similarly like in case of examining the objects without the non-transparent elements –
for obtaining the reconstruction of quality comparable to the quality received with
the aid of previously discussed algorithms, less iterations is required. Figures 21–23
display the selected reconstructions received by using algorithm CHART -3 and the
relations between the error ∆ and the number of iterations.
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Fig. 21. Reconstruction and its error ∆ obtained for n = 20, pkt = 28 in system (1×1, 1×1) with the
normal noise s = 1% in the simulation of algorithm CHART -3 and non-transparent element
located at point (0.2,−0.6)
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Fig. 22. Reconstruction and its error ∆ obtained for n = 20, pkt = 28 in system (1×1, 1×1) with the
normal noise s = 2% in the simulation of algorithm CHART -3 and non-transparent element
located at point (0.2,−0.6)
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Fig. 23. Relation between the error ∆ and the number of iterations for n = 20, pkt = 28 in system
(1× 1, 1× 1) in the simulation of algorithm CHART -3 and non-transparent element located
at point (0.2,−0.6)

7. Summary

The previous and current research indicate that it is possible to apply the dis-
cussed here algebraic algorithms for considering the problems of computer tomogra-
phy with the incomplete information and also for investigating the objects with the
non-transparent elements. The previous research showed the usefulness (convergence
and stability) of the described algorithms in solving the problems of incomplete set of
data as well as their convergence in solving the problems of incomplete set of data but
in case of investigating the objects with non-transparent elements. In the current pa-
per we extended the research for investigation of stability of the discussed algorithms
in case of problems with the incomplete information applied for the objects with the
non-transparent elements.

This paper is some kind of closure and summary of some stage of research – there-
fore we did not include here the examination of stability of the block algorithms. In
the previous works we have only theoretically tested these algorithms – their parallel
run was only simulated sequentially by using just one processor. The next step of
our research in this subject will consist in the practical implementation of the paral-
lel algorithms (block and chaotic-block algorithms), thus we plan to investigate the
stability of these algorithms by applying the parallel computations.

The next step of our research, planned for the future and independent on the
subject matter presented in this paper, is the full 3D reconstruction on the basis
of only few investigated layers, in opposite to two approaches considered till now in
the classical 3D tomography. We want to realize this reconstruction by applying the
Hermite interpolation.

Bibliography

1. Andersen A.H.: Algebraic Reconstruction in CT from limited views. IEEE Trans. Med. Im., 8,
no. 1 (1989), 50–55.

2. Andersen A.H., Kak A.C.: Simultaneous algebraic reconstruction technique (SART): A superior
implementation of the ART algorithm. Ultrasonic Imaging 6, no. 1 (1984), 81–94.



58 E. Hetmaniok, J.J. Ludew and M. Pleszczyński
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