Finite 2-nilpotent groups acting on compact manifolds

Groups and Their Actions International Conference

Dávid R. Szabó

szabo.david [kukac] renyi [pont] hu

Alfréd Rényi Institute of Mathematics, Budapest, Hungary

Gliwice, Poland
September 9, 2019
Jordan groups

Definition

An infinite group G is **Jordan** if there exists a positive integer J_G, such that every finite subgroup K of G contains a normal abelian subgroup whose index in K is at most J_G.

Example (Jordan groups, algebraic)

- $\text{GL}(\mathbb{C}, n)$ for every n (Camille Jordan, 1877)
- $\text{Bir}(X)$ where X is an algebraic variety for
 - $X = \mathbb{P}^2_{\mathbb{C}}$, the rank 2 Cremona group (J.-P. Serre, 2009)
 - X rationally connected (e.g. $X = \mathbb{P}^n_{\mathbb{C}}$) with $J_{\text{Bir}(X)}$ depending only on $\dim X$ (Prokhorov, Shramov, 2014 + Birkar 2016)
- G connected algebraic group (with J_G depending only on $\dim G$) (Meng, Zhang, 2017)
- $\text{Aut}_0(X)$ where X is a projective variety (Meng, Zhang, 2017)
Jordan groups

Definition

A(n infinite) group G is *Jordan* if there exists a positive integer J_G, such that every finite subgroup K of G contains a normal abelian subgroup whose index in K is at most J_G.

Example (Jordan groups, algebraic)

- $\text{GL}(\mathbb{C}, n)$ for every n (Camille Jordan, 1877)
- $\text{Bir}(X)$ where X is an algebraic variety for
 - $X = \mathbb{P}^2_{\mathbb{C}}$, the rank 2 Cremona group (J.-P. Serre, 2009)
 - X rationally connected (e.g. $X = \mathbb{P}^n_{\mathbb{C}}$) with $J_{\text{Bir}(X)}$ depending only on $\dim X$ (Prokhorov, Shramov, 2014 + Birkar 2016)
- G connected algebraic group (with J_G depending only on $\dim G$) (Meng, Zhang, 2017)
- $\text{Aut}_0(X)$ where X is a projective variety (Meng, Zhang, 2017)
Definition

A(n infinite) group G is *Jordan* if there exists a positive integer J_G, such that every finite subgroup K of G contains a normal abelian subgroup whose index in K is at most J_G.

Example (Jordan groups, algebraic)

- $\text{GL}(\mathbb{C}, n)$ for every n (Camille Jordan, 1877)
- $\text{Bir}(X)$ where X is an algebraic variety for
 - $X = \mathbb{P}^2_{\mathbb{C}}$, the rank 2 Cremona group (J.-P. Serre, 2009)
 - X rationally connected (e.g. $X = \mathbb{P}^n_{\mathbb{C}}$) with $J_{\text{Bir}(X)}$ depending only on $\dim X$ (Prokhorov, Shramov, 2014 + Birkar 2016)
- G connected algebraic group (with J_G depending only on $\dim G$) (Meng, Zhang, 2017)
- $\text{Aut}_0(X)$ where X is a projective variety (Meng, Zhang, 2017)
Jordan groups

Definition

A (n infinite) group G is Jordan if there exists a positive integer J_G, such that every finite subgroup K of G contains a normal abelian subgroup whose index in K is at most J_G.

Example (Jordan groups, algebraic)

- $\text{GL}(\mathbb{C}, n)$ for every n (Camille Jordan, 1877)
- $\text{Bir}(X)$ where X is an algebraic variety for
 - $X = \mathbb{P}^2_{\mathbb{C}}$, the rank 2 Cremona group (J.-P. Serre, 2009)
 - X rationally connected (e.g. $X = \mathbb{P}^n_{\mathbb{C}}$) with $J_{\text{Bir}(X)}$ depending only on $\dim X$ (Prokhorov, Shramov, 2014 + Birkar 2016)
- G connected algebraic group (with J_G depending only on $\dim G$) (Meng, Zhang, 2017)
- $\text{Aut}_0(X)$ where X is a projective variety (Meng, Zhang, 2017)
Definition

A(n infinite) group G is *Jordan* if there exists a positive integer J_G, such that every finite subgroup K of G contains a normal abelian subgroup whose index in K is at most J_G.

Example (Jordan groups, algebraic)

- $\text{GL}(\mathbb{C}, n)$ for every n (Camille Jordan, 1877)
- $\text{Bir}(X)$ where X is an algebraic variety for
 - $X = \mathbb{P}^2_{\mathbb{C}}$, the rank 2 Cremona group (J.-P. Serre, 2009)
 - X rationally connected (e.g. $X = \mathbb{P}^n_{\mathbb{C}}$) with $J_{\text{Bir}(X)}$ depending only on $\dim X$ (Prokhorov, Shramov, 2014 + Birkar 2016)
- G connected algebraic group (with J_G depending only on $\dim G$) (Meng, Zhang, 2017)
- $\text{Aut}_0(X)$ where X is a projective variety (Meng, Zhang, 2017)
Motivation

Main question and result

Step 1: Group theoretic reductions

Step 2: Topological reductions

Proof of theorem

Jordan groups

Definition

A(n infinite) group G is **Jordan** if there exists a positive integer J_G, such that every finite subgroup K of G contains a normal abelian subgroup whose index in K is at most J_G.

Example (Jordan groups, algebraic)

- $\text{GL}(\mathbb{C}, n)$ for every n (Camille Jordan, 1877)
- $\text{Bir}(X)$ where X is an algebraic variety for
 - $X = \mathbb{P}^2_{\mathbb{C}}$, the rank 2 Cremona group (J.-P. Serre, 2009)
 - X rationally connected (e.g. $X = \mathbb{P}^n_{\mathbb{C}}$) with $J_{\text{Bir}(X)}$ depending only on $\dim X$ (Prokhorov, Shramov, 2014 + Birkar 2016)
- G connected algebraic group (with J_G depending only on $\dim G$) (Meng, Zhang, 2017)
- $\text{Aut}_0(X)$ where X is a projective variety (Meng, Zhang, 2017)
Example (Jordan groups, smooth)

\textbf{Diff}(M) \text{ is Jordan for manifolds } M \text{ such that}

- \(M \) compact, \(\dim(M) \leq 3 \) (Bruno Zimmermann, 2014)
- Mundet i Riera (2010-2018):
 - \(M \) is the \(n \)-torus
 - \(M \) is \(\mathbb{R}^n \) (acyclic manifolds)
 - \(M \) in the \(n \)-sphere (integral cohomology spheres)
 - \(M \) connected, compact with non-zero Euler characteristic
Example (Jordan groups, smooth)

Diff(M) is Jordan for manifolds M such that

- M compact, dim(M) ≤ 3 (Bruno Zimmermann, 2014)
- Mundet i Riera (2010-2018):
 - M is the n-torus
 - M is \(\mathbb{R}^n \) (acyclic manifolds)
 - M in the n-sphere (integral cohomology spheres)
 - M connected, compact with non-zero Euler characteristic
Jordan groups, smooth

Example (Jordan groups, smooth)

\textit{Diff}(M) is Jordan for manifolds }M\textit{ such that}

- \(M \) compact, \(\dim(M) \leq 3 \) (Bruno Zimmermann, 2014)
- Mundet i Riera (2010-2018):
 - \(M \) is the \(n \)-torus
 - \(M \) is \(\mathbb{R}^n \) (acyclic manifolds)
 - \(M \) in the \(n \)-sphere (integral cohomology spheres)
 - \(M \) connected, compact with non-zero Euler characteristic
Motivation

Main question and result

Step 1: Group theoretic reductions

Step 2: Topological reductions

Proof of theorem

Ghys’ question

Question (Ghys, < 1997)

Is $\text{Diff}(M)$ Jordan for every compact manifold M?

Despite the positive examples above, it turned to be false:

- $\text{Diff}(\mathbb{T}^2 \times \mathbb{S}^2)$ is not Jordan (Pyber-Csikós-E. Szabó, 2014) Idea: embed the Heisenberg groups $\begin{pmatrix} 1 & \mathbb{Z}_n & \mathbb{Z}_n \\ 0 & 1 & \mathbb{Z}_n \\ 0 & 0 & 1 \end{pmatrix} \subset \text{Diff}(\mathbb{T}^2 \times \mathbb{S}^2)$ for infinitely many n

- Mundet i Riera (2014): higher dimensional counterexamples M_n. Idea: embed $H_{2n+1}(\mathbb{Z}_p) := \begin{pmatrix} 1 & \mathbb{Z}_p & \mathbb{Z}_p \\ 0 & I_n & (\mathbb{Z}_p^n)^	op \\ 0 & 0 & 1 \end{pmatrix} \subset \text{Diff}(M_n)$ for certain infinite list of primes p satisfying various properties
Ghys’ question

Question (Ghys, < 1997)

Is $\text{Diff}(M)$ Jordan for every compact manifold M?

Despite the positive examples above, it turned to be false:

- $\text{Diff}(\mathbb{T}^2 \times \mathbb{S}^2)$ is not Jordan (Pyber-Csikós-E. Szabó, 2014)

 Idea: embed the Heisenberg groups $\begin{pmatrix} \mathbb{Z}_n & \mathbb{Z}_n \\ 0 & 1 \end{pmatrix} \subset \text{Diff}(\mathbb{T}^2 \times \mathbb{S}^2)$ for infinitely many n

- Mundet i Riera (2014): higher dimensional counterexamples M_n.

 Idea: embed $H_{2n+1}(\mathbb{Z}_p) := \begin{pmatrix} 1 & \mathbb{Z}_p \\ 0 & I_n \end{pmatrix} \subset \text{Diff}(M_n)$ for certain infinite list of primes p satisfying various properties
Ghys’ question

Question (Ghys, < 1997)

Is $\text{Diff}(M)$ **Jordan for every compact manifold** M?

Despite the positive examples above, it turned to be false:

- $\text{Diff}(\mathbb{T}^2 \times S^2)$ is not Jordan (Pyber-Csikós-E. Szabó, 2014) Idea:
 - embed the Heisenberg groups $\begin{pmatrix} 1 & \mathbb{Z}_n & \mathbb{Z}_n \\ 0 & 1 & \mathbb{Z}_n \\ 0 & 0 & 1 \end{pmatrix} \subset \text{Diff}(\mathbb{T}^2 \times S^2)$ for infinitely many n

- Mundet i Riera (2014): higher dimensional counterexamples M_n. Idea: embed $H_{2n+1}(\mathbb{Z}_p) := \begin{pmatrix} 1 & \mathbb{Z}_p & \mathbb{Z}_p \\ 0 & I_n & (\mathbb{Z}_p^n)^\top \\ 0 & 0 & 1 \end{pmatrix} \subset \text{Diff}(M_n)$ for certain infinite list of primes p satisfying various properties
Non-compact case is fully solved: exists a 4-manifold containing every finite(ly presented) group (Popov, 2013).

Compact case: $\sup\{r(G) : G \in \mathcal{F}\} < \infty$ (Mann, Su, 1963). Here $r(G) := \max\{d(H) : H \subseteq G\}$ is the rank of G where $d(H)$ is the cardinality of a smallest generating set of H.

Affirmative answer for:

- for some Heisenberg groups (Pyber-Csikós-E. Szabó, Mundet i Riera, 2014)
- all Heisenberg groups of given dimension (DSz 2017)
- every special p-group of order p^n (DSz, 2018)

Note that all of these groups G are 2-nilpotent, i.e. $[G, G] \subseteq Z(G)$.
Main question

For which families \(\mathcal{F} \) of finite groups does there exist a compact manifold \(M \) such that \(G \subseteq \text{Diff}(M) \) for every \(G \in \mathcal{F} \)?

- Non-compact case is fully solved: exists a 4-manifold containing every finite(ly presented) group (Popov, 2013).
- Compact case: \(\sup \{ r(G) : G \in \mathcal{F} \} < \infty \) (Mann, Su, 1963).
 Here \(r(G) := \max \{ d(H) : H \subseteq G \} \) is the rank of \(G \) where \(d(H) \) is the cardinality of a smallest generating set of \(H \).
- Affirmative answer for:
 - for some Heisenberg groups (Pyber-Csikós-E. Szabó, Mundet i Riera, 2014)
 - all Heisenberg groups of given dimension (DSz 2017)
 - every special \(p \)-group of order \(p^n \) (DSz, 2018)

Note that all of these groups \(G \) are 2-nilpotent, i.e. \([G, G] \subseteq Z(G)\).
Main question

For which families \mathcal{F} of finite groups does there exist a compact manifold M such that $G \subseteq \text{Diff}(M)$ for every $G \in \mathcal{F}$?

- Non-compact case is fully solved: exists a 4-manifold containing every finite(ly presented) group (Popov, 2013).
- Compact case: $\sup\{r(G) : G \in \mathcal{F}\} < \infty$ (Mann, Su, 1963). Here $r(G) := \max\{d(H) : H \subseteq G\}$ is the rank of G where $d(H)$ is the cardinality of a smallest generating set of H.

- Affirmative answer for:
 - for some Heisenberg groups (Pyber-Csikós-E. Szabó, Mundet i Riera, 2014)
 - all Heisenberg groups of given dimension (DSz 2017)
 - every special p-group of order p^n (DSz, 2018)

Note that all of these groups G are 2-nilpotent, i.e. $[G, G] \subseteq Z(G)$.

Motivation

Main question and result

Step 1: Group theoretic reductions

Step 2: Topological reductions

Proof of theorem
Main question

Question (main)

For which families \mathcal{F} of finite groups does there exist a compact manifold M such that $G \subseteq \text{Diff}(M)$ for every $G \in \mathcal{F}$?

- Non-compact case is fully solved: exists a 4-manifold containing every finite(ly presented) group (Popov, 2013).
- Compact case: $\sup \{ r(G) : G \in \mathcal{F} \} < \infty$ (Mann, Su, 1963).
 Here $r(G) := \max \{ d(H) : H \subseteq G \}$ is the rank of G where $d(H)$ is the cardinality of a smallest generating set of H.
- Affirmative answer for:
 - for some Heisenberg groups (Pyber-Csikós-E. Szabó, Mundet i Riera, 2014)
 - all Heisenberg groups of given dimension (DSz 2017)
 - every special p-group of order p^n (DSz, 2018)

Note that all of these groups G are 2-nilpotent, i.e. $[G, G] \subseteq Z(G)$.
Main question

For which families \mathcal{F} of finite groups does there exist a compact manifold M such that $G \subseteq \text{Diff}(M)$ for every $G \in \mathcal{F}$?

- Non-compact case is fully solved: exists a 4-manifold containing every finite(ly presented) group (Popov, 2013).
- Compact case: $\sup \{ r(G) : G \in \mathcal{F} \} < \infty$ (Mann, Su, 1963).
 Here $r(G) := \max \{ d(H) : H \subseteq G \}$ is the rank of G where $d(H)$ is the cardinality of a smallest generating set of H.
- Affirmative answer for:
 - for some Heisenberg groups (Pyber-Csikós-E. Szabó, Mundet i Riera, 2014)
 - all Heisenberg groups of given dimension (DSz 2017)
 - every special p-group of order p^n (DSz, 2018)

Note that all of these groups G are 2-nilpotent, i.e. $[G, G] \subseteq Z(G)$.
Main question

Question (main)

For which families \mathcal{F} of finite groups does there exist a compact manifold M such that $G \subseteq \text{Diff}(M)$ for every $G \in \mathcal{F}$?

- Non-compact case is fully solved: exists a 4-manifold containing every finite(ly presented) group (Popov, 2013).
- Compact case: $\sup\{r(G) : G \in \mathcal{F} \} < \infty$ (Mann, Su, 1963). Here $r(G) := \max\{d(H) : H \subseteq G\}$ is the rank of G where $d(H)$ is the cardinality of a smallest generating set of H.
- Affirmative answer for:
 - for some Heisenberg groups (Pyber-Csikós-E. Szabó, Mundet i Riera, 2014)
 - all Heisenberg groups of given dimension (DSz 2017)
 - every special p-group of order p^n (DSz, 2018)

Note that all of these groups G are 2-nilpotent, i.e. $[G, G] \subseteq Z(G)$.
Main question

Question (main)

For which families \mathcal{F} of finite groups does there exist a compact manifold M such that $G \subseteq \text{Diff}(M)$ for every $G \in \mathcal{F}$?

- Non-compact case is fully solved: exists a 4-manifold containing every finite(ly presented) group (Popov, 2013).
- Compact case: $\sup\{r(G) : G \in \mathcal{F}\} < \infty$ (Mann, Su, 1963).
 Here $r(G) := \max\{d(H) : H \subseteq G\}$ is the rank of G where $d(H)$ is the cardinality of a smallest generating set of H.
- Affirmative answer for:
 - for some Heisenberg groups (Pyber-Csikós-E. Szabó, Mundet i Riera, 2014)
 - all Heisenberg groups of given dimension (DSz 2017)
 - every special p-group of order p^n (DSz, 2018)

Note that all of these groups G are 2-nilpotent, i.e. $[G, G] \subseteq Z(G)$.
Main result

Theorem (DSz, 2019)

For every r, there exists a compact manifold M_r such that $G \subseteq \text{Diff}(M_r)$ for every finite 2-nilpotent group G of rank $\leq r$.

As an immediate corollary, we answer affirmatively a question of Mundet i Riera from 2018.

Corollary

For every n, there exists a compact manifold M_n on which every finite 2-nilpotent group G of order p^n acts faithfully via diffeomorphisms for every p.
Main result

Theorem (DSz, 2019)

For every r, there exists a compact manifold M_r such that $G \subseteq \text{Diff}(M_r)$ for every finite 2-nilpotent group G of rank $\leq r$.

As an immediate corollary, we answer affirmatively a question of Mundet i Riera from 2018.

Corollary

For every n, there exists a compact manifold M_n on which every finite 2-nilpotent group G of order p^n acts faithfully via diffeomorphisms for every p.
Overview of the group theoretic reductions

Step 1: group theoretic reductions:

1. We reduce the 2-nilpotent group G to one with cyclic centre using direct products.
2. Then further to one that is generated by 2 elements using maximal central products.
3. Finally we classify the 2-generated 2-nilpotent groups having cyclic centre.
Overview of the group theoretic reductions

Step 1: group theoretic reductions:

1. We reduce the 2-nilpotent group G to one with cyclic centre using direct products.

2. Then further to one that is generated by 2 elements using maximal central products.

3. Finally we classify the 2-generated 2-nilpotent groups having cyclic centre.
Overview of the group theoretic reductions

Step 1: group theoretic reductions:

1. We reduce the 2-nilpotent group G to one with cyclic centre using direct products.
2. Then further to one that is generated by 2 elements using maximal central products.
3. Finally we classify the 2-generated 2-nilpotent groups having cyclic centre.
Overview of the group theoretic reductions

Step 1: group theoretic reductions:

1. We reduce the 2-nilpotent group G to one with cyclic centre using direct products.
2. Then further to one that is generated by 2 elements using maximal central products.
3. Finally we classify the 2-generated 2-nilpotent groups having cyclic centre.
Reduction to 2-nilpotent groups with cyclic centre

Fix G a finite 2-nilpotent group of rank $\leq r$. (Wlog it is a p-group.) Goal: find a manifold with a G-action depending only on r.

Lemma

There exists 2-nilpotent H_i with cyclic centre such that $G \subseteq \prod_{i=1}^{r} H_i$ and $d(H_i) \leq r$.

Proof.

- $Z(G) = \prod_{i=1}^{k} C_i$, if $k > 1$ consider $\prod_{i=1}^{k} G/C_i$ and use induction to embed G to $\prod_{i=1}^{K} G/N_i$.
- Wlog $K \leq r$ (E. Szabó): The socle of G (product of minimal normal subgroups) is \mathbb{Z}_p^k for some $k \leq r$. Every non-trivial normal subgroup intersects the socle non-trivially. We select r normal subgroups $N_i \subseteq G$ from the list with trivial intersection.
- $H_i := G/N_i$, $d(H_i) \leq d(G) \leq r$.

Fix G a finite 2-nilpotent group of rank $\leq r$. (Wlog it is a p-group.)

Goal: find a manifold with a G-action depending only on r.

Lemma

There exists 2-nilpotent H_i with cyclic centre such that $G \subseteq \prod_{i=1}^{r} H_i$ and $d(H_i) \leq r$.

Proof.

- $Z(G) = \prod_{i=1}^{k} C_i$, if $k > 1$ consider $\prod_{i=1}^{k} G/C_i$ and use induction to embed G to $\prod_{i=1}^{K} G/N_i$.
- Wlog $K \leq r$ (E. Szabó): The socle of G (product of minimal normal subgroups) is \mathbb{Z}_p^k for some $k \leq r$. Every non-trivial normal subgroup intersects the socle non-trivially. We select r normal subgroups $N_i \subseteq G$ from the list with trivial intersection.
- $H_i := G/N_i$, $d(H_i) \leq d(G) \leq r$.

\[\text{Proof.} \]
Fix G a finite 2-nilpotent group of rank $\leq r$. (Wlog it is a p-group.)

Goal: find a manifold with a G-action depending only on r.

Lemma

There exists 2-nilpotent H_i with cyclic centre such that $G \subseteq \prod_{i=1}^{r} H_i$ and $d(H_i) \leq r$.

Proof.

- $Z(G) = \prod_{i=1}^{k} C_i$, if $k > 1$ consider $\prod_{i=1}^{k} G/C_i$ and use induction to embed G to $\prod_{i=1}^{K} G/N_i$.

- Wlog $K \leq r$ (E. Szabó): The socle of G (product of minimal normal subgroups) is \mathbb{Z}_p^k for some $k \leq r$. Every non-trivial normal subgroup intersects the socle non-trivially. We select r normal subgroups $N_i \subseteq G$ from the list with trivial intersection.

- $H_i := G/N_i$, $d(H_i) \leq d(G) \leq r$.
Reduction to 2-nilpotent groups with cyclic centre

Fix G a finite 2-nilpotent group of rank $\leq r$. (Wlog it is a p-group.)
Goal: find a manifold with a G-action depending only on r.

Lemma

There exists 2-nilpotent H_i with cyclic centre such that $G \subseteq \prod_{i=1}^r H_i$ and $d(H_i) \leq r$.

Proof.

- $Z(G) = \prod_{i=1}^k C_i$, if $k > 1$ consider $\prod_{i=1}^k G/C_i$ and use induction to embed G to $\prod_{i=1}^K G/N_i$.
- Wlog $K \leq r$ (E. Szabó): The socle of G (product of minimal normal subgroups) is \mathbb{Z}_p^k for some $k \leq r$. Every non-trivial normal subgroup intersects the socle non-trivially. We select r normal subgroups $N_i \subseteq G$ from the list with trivial intersection.
 - $H_i := G/N_i$, $d(H_i) \leq d(G) \leq r$.

Reduction to 2-nilpotent groups with cyclic centre

Fix G a finite 2-nilpotent group of rank $\leq r$. (Wlog it is a p-group.) Goal: find a manifold with a G-action depending only on r.

Lemma

There exists 2-nilpotent H_i with cyclic centre such that $G \subseteq \prod_{i=1}^{r} H_i$ and $d(H_i) \leq r$.

Proof.

- $Z(G) = \prod_{i=1}^{k} C_i$, if $k > 1$ consider $\prod_{i=1}^{k} G/C_i$ and use induction to embed G to $\prod_{i=1}^{K} G/N_i$.
- Wlog $K \leq r$ (E. Szabó): The socle of G (product of minimal normal subgroups) is \mathbb{Z}_p^k for some $k \leq r$. Every non-trivial normal subgroup intersects the socle non-trivially. We select r normal subgroups $N_i \subseteq G$ from the list with trivial intersection.
- $H_i := G/N_i$, $d(H_i) \leq d(G) \leq r$.

Maximal central products

Definition (Maximal central product)

Given an isomorphism \(\varphi : D_1 \to D_2 \) for \(D_i \subseteq Z(G_i) \), set

\[
G_1 \gamma_{\varphi} G_2 := G_1 \times G_2 / \{(z, \varphi(z)^{-1}) : z \in D_1 \},
\]

the central product along \(\varphi \) amalgamating \(D_1 \) and \(D_2 \).

We call \(\varphi \) a maximal, if \(\varphi \) cannot be extended further to an isomorphism between central subgroups, and in this case the call the central product is maximal and denote it by \(\overline{G_1 \gamma_{\varphi} G_2} \).

Lemma

\(Z(G_1 \gamma_{\varphi} G_2) \) is cyclic if and only if \(Z(G_1) \), \(Z(G_2) \) are both cyclic and \(\varphi \) is a maximal central isomorphism.
Maximal central products

Definition (Maximal central product)

Given an isomorphism $\varphi : D_1 \rightarrow D_2$ for $D_i \subseteq Z(G_i)$, set

$$G_1 \rhd_{\varphi} G_2 := G_1 \times G_2 / \{(z, \varphi(z)^{-1}) : z \in D_1\},$$

the *central product* along φ amalgamating D_1 and D_2.

We call φ a maximal, if φ cannot be extended further to an isomorphism between central subgroups, and in this case the call the central product is *maximal* and denote it by $G_1 \bar{\rhd}_{\varphi} G_2$.

Lemma

$Z(G_1 \rhd_{\varphi} G_2)$ is cyclic if and only if $Z(G_1)$, $Z(G_2)$ are both cyclic and φ is a maximal central isomorphism.
Maximal central products

Definition (Maximal central product)

Given an isomorphism $\varphi : D_1 \to D_2$ for $D_i \subseteq Z(G_i)$, set

$$G_1 \gamma_{\varphi} G_2 := G_1 \times G_2 / \{(z, \varphi(z)^{-1}) : z \in D_1\},$$

the central product along φ amalgamating D_1 and D_2.

We call φ a maximal, if φ cannot be extended further to an isomorphism between central subgroups, and in this case the call the central product is maximal and denote it by $G_1 \bar{\gamma}_{\varphi} G_2$.

Lemma

$Z(G_1 \gamma_{\varphi} G_2)$ is cyclic if and only if $Z(G_1)$, $Z(G_2)$ are both cyclic and φ is a maximal central isomorphism.
Reduction to 2-generated groups of cyclic centre

Let H be any factor from the previous embedding.

Lemma (2-nilpotent group with cyclic centre)

There exists 2-generated 2-nilpotent groups E_1, \ldots, E_n all with cyclic centre where $n \leq \lceil r/2 \rceil$, such that

$$H \cong \ldots ((E_1 \bar{\varphi}_1 E_2) \bar{\varphi}_2 E_3) \bar{\varphi}_3 \ldots) \bar{\varphi}_{n-1} E_n,$$

and the isomorphisms class of H is independent of φ_i.

Proof.

- Find minimal generating set $\{\alpha_1, \alpha_2\} \cup S$ of E such that $H' = \langle [\alpha_1, \alpha_2] \rangle$, $[\alpha_i, s] = 1$ for all $s \in S$.
- For $H_0 := \langle S \rangle$ and $E_n := \langle \alpha, \beta \rangle$, we have $H \cong H_0 \bar{\varphi} E_n$ and use induction on d.
- Independence follows from last part of the next Lemma.
Reduction to 2-generated groups of cyclic centre

Let H be any factor from the previous embedding.

Lemma (2-nilpotent group with cyclic centre)

There exists 2-generated 2-nilpotent groups E_1, \ldots, E_n all with cyclic centre where $n \leq \lceil r/2 \rceil$, such that

$$H \cong \ldots (((E_1 \bar{\varphi}_1 E_2) \bar{\varphi}_2 E_3) \bar{\varphi}_3 \ldots) \bar{\varphi}_{n-1} E_n,$$

and the isomorphisms class of H is independent of φ_i.

Proof.

- Find minimal generating set $\{\alpha_1, \alpha_2\} \cup S$ of E such that $H' = \langle [\alpha_1, \alpha_2] \rangle$, $[\alpha_i, s] = 1$ for all $s \in S$.
- For $H_0 := \langle S \rangle$ and $E_n := \langle \alpha, \beta \rangle$, we have $H \cong H_0 \bar{\varphi} E_n$ and use induction on d.
- Independence follows from last part of the next Lemma.
Reduction to 2-generated groups of cyclic centre

Let H be any factor from the previous embedding.

Lemma (2-nilpotent group with cyclic centre)

There exists 2-generated 2-nilpotent groups E_1, \ldots, E_n all with cyclic centre where $n \leq \lceil r/2 \rceil$, such that

$$H \cong \ldots \ldots \ldots (E_1 \tilde{\varphi}_1 E_2) \tilde{\varphi}_2 E_3 \ldots \ldots (E_{n-1} \tilde{\varphi}_{n-1} E_n),$$

and the isomorphisms class of H is independent of φ_i.

Proof.

- Find minimal generating set $\{\alpha_1, \alpha_2\} \cup S$ of E such that $H' = \langle [\alpha_1, \alpha_2] \rangle$, $[\alpha_i, s] = 1$ for all $s \in S$.
- For $H_0 := \langle S \rangle$ and $E_n := \langle \alpha, \beta \rangle$, we have $H \cong H_0 \tilde{\varphi} E_n$ and use induction on d.

Independence follows from last part of the next Lemma.
Let H be any factor from the previous embedding.

Lemma (2-nilpotent group with cyclic centre)

There exists 2-generated 2-nilpotent groups E_1, \ldots, E_n all with cyclic centre where $n \leq \lceil r/2 \rceil$, such that

$$H \cong ((E_1 \bar{\varphi}_1 E_2) \bar{\varphi}_2 E_3) \bar{\varphi}_3 \ldots) \bar{\varphi}_{n-1} E_n,$$

and the isomorphisms class of H is independent of φ_i.

Proof.

- Find minimal generating set $\{\alpha_1, \alpha_2\} \cup S$ of E such that $H' = \langle [\alpha_1, \alpha_2] \rangle$, $[\alpha_i, s] = 1$ for all $s \in S$.
- For $H_0 := \langle S \rangle$ and $E_n := \langle \alpha, \beta \rangle$, we have $H \cong H_0 \bar{\varphi} E_n$ and use induction on d.
- Independence follows from last part of the next Lemma.
Let E be an element of the previous decomposition.

Lemma (2-generated 2-nilpotent group with cyclic centre)

1. $Z(E) \subseteq E$ gives $1 \to \mathbb{Z}_a \to E \to \mathbb{Z}_c \times \mathbb{Z}_c \to 1$ for some unique integers $c | a$,

2. $E = \langle \alpha, \beta, \gamma : \gamma = [\alpha, \beta], 1 = \gamma^c = [\alpha, \gamma] = [\beta, \gamma], \alpha^a = \gamma^{c_1}, \beta^c = \gamma^{c_2} \rangle$ for some integers $c_1, c_2 | c$. There are two types:
 - either $\langle \gamma \rangle = [E, E] = Z(E)$, $c = a$,
 - or $\langle \gamma \rangle = [E, E] \subsetneq Z(E) = \langle \alpha^c \rangle$, $c < a$, $c_1 = 1$

3. Every automorphism of a central subgroup can be extended to E.

Proof.

Pull back suitable generators of E/E'.

Let E be an element of the previous decomposition.

Lemma (2-generated 2-nilpotent group with cyclic centre)

1. $Z(E) \subseteq E$ gives $1 \to \mathbb{Z}_a \to E \to \mathbb{Z}_c \times \mathbb{Z}_c \to 1$ for some unique integers $c | a$,

2. $E = \langle \alpha, \beta, \gamma : \gamma = [\alpha, \beta], 1 = \gamma^c = [\alpha, \gamma] = [\beta, \gamma], \alpha^a = \gamma^{c_1}, \beta^c = \gamma^{c_2} \rangle$ for some integers $c_1, c_2 | c$. **There are two types:**
 - either $\langle \gamma \rangle = [E, E] = Z(E)$, $c = a$,
 - or $\langle \gamma \rangle = [E, E] \subsetneq Z(E) = \langle \alpha^c \rangle$, $c < a$, $c_1 = 1$

3. Every automorphism of a central subgroup can be extended to E.

Proof.

Pull back suitable generators of E/E'.
2-generated groups with cyclic centre

Let E be an element of the previous decomposition.

Lemma (2-generated 2-nilpotent group with cyclic centre)

1. $Z(E) \subseteq E$ gives $1 \to \mathbb{Z}_a \to E \to \mathbb{Z}_c \times \mathbb{Z}_c \to 1$ for some unique integers $c \mid a$.

2. $E = \langle \alpha, \beta, \gamma : \gamma = [\alpha, \beta], 1 = \gamma^c = [\alpha, \gamma] = [\beta, \gamma], \alpha^a = \gamma^{c_1}, \beta^c = \gamma^{c_2} \rangle$ for some integers $c_1, c_2 \mid c$. There are two types:
 - either $\langle \gamma \rangle = [E, E] = Z(E), c = a$,
 - or $\langle \gamma \rangle = [E, E] \subsetneq Z(E) = \langle \alpha^c \rangle, c < a, c_1 = 1$

3. Every automorphism of a central subgroup can be extended to E.

Proof.

Pull back suitable generators of E/E'.
2-generated groups with cyclic centre

Let E be an element of the previous decomposition.

Lemma (2-generated 2-nilpotent group with cyclic centre)

1. $Z(E) \subseteq E$ gives $1 \rightarrow \mathbb{Z}_a \rightarrow E \rightarrow \mathbb{Z}_c \times \mathbb{Z}_c \rightarrow 1$ for some unique integers $c \mid a$,

2. $E = \langle \alpha, \beta, \gamma : \gamma = [\alpha, \beta], 1 = \gamma^c = [\alpha, \gamma] = [\beta, \gamma], \alpha^a = \gamma^{c_1}, \beta^c = \gamma^{c_2} \rangle$ for some integers $c_1, c_2 \mid c$. There are two types:
 - either $\langle \gamma \rangle = [E, E] = Z(E), c = a$,
 - or $\langle \gamma \rangle = [E, E] \not\subseteq Z(E) = \langle \alpha^c \rangle, c < a, c_1 = 1$

3. Every automorphism of a central subgroup can be extended to E.

Proof.

Pull back suitable generators of E/E'.

Overview of the topological reductions

Step 2: Topological reductions:
Reduce from \(\text{Diff}(M) \) for fixed \(M \), to \(\text{Diff}(L) \) for a (possibly varying) \(L \) where \(L \rightarrow X \) is a line bundle over a fixed \(X \).

Details:

- We define the notion of **central group action on line bundles**.
- We show that two such action induce another one such a maximal central product of groups.
- We show that every central action induce a faithful action on a compact space *depending only on the base space*.
Overview of the topological reductions

Step 2: Topological reductions:
Reduce from $\text{Diff}(M)$ for fixed M, to $\text{Diff}(L)$ for a (possibly varying) L where $L \to X$ is a line bundle over a fixed X.

Details:

1. We define the notion of central group action on line bundles.
2. We show that two such action induce another one such a maximal central product of groups.
3. We show that every central action induce a faithful action on a compact space depending only on the base space.
Overview of the topological reductions

Step 2: Topological reductions:
Reduce from $\text{Diff}(M)$ for fixed M, to $\text{Diff}(L)$ for a (possibly varying) L where $L \rightarrow X$ is a line bundle over a fixed X.
Details:

1. We define the notion of central group action on line bundles.
2. We show that two such action induce another one such a maximal central product of groups.
3. We show that every central action induce a faithful action on a compact space depending only on the base space.
Overview of the topological reductions

Step 2: Topological reductions:
Reduce from $\text{Diff}(M)$ for fixed M, to $\text{Diff}(L)$ for a (possibly varying) L where $L \to X$ is a line bundle over a fixed X.

Details:
1. We define the notion of central group action on line bundles.
2. We show that two such action induce another one such a maximal central product of groups.
3. We show that every central action induce a faithful action on a compact space depending only on the base space.
Central action

Definition

A *central action* of a finite group G on a line bundle $\pi : L \to X$ is a pair of group morphisms $(\varrho : G \to \text{Diff}(L), \overline{\varrho} : G \to \text{Diff}(X))$ such that

- **equivariant:** $\overline{\varrho}(g) \circ \pi = \pi \circ \varrho(g)$ for every $g \in G$
- **linear:** $\varrho(g) : L_x \to L_{\overline{\varrho}(g(x))}$ is \mathbb{C}-linear for every $g \in G$
- **central (non-standard notion):** X is compact, connected, $H^{2\bullet}(X, \mathbb{Z})$ torsion free; ϱ is injective; $\overline{\varrho}(g)$ is homotopic to the identity on X for every $g \in G$; $\text{Stab}_{\overline{\varrho}}(x) = Z(G)$ for every $x \in X$.

$Z(G)$ is necessarily cyclic.

\[1 \longrightarrow Z(G) \longrightarrow G \longrightarrow G/Z(G) \longrightarrow 1 \]

faithful, λ_{ϱ}

\[\mathbb{C}^\times \longrightarrow \text{Diff}_\pi(L) \longrightarrow \text{Diff}(X) \]

ϱ, free
Central action

Definition

A central action of a finite group G on a line bundle $\pi : L \to X$ is a pair of group morphisms $(\varrho : G \to \text{Diff}(L), \overline{\varrho} : G \to \text{Diff}(X))$ such that

- equivariant: $\overline{\varrho}(g) \circ \pi = \pi \circ \varrho(g)$ for every $g \in G$
- linear: $\varrho(g) : L_x \to L_{\overline{\varrho}(g(x))}$ is \mathbb{C}-linear for every $g \in G$
- central (non-standard notion): X is compact, connected, $H^2\cdot(X, \mathbb{Z})$ torsion free; ϱ is injective; $\overline{\varrho}(g)$ is homotopic to the identity on X for every $g \in G$; $\text{Stab}_{\overline{\varrho}}(x) = Z(G)$ for every $x \in X$.

$Z(G)$ is necessarily cyclic.
Central action

Definition

A *central action* of a finite group G on a line bundle $\pi : L \to X$ is a pair of group morphisms $(\varrho : G \to \text{Diff}(L), \bar{\varrho} : G \to \text{Diff}(X))$ such that

- **equivariant:** $\bar{\varrho}(g) \circ \pi = \pi \circ \varrho(g)$ for every $g \in G$
- **linear:** $\varrho(g) : L_x \to L_{\bar{\varrho}(g(x))}$ is \mathbb{C}-linear for every $g \in G$
- **central (non-standard notion):** X is compact, connected, $H^2\pi_*(X, \mathbb{Z})$ torsion free; ϱ is injective; $\bar{\varrho}(g)$ is homotopic to the identity on X for every $g \in G$; $\text{Stab}_{\bar{\varrho}}(x) = Z(G)$ for every $x \in X$.

$Z(G)$ is necessarily cyclic.

$$
1 \longrightarrow Z(G) \longrightarrow G \longrightarrow G/Z(G) \longrightarrow 1
$$

- faithful, λ_ϱ
- ϱ
- $\bar{\varrho}$, free
- $\mathbb{C}^\times \longrightarrow \text{Diff}_\pi(L) \longrightarrow \text{Diff}(X)$
Central action

Definition

A central action of a finite group G on a line bundle $\pi : L \to X$ is a pair of group morphisms $(\varrho : G \to \Diff(L), \overline{\varrho} : G \to \Diff(X))$ such that

- equivariant: $\overline{\varrho}(g) \circ \pi = \pi \circ \varrho(g)$ for every $g \in G$
- linear: $\varrho(g) : L_x \to L_{\overline{\varrho}(g(x))}$ is \mathbb{C}-linear for every $g \in G$
- central (non-standard notion): X is compact, connected, $H^{2\bullet}(X, \mathbb{Z})$ torsion free; ϱ is injective; $\overline{\varrho}(g)$ is homotopic to the identity on X for every $g \in G$; $\text{Stab}_{\overline{\varrho}}(x) = Z(G)$ for every $x \in X$.

$Z(G)$ is necessarily cyclic.
Building central actions on maximal central products

Lemma (Central product construction)

Any two central actions \(\varrho_i : G_i \circlearrowleft \pi_i \) induce a natural central of some \(G_1 \tilde{\varphi} G_2 \).

Proof.

Quotient the natural \(G_1 \times G_2 \)-action on \(\pi_1 \boxtimes \pi_2 \) by its kernel.
Building central actions on maximal central products

Lemma (Central product construction)

Any two central actions $\varrho_i : G_i \circlearrowright \pi_i$ induce a natural central of some $G_1 \overline{\varphi} G_2$.

Proof.

Quotient the natural $G_1 \times G_2$-action on $\pi_1 \boxtimes \pi_2$ by its kernel.
Trivialising central actions

Proposition (Trivialising actions)

There exists $f : \mathbb{N}_0 \to \mathbb{N}_0$ such that whenever ϱ is a central action of G on $\pi : L \to X$, then $G \subseteq \text{Diff}(X \times \mathbb{C}P^f(\dim X))$.

Remark

$X \times \mathbb{C}P^f(\dim X)$ is compact and is independent of G (which is the main goal), although typically L very much can depend on G.

Proof Strategy:

1. Find a direct complement π_\perp of fixed rank N with a compatible G-action using K-theory and by hand
2. This gives a faithful action on the fixed space $X \times \mathbb{C}^{N+1}$
3. Compactify it considering its projective bundle.
Trivialising central actions

Proposition (Trivialising actions)

There exists \(f : \mathbb{N}_0 \to \mathbb{N}_0 \) such that whenever \(\varrho \) is a central action of \(G \) on \(\pi : L \to X \), then \(G \subseteq \text{Diff}(X \times \mathbb{C}P^{f(\dim X)}) \).

Remark

\(X \times \mathbb{C}P^{f(\dim X)} \) is compact and is independent of \(G \) (which is the main goal), although typically \(L \) very much can depend on \(G \).

Proof Strategy:

1. Find a direct complement \(\pi_\perp \) of fixed rank \(N \) with a compatible \(G \)-action using \(K \)-theory and by hand
2. This gives a faithful action on the fixed space \(X \times \mathbb{C}^{N+1} \)
3. Compactify it considering its projective bundle.
Trivialising central actions

Proposition (Trivialising actions)

There exists \(f : \mathbb{N}_0 \to \mathbb{N}_0 \) such that whenever \(\varrho \) is a central action of \(G \) on \(\pi : L \to X \), then \(G \subseteq \text{Diff}(X \times \mathbb{C}P^f(\text{dim} \ X)) \).

Remark

\(X \times \mathbb{C}P^f(\text{dim} \ X) \) is compact and is independent of \(G \) (which is the main goal), although typically \(L \) very much can depend on \(G \).

Proof Strategy:

1. Find a direct complement \(\pi_\perp \) of fixed rank \(N \) with a compatible \(G \)-action using \(K \)-theory and by hand
2. This gives a faithful action on the fixed space \(X \times \mathbb{C}^{N+1} \)
3. Compactify it considering its projective bundle.
Trivialising central actions

Proposition (Trivialising actions)

There exists \(f : \mathbb{N}_0 \to \mathbb{N}_0 \) such that whenever \(\varrho \) is a central action of \(G \) on \(\pi : L \to X \), then \(G \subseteq \text{Diff}(X \times \mathbb{C}P^f(\dim X)) \).

Remark

\(X \times \mathbb{C}P^f(\dim X) \) is compact and is independent of \(G \) (which is the main goal), although typically \(L \) very much can depend on \(G \).

Proof Strategy:

1. Find a direct complement \(\pi_\perp \) of fixed rank \(N \) with a compatible \(G \)-action using \(K \)-theory and by hand
2. This gives a faithful action on the fixed space \(X \times \mathbb{C}^{N+1} \)
3. Compactify it considering its projective bundle.
Proposition (Trivialising actions)

There exists $f : \mathbb{N}_0 \to \mathbb{N}_0$ such that whenever ϱ is a central action of G on $\pi : L \to X$, then $G \subseteq \text{Diff}(X \times \mathbb{C}P^f(\dim X))$.

Remark

$X \times \mathbb{C}P^f(\dim X)$ is compact and is independent of G (which is the main goal), although typically L very much can depend on G.

Proof Strategy:

1. Find a direct complement π_\perp of fixed rank N with a compatible G-action using K-theory and by hand
2. This gives a faithful action on the fixed space $X \times \mathbb{C}^{N+1}$
3. Compactify it considering its projective bundle.
Proof.

- By assumptions and using Atiyah—Hirzebruch theorem, we have:

\[
\begin{align*}
 K^0(X) \otimes \mathbb{Q} & \xleftarrow{p^*} K^0(X/\varphi) \otimes \mathbb{Q} \\
 \downarrow \text{ch} & \quad \downarrow \text{ch} \\
 H^2\text{•}(X, \mathbb{Q}) & \xleftarrow{p^*} H^2\text{•}(X/\varphi, \mathbb{Q})
\end{align*}
\]

where \(p : X \to X/\varphi \) is the projection. So for some \(d \in \mathbb{N}_0 \),
\(\text{ch}^{-1}(d \cdot H^2\text{•}(X, \mathbb{Z})) \) carries a natural \(G \)-action compatible with \(\varphi \).

- Enough to find a multiset \(A \ni 1 \) of integers of fixed size such that

\[
\text{ch}(\bigoplus_{a \in A} \pi \otimes a) - |A| = \sum_{k=1}^{n} \sum_{a \in A} \frac{a^k}{k!} c_1(\pi)^{k} \in d \cdot H^2\text{•}(X, \mathbb{Z}).
\]

- This leads to the following Waring-type problem with \(\delta = dn! \).
Proof.

- By assumptions and using Atiyah–Hirzebruch theorem, we have:

$$K^0(X) \otimes \mathbb{Q} \xleftarrow{p^*} K^0(X/\bar{\varrho}) \otimes \mathbb{Q}$$

$$H^2\pi(X, \mathbb{Q}) \xleftarrow{p^*} H^2\pi(X/\bar{\varrho}, \mathbb{Q})$$

where $p : X \to X/\bar{\varrho}$ is the projection. So for some $d \in \mathbb{N}_0$, $\text{ch}^{-1}(d \cdot H^2\pi(X, \mathbb{Z}))$ carries a natural G-action compatible with ϱ.

- Enough to find a multiset $A \ni 1$ of integers of fixed size such that

$$\text{ch}(\bigoplus_{a \in A} \pi^{\otimes a}) - |A| = \sum_{k=1}^{n} \sum_{a \in A} \frac{a^k}{k!} \left(c_1(\pi)^k \right)_{\in H^2k(X, \mathbb{Z})} \in d \cdot H^2\pi(X, \mathbb{Z}).$$

- This leads to the following Waring-type problem with $\delta = dn!$.

Proof.

- By assumptions and using Atiyah–Hirzebruch theorem, we have:

\[
\begin{align*}
K^0(X) \otimes \mathbb{Q} & \xleftarrow{p^*} K^0(X/\varrho) \otimes \mathbb{Q} \\
\mathbb{R} \downarrow \text{ch} & \mathbb{R} \downarrow \text{ch} \\
H^2\bullet(X, \mathbb{Q}) & \xleftarrow{p^*} H^2\bullet(X/\varrho, \mathbb{Q})
\end{align*}
\]

where \(p : X \to X/\varrho \) is the projection. So for some \(d \in \mathbb{N}_0 \), \(\text{ch}^{-1}(d \cdot H^2\bullet(X, \mathbb{Z})) \) carries a natural \(G \)-action compatible with \(\varrho \).

- Enough to find a multiset \(A \ni 1 \) of integers of fixed size such that

\[
\text{ch}\left(\bigoplus_{a \in A} \pi \otimes a \right) - |A| = \sum_{k=1}^{n} \sum_{a \in A} \frac{a^k}{k!} c_1(\pi)^k \in d \cdot H^2\bullet(X, \mathbb{Z}).
\]

- This leads to the following Waring-type problem with \(\delta = dn! \).
Number theory

Lemma

For arbitrary natural n, δ, every initial sequence of integers a_1, \ldots, a_m can be extended to $a_1, \ldots, a_m, a_{m+1}, \ldots, a_C$ of length $C = C(n, m)$ such that

$$\delta \mid \sum_{i=1}^{C} a_i^k \quad \forall 1 \leq k \leq n.$$

The independence of G on the manifold we are looking for translates to the independence of $C(n, |M|)$ on δ.

Proof.

- Modulo Waring problem: modulo any number, -1 can be expressed as a sum of at most W_k kth powers.
- Expand $(-\sum M + \sum_{a \in M} a) \prod_{k=2}^{n} (1 + a_{k,1} + \ldots a_{k,W_k})$. kth power sum $\in \delta \mathbb{Z}$.
Number theory

Lemma

For arbitrary natural n, δ, every initial sequence of integers a_1, \ldots, a_m can be extended to $a_1, \ldots, a_m, a_{m+1}, \ldots, a_C$ of length $C = C(n, m)$ such that

$$\delta \mid \sum_{i=1}^{C} a_i^k \quad \forall 1 \leq k \leq n.$$

The independence of G on the manifold we are looking for translates to the independence of $C(n, |M|)$ on δ.

Proof.

- Modulo Waring problem: modulo any number, -1 can be expressed as a sum of at most W_k kth powers.
- Expand $\left(- \sum M + \sum_{a \in M} a\right) \prod_{k=2}^{n} \left(1 + a_{k,1} + \ldots a_{k,W_k}\right)$.

 kth power sum $\in \delta \mathbb{Z}$
Lemma

For arbitrary natural n, δ, every initial sequence of integers a_1, \ldots, a_m can be extended to $a_1, \ldots, a_m, a_{m+1}, \ldots, a_C$ of length $C = C(n, m)$ such that

$$\delta \mid \sum_{i=1}^{C} a_i^k \quad \forall 1 \leq k \leq n.$$

The independence of G on the manifold we are looking for translates to the independence of $C(n, |M|)$ on δ.

Proof.

- Modulo Waring problem: modulo any number, -1 can be expressed as a sum of at most W_k kth powers.

- Expand $(-\sum M + \sum_{a \in M} a) \prod_{k=2}^{n} (1 + a_{k,1} + \ldots + a_{k,W_k})$.
For arbitrary natural n, δ, every initial sequence of integers a_1, \ldots, a_m can be extended to $a_1, \ldots, a_m, a_{m+1}, \ldots, a_C$ of length $C = C(n, m)$ such that

$$\delta \mid \sum_{i=1}^{C} a_i^k \quad \forall 1 \leq k \leq n.$$

The independence of G on the manifold we are looking for translates to the independence of $C(n, |M|)$ on δ.

Proof.

- Modulo Waring problem: modulo any number, -1 can be expressed as a sum of at most W_k kth powers.

- Expand \((- \sum M + \sum_{a \in M} a) \prod_{k=2}^{n} (1 + a_{k,1} + \ldots a_{k,W_k})\).
Proof.

Let G be a 2-nilpotent group of rank $\leq r$.

- By step 1: $G \subseteq \prod_{i=1}^{r} H_i$ and $H_i \cong E_{i,1} \overline{\ast} E_{i,2} \overline{\ast} \cdots \overline{\ast} E_{i,\lceil r/2 \rceil}$ and each $E_{i,j}$ is given by a concrete presentation.
- One can construct a central action of each $E_{i,j}$ over the fixed \mathbb{T}^2. (Idea: the Appell–Humbert theorem describes fully the holomorphic vector bundles over \mathbb{T}^2 and we lift the action of \mathbb{Z}_c^2 on \mathbb{T}^2.)
- Apply the Central Product Construction $\lceil r/2 \rceil - 1$ times to get a central action of each H_i (over $\mathbb{T}^{2\lceil r/2 \rceil}$).
- The Trivialising Proposition gives a compact manifold X_r independent of H_i such that each $H_i \subseteq \text{Diff}(X_r)$.
- Then $G \subseteq \text{Diff}(M_r)$ where $M_r = (X_r)^r$ is a manifold as required. \square
Proof of main theorem

Proof.

- Let G be a 2-nilpotent group of rank $\leq r$.
- By step 1: $G \subseteq \prod_{i=1}^{r} H_i$ and $H_i \cong E_{i,1} \bar{\gamma} E_{i,2} \bar{\gamma} \cdots \bar{\gamma} E_{i,\lceil r/2 \rceil}$ and each $E_{i,j}$ is given by a concrete presentation.
- One can construct a central action of each $E_{i,j}$ over the fixed \mathbb{T}^2. (Idea: the Appell–Humbert theorem describes fully the holomorphic vector bundles over \mathbb{T}^2 and we lift the action of \mathbb{Z}_c^2 on \mathbb{T}^2.)
- Apply the Central Product Construction $\lceil r/2 \rceil - 1$ times to get a central action of each H_i (over $\mathbb{T}^2 \lceil r/2 \rceil$).
- The Trivialising Proposition gives a compact manifold X_r independent of H_i such that each $H_i \subseteq \text{Diff}(X_r)$.
- Then $G \subseteq \text{Diff}(M_r)$ where $M_r = (X_r)^r$ is a manifold as required.
Proof of main theorem

Proof.

- Let G be a 2-nilpotent group of rank $\leq r$.
- By step 1: $G \subseteq \prod_{i=1}^{r} H_i$ and $H_i \cong E_{i,1} \bar{\gamma} E_{i,2} \bar{\gamma} \cdots \bar{\gamma} E_{i,\lceil r/2 \rceil}$ and each $E_{i,j}$ is given by a concrete presentation.
- One can construct a central action of each $E_{i,j}$ over the fixed \mathbb{T}^2.
 (Idea: the Appell–Humbert theorem describes fully the holomorphic vector bundles over \mathbb{T}^2 and we lift the action of \mathbb{Z}_2^c on \mathbb{T}^2.)
- Apply the Central Product Construction $\lceil r/2 \rceil - 1$ times to get a central action of each H_i (over $\mathbb{T}^{2\lceil r/2 \rceil}$).
- The Trivialising Proposition gives a compact manifold X_r independent of H_i such that each $H_i \subseteq \text{Diff}(X_r)$.
- Then $G \subseteq \text{Diff}(M_r)$ where $M_r = (X_r)^r$ is a manifold as required. \(\square\)
Proof of main theorem

Proof.

- Let G be a 2-nilpotent group of rank $\leq r$.
- By step 1: $G \subseteq \prod_{i=1}^{r'} H_i$ and $H_i \cong E_{i,1} \hat{\times} E_{i,2} \hat{\times} \cdots \hat{\times} E_{i,[r/2]}$ and each $E_{i,j}$ is given by a concrete presentation.
- One can construct a central action of each $E_{i,j}$ over the fixed \mathbb{T}^2.
 (Idea: the Appell–Humbert theorem describes fully the holomorphic vector bundles over \mathbb{T}^2 and we lift the action of \mathbb{Z}_2^c on \mathbb{T}^2.)
- Apply the Central Product Construction $[r/2] - 1$ times to get a central action of each H_i (over $\mathbb{T}^{2,[r/2]}$).
 - The Trivialising Proposition gives a compact manifold X_r independent of H_i such that each $H_i \subseteq \text{Diff}(X_r)$.
 - Then $G \subseteq \text{Diff}(M_r)$ where $M_r = (X_r)^r$ is a manifold as required.
Proof of main theorem

Proof.

Let \(G \) be a 2-nilpotent group of rank \(\leq r \).

By step 1: \(G \subseteq \prod_{i=1}^{r} H_i \) and \(H_i \cong E_{i,1} \bar{\gamma} E_{i,2} \bar{\gamma} \cdots \bar{\gamma} E_{i,[r/2]} \) and each \(E_{i,j} \) is given by a concrete presentation.

One can construct a central action of each \(E_{i,j} \) over the fixed \(\mathbb{T}^2 \).

(Idea: the Appell–Humbert theorem describes fully the holomorphic vector bundles over \(\mathbb{T}^2 \) and we lift the action of \(\mathbb{Z}_c^2 \) on \(\mathbb{T}^2 \).)

Apply the Central Product Construction \(\lceil r/2 \rceil - 1 \) times to get a central action of each \(H_i \) (over \(\mathbb{T}^2 \lceil r/2 \rceil \)).

The Trivialising Proposition gives a compact manifold \(X_r \) independent of \(H_i \) such that each \(H_i \subseteq \text{Diff}(X_r) \).

Then \(G \subseteq \text{Diff}(M_r) \) where \(M_r = (X_r)^r \) is a manifold as required. \(\Box \)
Proof of main theorem

Proof.

- Let \(G \) be a 2-nilpotent group of rank \(\leq r \).
- By step 1: \(G \subseteq \prod_{i=1}^{r} H_i \) and \(H_i \cong E_{i,1} \times E_{i,2} \times \cdots \times E_{i,\lceil r/2 \rceil} \) and each \(E_{i,j} \) is given by a concrete presentation.
- One can construct a central action of each \(E_{i,j} \) over the fixed \(\mathbb{T}^2 \).
 (Idea: the Appell–Humbert theorem describes fully the holomorphic vector bundles over \(\mathbb{T}^2 \) and we lift the action of \(\mathbb{Z}_c^2 \) on \(\mathbb{T}^2 \).)
- Apply the Central Product Construction \(\lceil r/2 \rceil - 1 \) times to get a central action of each \(H_i \) (over \(\mathbb{T}^2 \lceil r/2 \rceil \)).
- The Trivialising Proposition gives a compact manifold \(X_r \) independent of \(H_i \) such that each \(H_i \subseteq \text{Diff}(X_r) \).
- Then \(G \subseteq \text{Diff}(M_r) \) where \(M_r = (X_r)'^r \) is a manifold as required.
Thank you for your attention!