Critical groups isospectral to $U_3(3)$

Yuri Lytkin

Novosibirsk State University,
Novosibirsk, Russia

Bedlewo, Poland
June 2015
Let G be a finite group.
Let G be a finite group.

The set of element orders of G is called the spectrum and denoted by $\omega(G)$.
Let G be a finite group.

The set of element orders of G is called the *spectrum* and denoted by $\omega(G)$.

By a *section* of G we mean a quotient group H/N, where $N, H \leq G$ and $N \leq H$.
Groups G and H are called *isospectral* if $\omega(G) = \omega(H)$.
Groups G and H are called \textit{isospectral} if $\omega(G) = \omega(H)$.

Denote by $h(G)$ the number of pairwise non-isomorphic groups isospectral to G. We call G \textit{recognizable} (by its spectrum) if $h(G) = 1$, \textit{almost recognizable} if $1 < h(G) < \infty$, and \textit{unrecognizable} if $h(G) = \infty$.

Yuri Lytkin (NSU)
Critical groups isospectral to $U_3(3)$
Bedlewo, 2015
Groups G and H are called *isospectral* if $\omega(G) = \omega(H)$.

Denote by $h(G)$ the number of pairwise non-isomorphic groups isospectral to G. We call G *recognizable* (by its spectrum) if $h(G) = 1$, *almost recognizable* if $1 < h(G) < \infty$, and *unrecognizable* if $h(G) = \infty$.

The *recognizability problem* for a group G is said to be solved if $h(G)$ is known and if $1 < h(G) < \infty$ then also all groups isospectral to G are described.
Let ω be a subset of natural numbers. A group G is called \textit{critical with respect to} ω (or ω-\textit{critical}) if ω coincides with the spectrum of G and does not coincide with the spectra of proper sections of G.

Let \(\omega \) be a subset of natural numbers. A group \(G \) is called \textit{critical with respect to} \(\omega \) (or \(\omega \)-critical) if \(\omega \) coincides with the spectrum of \(G \) and does not coincide with the spectra of proper sections of \(G \).

- If \(h(G) = \infty \) then there exists a group \(H \) isospectral to \(G \) that contains a nontrivial soluble normal subgroup.
Let ω be a subset of natural numbers. A group G is called critical with respect to ω (or ω-critical) if ω coincides with the spectrum of G and does not coincide with the spectra of proper sections of G.

- If $h(G) = \infty$ then there exists a group H isospectral to G that contains a nontrivial soluble normal subgroup.
- For every set ω the number of ω-critical groups is finite.
Conjecture (Mazurov V. D.)

For any natural number n there exists a set ω such that there exist at least n pairwise non-isomorphic groups critical with respect to ω.
Conjecture (Mazurov V. D.)

For any natural number n there exists a set ω such that there exist at least n pairwise non-isomorphic groups critical with respect to ω.

Conjecture (Mazurov V. D.)

For any natural number n there exists a set ω such that there exist at least n pairwise non-isomorphic groups critical with respect to ω.

Question

Does there exist a natural number n such that if ω is the spectrum of a non-abelian simple group then the number of pairwise non-isomorphic ω-critical groups does not exceed n? If it exists then what is it?
Non-abelian simple groups:

- alternating;
- sporadic;
- classical;
- exceptional.

If ω is the spectrum of a non-abelian simple alternating or sporadic group then the number of pairwise non-isomorphic ω-critical groups does not exceed 3.
Non-abelian simple groups:

- alternating;
- sporadic;
- classical;
- exceptional.

If \(\omega \) is the spectrum of a non-abelian simple alternating or sporadic group then the number of pairwise non-isomorphic \(\omega \)-critical groups does not exceed 3.

Lytkin Y. V. Groups critical with respect to the spectra of alternating and sporadic groups // Siberian Mathematical Journal. 2015. V. 56, N 1, P. 101–106.
If ω is the spectrum of an exceptional group then the number of pairwise non-isomorphic ω-critical groups equals 1.

If ω is the spectrum of an exceptional group then the number of pairwise non-isomorphic ω-critical groups equals 1.

The number of groups critical with respect to the spectrum of a special linear group $L_3(3)$ equals 2.

• Let G be a group isospectral to a non-abelian simple group S. Then
 1. if G is a Frobenius group then S is isomorphic to $L_3(3)$ or $U_3(3)$;
 2. if G is a double Frobenius group then S is isomorphic to $U_3(3)$ or $S_4(3)$.

Aleeva M. R. On finite simple groups with the set of element orders as in a Frobenius group or a double Frobenius group // Mathematical Notes. 2003. V. 73, N 3-4. P. 299–313.
Let G be a group isospectral to a non-abelian simple group S. Then

1. if G is a Frobenius group then S is isomorphic to $L_3(3)$ or $U_3(3)$;
2. if G is a double Frobenius group then S is isomorphic to $U_3(3)$ or $S_4(3)$.

Aleeva M. R. On finite simple groups with the set of element orders as in a Frobenius group or a double Frobenius group // Mathematical Notes. 2003. V. 73, N 3-4. P. 299–313.

There are constructed examples of a Frobenius group and a double Frobenius group isospectral to $U_3(3)$.
Theorem

Let G be a group critical with respect to the spectrum of $U_3(3)$ that contains a normal subgroup N such that $G/N \cong PGL_2(7)$. Then N is elementary Abelian of order 2^6 and there exists a subgroup $H \cong PGL_2(7)$ of G, such that $G = NH$.

Moreover, H has a presentation

$$\langle a, b, c \mid a^2 = b^3 = c^2 = (ab)^7 = (ac)^2 = (bc)^2 = [a, b]^4 = 1 \rangle,$$

and if we regard N as a vector space over $GF(2)$, then we can choose a base in N in which the action of H on N is defined by the following matrices:

$$a \sim \begin{pmatrix} 1 & \cdots & \cdots & \cdots & 1 \\ 1 & \cdots & \cdots & \cdots & 1 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots & 1 \\ \cdots & \cdots & \cdots & \cdots & 1 \\ 1 & \cdots & \cdots & \cdots & 1 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \end{pmatrix}, \quad b \sim \begin{pmatrix} \cdots & \cdots & \cdots & 1 & \cdots \\ 1 & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \end{pmatrix}, \quad c \sim \begin{pmatrix} \cdots & \cdots & \cdots & 1 & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 1 & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \end{pmatrix}.$$