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What this talk is about?

We shall characterize/describe groups of polynomial growth
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What this talk is not about?

polynomial growth
⇑ (J.Milnor, J.A.Wolf, 1968)

virtual nilpotence
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What this talk is not about?

The class of groups of polynomial growth

and
the class of finitely generated virtually nilpotent groups
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To be honest:

We shall formulate a necessary and sufficient condition
for a group to be virtually nilpotent
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Notions

A group is called virtually nilpotent if it has a normal
nilpotent subgroup of finite index

A group G is called locally graded if every nontrivial
fin.gen. subgroup of G has a nontrivial finite image.
A law u ≡ w is called positive if words u,w can be written
without negative powers of variables.
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Notation

varG - the variety generated by a group G (i.e. the smallest
variety containing G)

F2(varG) - a free 2-generator group in varG (i.e. a
relatively free group)
F ′2(varG) - a commutator subgroup of F2(varG)

R(G) - a finite residual of G (i.e. the intersection of all
subgroups of finite index in G)
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Motivation

If G is virtually nilpotent, then G′ is finitely generated but
not conversely (e.g. groups by S.V.Aloshyn; E.S.Golod;
R.I.Grigorchuk; N.Gupta, S.Sidki; V.Sushchanskyy)

Relatively free groups are nice when consider the laws

(virtual nilpotence⇒ positive law)
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Theorem (BB, O.Macedońska, W.Tomaszewski 2010)

Theorem A finitely generated group G is virtually nilpotent iff
(i) The group G is locally graded
(ii) The commutator subgroup F ′2(var G) is finitely generated

Remark None of the conditions can be omitted.

We obviously cannot omit (ii).
A positive law implies (ii), so we cannot omit (i)
(A.Yu.Ol’shanskii, A.Storozhev, 1996)
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Proof of necessity

Lemma If G is a finitely generated virtually nilpotent group then
(i) The group G is locally graded
(ii) The commutator subgroup F ′2(varG) is finitely generated.

Proof of (i)

virtually nilpotent
⇓ (P.Hall)

residually finite
⇓ (S.N.Černikov)

locally graded

Proof of (ii)

virtually nilpotent
⇓ (A.I.Mal’cev)

(B.H.Neuman,T.Taylor)
positive law

⇓ (S.Rosset)
Milnor Property:

∀g,h ∈ G 〈h−ig hi , i∈N〉 is fin.gen.
⇓ (B.M.T. Lemma)

F ′2(varG) is fin.gen.
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⇓ (S.N.Černikov)
locally graded

Proof of (ii)

virtually nilpotent
⇓ (A.I.Mal’cev)

(B.H.Neuman,T.Taylor)
positive law

⇓ (S.Rosset)
Milnor Property:

∀g,h ∈ G 〈h−ig hi , i∈N〉 is fin.gen.
⇓ (B.M.T. Lemma)

F ′2(varG) is fin.gen.

Beata Bajorska On polynomial growth



Proof of necessity

Lemma If G is a finitely generated virtually nilpotent group then
(i) The group G is locally graded
(ii) The commutator subgroup F ′2(varG) is finitely generated.

Proof of (i)

virtually nilpotent
⇓ (P.Hall)

residually finite
⇓ (S.N.Černikov)
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⇓ (S.N.Černikov)

locally graded

Proof of (ii)

virtually nilpotent

⇓ (A.I.Mal’cev)
(B.H.Neuman,T.Taylor)

positive law
⇓ (S.Rosset)

Milnor Property:
∀g,h ∈ G 〈h−ig hi , i∈N〉 is fin.gen.

⇓ (B.M.T. Lemma)
F ′2(varG) is fin.gen.

Beata Bajorska On polynomial growth



Proof of necessity

Lemma If G is a finitely generated virtually nilpotent group then
(i) The group G is locally graded
(ii) The commutator subgroup F ′2(varG) is finitely generated.

Proof of (i)

virtually nilpotent
⇓ (P.Hall)

residually finite
⇓ (S.N.Černikov)
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Proof of sufficiency

Lemma Let G be a finitely generated group. If
(i) The group G is locally graded
(ii) The commutator subgroup F ′2(varG) is finitely generated
then G is virtually nilpotent.

Sketch of proof

1 Using (ii) we show that G/R(G) is virtually nilpotent
2 Using we show that R(G) is finitely generated
3 Using and (i) we show that R(G) = {1}
4 Using we obtain the result from
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Theorem in polynomial growth version

Theorem A group G is of polynomial growth if and only if
(i) The group G is locally graded
(ii) The commutator subgroup F ′2(var G) is finitely generated
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Thank you for your attention
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