On polynomial growth joint work with O.Macedońska and W.Tomaszewski

Beata Bajorska

Silesian University of Technology Gliwice, Poland

Groups and Their Actions, Będlewo 2010

< ロ > < 同 > < 三 >

What this talk is about?

Beata Bajorska On polynomial growth

<ロト <回 > < 注 > < 注 > 、

We shall characterize/describe groups of polynomial growth

æ

프 🖌 🛪 프 🕨

What this talk is not about?

Beata Bajorska On polynomial growth

æ

・ロト ・回 ト ・ ヨト ・ ヨトー

polynomial growth

イロト イポト イヨト イヨト

æ

polynomial growth ↑ (J.Milnor, J.A.Wolf, 1968) virtual nilpotence

Beata Bajorska On polynomial growth

polynomial growth ↓ (M.Gromov, 1981) virtual nilpotence

Beata Bajorska On polynomial growth

프 🕨 🗉 프

The class of groups of polynomial growth

Beata Bajorska On polynomial growth

프 🕨 🗉 프

< 同 > < 三 > <

The class of groups of polynomial growth and the class of finitely generated virtually nilpotent groups

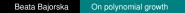
Beata Bajorska On polynomial growth

The class of groups of polynomial growth and the class of finitely generated virtually nilpotent groups coincide.

Beata Bajorska On polynomial growth

≣ ▶

To be honest:



To be honest: We shall formulate a necessary and sufficient condition for a group to be virtually nilpotent

.⊒...>

 A group is called virtually nilpotent if it has a normal nilpotent subgroup of finite index

イロト イポト イヨト イヨト

- A group is called virtually nilpotent if it has a normal nilpotent subgroup of finite index
- A group *G* is called **locally graded** if every nontrivial fin.gen. subgroup of *G* has a nontrivial finite image.

・ 同 ト ・ 三 ト ・ 三 ト

- A group is called virtually nilpotent if it has a normal nilpotent subgroup of finite index
- A group *G* is called **locally graded** if every nontrivial fin.gen. subgroup of *G* has a nontrivial finite image.
- A law *u* ≡ *w* is called positive if words *u*, *w* can be written without negative powers of variables.

• Imp • • model

• *varG* - the variety generated by a group G (i.e. the smallest variety containing *G*)

・ 同 ト ・ ヨ ト ・ ヨ ト

- *varG* the variety generated by a group G (i.e. the smallest variety containing *G*)
- F₂(varG) a free 2-generator group in varG (i.e. a relatively free group)

イロン 不得 とくほ とくほ とう

= 990

- *varG* the variety generated by a group G (i.e. the smallest variety containing *G*)
- F₂(varG) a free 2-generator group in varG (i.e. a relatively free group)
- $F'_2(varG)$ a commutator subgroup of $F_2(varG)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

- *varG* the variety generated by a group G (i.e. the smallest variety containing *G*)
- F₂(varG) a free 2-generator group in varG (i.e. a relatively free group)
- $F'_2(varG)$ a commutator subgroup of $F_2(varG)$
- *R*(*G*) a finite residual of *G* (i.e. the intersection of all subgroups of finite index in *G*)

ヘロン 人間 とくほ とくほ とう

 If G is virtually nilpotent, then G' is finitely generated but not conversely (e.g. groups by S.V.Aloshyn; E.S.Golod; R.I.Grigorchuk; N.Gupta, S.Sidki; V.Sushchanskyy)

- If G is virtually nilpotent, then G' is finitely generated but not conversely (e.g. groups by S.V.Aloshyn; E.S.Golod; R.I.Grigorchuk; N.Gupta, S.Sidki; V.Sushchanskyy)
- Relatively free groups are nice when consider the laws

- If G is virtually nilpotent, then G' is finitely generated but not conversely (e.g. groups by S.V.Aloshyn; E.S.Golod; R.I.Grigorchuk; N.Gupta, S.Sidki; V.Sushchanskyy)
- Relatively free groups are nice when consider the laws (virtual nilpotence ⇒ positive law)

Remark None of the conditions can be omitted.

Remark None of the conditions can be omitted.

• We obviously cannot omit (*ii*).

Remark None of the conditions can be omitted.

- We obviously cannot omit (*ii*).
- A positive law implies (*ii*), so we cannot omit (*i*) (A.Yu.Ol'shanskii, A.Storozhev, 1996)

・ロト ・御 ト ・ ヨト ・ ヨトー

Lemma If *G* is a finitely generated virtually nilpotent group then *(i)* The group *G* is locally graded

(*ii*) The commutator subgroup $F'_2(varG)$ is finitely generated.

Lemma If *G* is a finitely generated virtually nilpotent group then (*i*) The group *G* is locally graded

(*ii*) The commutator subgroup $F'_2(varG)$ is finitely generated.

Proof of (i)

virtually nilpotent

▲ /// ▶ ▲ 三 ▶ ▲

Lemma If *G* is a finitely generated virtually nilpotent group then (*i*) The group *G* is locally graded (*ii*) The commutator subgroup $F'_2(varG)$ is finitely generated.

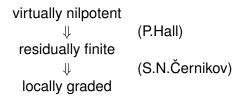
Proof of (i)



・ 同 ト ・ ヨ ト ・ ヨ ト …

Lemma If *G* is a finitely generated virtually nilpotent group then (*i*) The group *G* is locally graded (*ii*) The commutator subgroup $F'_2(varG)$ is finitely generated.

Proof of (i)



・ 同 ト ・ ヨ ト ・ ヨ ト …

Lemma If *G* is a finitely generated virtually nilpotent group then (*i*) The group *G* is locally graded

(*ii*) The commutator subgroup $F'_2(varG)$ is finitely generated.

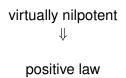
Proof of (ii)

virtually nilpotent

▲ /// ▶ ▲ 三 ▶ ▲

Lemma If *G* is a finitely generated virtually nilpotent group then (*i*) The group *G* is locally graded (*ii*) The commutator subgroup $F'_2(varG)$ is finitely generated.

Proof of (ii)



(A.I.Mal'cev) (B.H.Neuman,T.Taylor)

ヘロト ヘアト ヘビト ヘビト

Lemma If *G* is a finitely generated virtually nilpotent group then (*i*) The group *G* is locally graded (*ii*) The commutator subgroup $F'_2(varG)$ is finitely generated.

```
Proof of (ii)

virtually nilpotent

\downarrow \qquad (A.I.Mal'cev)

(B.H.Neuman,T.Taylor)

positive law

\downarrow \qquad (S.Rosset)

Milnor Property:

\forall q, h \in G \ \langle h^{-i}q h^i, \ i \in \mathbb{N} \rangle is fin.gen.
```

イロン 不得 とくほ とくほ とう

э.

Lemma If *G* is a finitely generated virtually nilpotent group then (*i*) The group *G* is locally graded (*ii*) The commutator subgroup $F'_2(varG)$ is finitely generated.

```
Proof of (ii)
              virtually nilpotent
                                                   (A.I.Mal'cev)
                        1
                                                   (B.H.Neuman, T.Taylor)
                 positive law
                                                   (S.Rosset)
                        Milnor Property:
 \forall g, h \in G \ \langle h^{-i}g h^i, i \in \mathbb{N} \rangle is fin.gen.
                                                   (B.M.T. Lemma)
            F'_{2}(varG) is fin.gen.
```

イロン 不得 とくほ とくほ とう

Proof of sufficiency

Lemma Let G be a finitely generated group. If

(*i*) The group *G* is locally graded (*ii*) The commutator subgroup $F'_2(varG)$ is finitely generated then *G* is virtually nilpotent.

▲ /// ▶ ▲ 三 ▶ ▲

Proof of sufficiency

Lemma Let G be a finitely generated group. If

(*i*) The group *G* is locally graded (*ii*) The commutator subgroup $F'_2(varG)$ is finitely generated then *G* is virtually nilpotent.

Sketch of proof

▲ /// ▶ ▲ 三 ▶ ▲

(*i*) The group *G* is locally graded (*ii*) The commutator subgroup $F'_2(varG)$ is finitely generated then *G* is virtually nilpotent.

Sketch of proof

• Using (*ii*) we show that G/R(G) is virtually nilpotent

・ 同 ト ・ ヨ ト ・ ヨ ト …

э.

(*i*) The group *G* is locally graded (*ii*) The commutator subgroup $F'_2(varG)$ is finitely generated then *G* is virtually nilpotent.

Sketch of proof

- Using (*ii*) we show that G/R(G) is virtually nilpotent
- 2 Using 1 we show that R(G) is finitely generated

ヘロト ヘアト ヘヨト ヘ

(*i*) The group *G* is locally graded (*ii*) The commutator subgroup $F'_2(varG)$ is finitely generated then *G* is virtually nilpotent.

Sketch of proof

- Using (*ii*) we show that G/R(G) is virtually nilpotent
- 2 Using 1 we show that R(G) is finitely generated
- Solution Using and (i) we show that $R(G) = \{1\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

(*i*) The group *G* is locally graded (*ii*) The commutator subgroup $F'_2(varG)$ is finitely generated then *G* is virtually nilpotent.

Sketch of proof

- Using (*ii*) we show that G/R(G) is virtually nilpotent
- 2 Using 1 we show that R(G) is finitely generated
- Solution Using and (i) we show that $R(G) = \{1\}$
- Using ③ we obtain the result from ①

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Theorem A group *G* is of polynomial growth if and only if (*i*) The group *G* is locally graded (*ii*) The commutator subgroup *F*[']₂(*var G*) is finitely generated

・ 同 ト ・ ヨ ト ・ ヨ ト -

Thank you for your attention

Beata Bajorska On polynomial growth

・ロト ・ 同ト ・ ヨト ・ ヨト