Element orders in coverings of finite simple classical groups

Mariya Grechkoseeva

Sobolev Institute of Mathematics, Novosibirsk
e-mail: grechkoseeva@gmail.com

Będlewo 2010
Recognition by spectrum and coverings

A group H is a covering of a group G if $G = H/K$ for some normal subgroup K of H. If H is a covering of G then $\omega(G) \subseteq \omega(H)$. We say that G is recognizable by spectrum among coverings if $\omega(G) \subset \omega(H)$ for every proper covering H of G.

Lemma 1

A group G is recognizable by spectrum among coverings if and only if $\omega(G) \subset \omega(H)$ for every split extension $H = K \rtimes G$, where K is an elementary abelian group and G acts on K absolutely irreducibly.

Lemma 2

If K is a normal abelian subgroup of a group H then $\omega(H) = \omega(K \rtimes H)$, where H acts on K via conjugation.
Recognition by spectrum and coverings

A group H is a covering of a group G if $G = H/K$ for some normal subgroup K of H. If H is a covering of G then $\omega(G) \subseteq \omega(H)$. We say that G is recognizable by spectrum among coverings if $\omega(G) \subset \omega(H)$ for every proper covering H of G.

Lemma 1

A group G is recognizable by spectrum among coverings if and only if $\omega(G) \subset \omega(H)$ for every split extension $H = K \rtimes G$, where K is an elementary abelian group and G acts on K absolutely irreducibly.
Recognition by spectrum and coverings

A group H is a covering of a group G if $G = H/K$ for some normal subgroup K of H. If H is a covering of G then $\omega(G) \subseteq \omega(H)$. We say that G is recognizable by spectrum among coverings if $\omega(G) \subset \omega(H)$ for every proper covering H of G.

Lemma 1

A group G is recognizable by spectrum among coverings if and only if $\omega(G) \subset \omega(H)$ for every split extension $H = K \rtimes G$, where K is an elementary abelian group and G acts on K absolutely irreducibly.

Lemma 2

If K is normal abelian subgroup of a group H then $\omega(H) = \omega(K \rtimes H)$, where H acts on K via conjugation.
Recognition by spectrum and coverings

If G is not recognizable by spectrum among coverings then
\[\omega(G) = \omega(K \rtimes G) \] for some abelian $K \neq 1$ and
\[\omega(G) = \omega(K \rtimes G) = \omega(K \rtimes (K \rtimes G)) = \ldots \]

and thus there are infinitely many finite groups isospectral to G, i.e., $h(G) = \infty$.

On the other hand, if a finite simple group G is quasirecognizable and recognizable among coverings then $h(G) < \infty$.

It is not true that $h(G) = \infty$ implies that G is not recognizable among coverings. Recently Mazurov proved that $h(G) = \infty$ implies that $\omega(G) = \omega(H)$ for some finite group H having a nontrivial normal abelian subgroup.
Let L be a finite simple classical group over a field of characteristic p. Suppose L acts on an elementary abelian r-group some prime r. It is natural to distinguish the case $r = p$ from the case $r \neq p$.

(C_p) $\omega(K \rtimes L) \neq \omega(L)$ for every elementary abelian p-group K

$(C_{p'})$ $\omega(K \rtimes L) \neq \omega(L)$ for every elementary abelian p'-group K
Previous results

The problem was completely solved for linear groups and partially for unitary groups by A. Zavarnitsine and V. Mazurov.

<table>
<thead>
<tr>
<th>Simple group</th>
<th>C_p</th>
<th>$C_{p'}$</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_n(q)$, $n \geq 4$</td>
<td>+ if $n \neq 4$</td>
<td>+</td>
<td>Zav08, ZavMaz07, Zav00</td>
</tr>
<tr>
<td>$U_n(q)$, $n \geq 4$</td>
<td>+ if $n \neq 4$</td>
<td></td>
<td>Zav08, ZavMaz07</td>
</tr>
<tr>
<td>$S_n(q)$, $n \geq 6$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$O_n^\varepsilon(q)$, $n \geq 7$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The table does not contain groups of small dimensions since the recognition-by-spectrum problem is solved for them. The sign ”+“ means that groups have the corresponding property. The question about C_p for $L_4(q)$ and $U_4(q)$ is still open.
Results

<table>
<thead>
<tr>
<th>Simple group</th>
<th>C_p</th>
<th>$C_{p'}$</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_n(q), \ n \geq 4$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$U_n(q), \ n \geq 4$</td>
<td></td>
<td>+ if $n \neq 5$</td>
<td>Gr10</td>
</tr>
<tr>
<td>$S_n(q), \ n \geq 6$</td>
<td></td>
<td>+</td>
<td>Gr10</td>
</tr>
<tr>
<td>$O_n^e(q), \ n \geq 7$</td>
<td></td>
<td>+</td>
<td>Gr10</td>
</tr>
</tbody>
</table>
Theorem 1
Let L be one of the groups $S_n(q)$, where $n \geq 6$, and $O^\varepsilon_n(q)$, where $n \geq 7$, r be a prime and $(q, r) = 1$. If L acts on an elementary abelian r-group K then $\omega(K \rtimes L) \neq \omega(L)$.

Theorem 2
Let $L = U_n(q)$, where $n \geq 4$, r be a prime and $(q, r) = 1$. If L acts on an elementary abelian r-group K then either $\omega(K \rtimes L) \neq \omega(L)$ or one of the following holds:
(i) $L = U_5(p)$, where p is a Mersenne prime and $r = 2$;
(ii) $L = U_5(2)$, $q = 2$ and $r = 3$.
Methods: Frobenius subgroups

Lemma 3
If a Frobenius group G with kernel F and cyclic complement C acts faithfully on an elementary abelian r-group K and $|F|$ is not divisible by r then $r|C| \in \omega(K \rtimes G)$.

Lemma 3

If a Frobenius group G with kernel F and cyclic complement C acts faithfully on an elementary abelian r-group K and $|F|$ is not divisible by r then $r|C| \in \omega(K \rtimes G)$.

The idea is to find a Frobenius subgroup with “large” complement in L. This trick works excellent for linear and symplectic groups and imposes a powerful restriction on K for other groups except unitary groups of small dimensions.
Theorem (DiMartino, Zalesskii)

Let G be a finite classical group in characteristic p. Let $s \neq p$ be a prime and $g \in G$ be a non-central element such that g belongs to a proper parabolic subgroup of G and $|g|$ is a power of s. Let Φ be an absolutely irreducible representation of G of degree > 1 over a field of characteristic $r \neq p$. Then either $d_\Phi(g) = |g|$ or G is a symplectic or unitary group.

Moreover, Guralnick, Magaard, Saxl and Tiep showed that $d_\Phi(g) < |g|$ implies that Φ is a Weil representation.
Theorem (DiMartino, Zalesskii)

Let G be a finite classical group in characteristic p. Let $s \neq p$ be a prime and $g \in G$ be a non-central element such that g belongs to a proper parabolic subgroup of G and $|g|$ is a power of s. Let Φ be an absolutely irreducible representation of G of degree > 1 over a field of characteristic $r \neq p$. Then either $d_\Phi(g) = |g|$ or G is a symplectic or unitary group.

Moreover, Guralnick, Magaard, Saxl and Tiep showed that $d_\Phi(g) < |g|$ implies that Φ is a Weil representation.

The idea is to find an element g in a proper parabolic subgroup of L such that $|g|$ is the largest r-power in $\omega(L)$. Then either $r|g| \in \omega(K \rtimes L) \setminus \omega(L)$ or an exception from the above theorem arises, in particular L is symplectic or unitary.
To complete the investigation of recognizability among coverings for classical simple groups, it remains to answer the following question.

Problem

Suppose that a finite simple symplectic or orthogonal group L with defining characteristic p acts on an elementary abelian p-group K. Is it true that $\omega(K \rtimes L) \neq \omega(L)$?