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A(n infinite) group G is Jordan if there exists a positive integer Jg, such
that every finite subgroup K of G contains a normal abelian subgroup
whose index in K is at most Jg.

Example (Jordan groups, algebraic)

e GL(C, n) for every n (Camille Jordan, 1877)
@ Bir(X) where X is an algebraic variety for
o X =P, the rank 2 Cremona group (J.-P. Serre, 2009)
o X rationally connected (e.g. X = P¢) with Jgi(x) depending only on
dim X (Prokhorov, Shramov, 2014 + Birkar 2016)
@ G connected algebraic group (with J; depending only on dim G)
(Meng, Zhang, 2017)
@ Auto(X) where X is a projective variety (Meng, Zhang, 2017)
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Example (Jordan groups, smooth)

Diff(M) is Jordan for manifolds M such that
e M compact, dim(M) < 3 (Bruno Zimmermann, 2014)
@ Mundet i Riera (2010-2018):

o M is the n-torus

e M is R" (acyclic manifolds)

e M in the n-sphere (integral cohomology spheres)

o M connected, compact with non-zero Euler characteristic
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Question (Ghys, < 1997)
Is Diff(M) Jordan for every compact manifold M?

Despite the positive examples above, it turned to be false:
o Diff(T? x S?) is not Jordan (Pyber—Csikés—E Szabd, 2014) Idea:
embed the Heisenberg groups (021 Zn ) C Diff(T? x S?) for
infinitely many n °

e Mundet i Riera (2014): higher dimensional counterexamples M,,.
z 1z,
Idea: embed Hzny1(Zp) == (0 I (ZQ)T> C Diff(M,) for certain
00 1
infinite list of primes p satisfying various properties
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Main question

Question (main)

For which families F of finite groups does there exist a compact manifold
M such that G C Diff(M) for every G € F?

@ Non-compact case is fully solved: exists a 4-manifold containing
every finite(ly presented) group (Popov, 2013).
e Compact case: sup{r(G): G € F} < oo (Mann, Su, 1963).
Here r(G) := max{d(H) : H C G} is the rank of G where d(H) is
the cardinality of a smallest generating set of H.
o Affirmative answer for:
o for some Heisenberg groups (Pyber-Csikés-E. Szabd, Mundet i Riera,
2014)
o all Heisenberg groups of given dimension (DSz 2017)
e every special p-group of order p” (DSz, 2018)

Note that all of these groups G are 2-nilpotent, i.e. [G, G] C Z(G).
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Main result

Theorem (DSz, 2019)

For every r, there exists a compact manifold M, such that G C Diff(M,)
for every finite 2-nilpotent group G of rank < r.

As an immediate corollary, we answer affirmatively a question of Mundet
i Riera from 2018.

For every n, there exists a compact manifold M, on which every finite
2-nilpotent group G of order p” acts faithfully via diffeomorphisms for
every p.
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Step 1: group theoretic reductions:

@ We reduce the 2-nilpotent group G to one with cyclic centre using
direct products.

@ Then further to one that is generated by 2 elements using maximal
central products.

@ Finally we classify the 2-generated 2-nilpotent groups having cyclic
centre.
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Reduction to 2-nilpotent groups with cyclic centre

Fix G a finite 2-nilpotent group of rank < r. (Wlog it is a p-group.)
Goal: find a manifold with a G-action depending only on r.

Lemma

There exists 2-nilpotent H; with cyclic centre such that G C []'_, H; and
d(H,) S Irs

e Z(G)= Hf-(:l G, if k > 1 consider Hf;l G/C; and use induction to
embed G to [[, G/N;.

@ Wlog K < r (E. Szabd): The socle of G (product of minimal normal
subgroups) is Z’,; for some k < r. Every non-trivial normal subgroup

intersects the socle non-trivially. We select r normal subgroups
N; C G from the list with trivial intersection.

(*] H,' = G/N,', d(H,)Sd(G)SI‘ ]
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Maximal central products

Definition (Maximal central product)

Given an isomorphism ¢ : Dy — D, for D; C Z(G;), set
Gy Yo Gy = Gy X Gz/{(z,cp(z)fl) 1z e Dl},

the central product along ¢ amalgamating D; and Ds.

We call ¢ a maximal, if ¢ cannot be extended further to an isomorphism
between central subgroups, and in this case the call the central product is
maximal and denote it by G; Y, Go.

Lemma

| A\

Z(G1 v, Gy) is cyclic if and only if Z(Gy), Z(Gy) are both cyclic and ¢ is
a maximal central isomorphism.

4
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Reduction to 2-generated groups of cyclic centre

Let H be any factor from the previous embedding.

Lemma (2-nilpotent group with cyclic centre)

There exists 2-generated 2-nilpotent groups Ei, ..., E, all with cyclic
centre where n < [r/2], such that

H= (... ((E1 Yy, E2) Y E3) Yooy - .. ) Yoy Ens

and the isomorphisms class of H is independent of ;.

e Find minimal generating set {a1, @z} U S of E such that
H = ([aq, a2)), [aj,s] =1 for all s € S.

@ For Hy := (S) and E, := (o, 8), we have H = Hy Y, E, and use
induction on d.

@ Independence follows from last part of the next Lemma. O

N,
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2-generated groups with cyclic centre

Let E be an element of the previous decomposition.

Lemma (2-generated 2-nilpotent group with cyclic centre)

Q@ Z(E)CE givesl - Z,— E — Z. x Zc — 1 for some unique
integers c | a,
@ E=(oBv:7=[0,B],1=7" =[] =[B,7], 0" =v2,8° =
~2) for some integers ci, ¢y | c. There are two types:
o either (y) = [E,E] = Z(E), c = a,
e or{(y)=[E,E]C Z(E)=(a), c<a a=1

© Every automorphism of a central subgroup can be extended to E.

v

Pull back suitable generators of E/E’. O \
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Overview of the topological reductions

Step 2: Topological reductions:

Reduce from Diff(M) for fixed M, to Diff(L) for a (possibly varying) L
where L — X is a line bundle over a fixed X.

Details:

© We define the notion of central group action on line bundles.

@ We show that two such action induce another one such a maximal
central product of groups.

© We show that every central action induce a faithful action on a
compact space depending only on the base space



Step 2: Topological reductions
(o] lelelele)

Central action

A central action of a finite group G on a line bundle 7 : L — X is a pair
of group morphisms (¢ : G — Diff(L),5: G — Diff(X)) such that

@ equivariant: 9(g) om = o o(g) for every g € G

o linear: o(g) : Lx — Lg(g(x)) is C-linear for every g € G




Step 2: Topological reductions
(o] lelelele)

Central action

A central action of a finite group G on a line bundle 7 : L — X is a pair
of group morphisms (¢ : G — Diff(L),5: G — Diff(X)) such that

@ equivariant: 9(g) om = o o(g) for every g € G

o linear: o(g) : Lx — Lg(g(x)) is C-linear for every g € G

o central (non-standard notion): X is compact, connected, H**(X,Z)
torsion free; o is injective; 9(g) is homotopic to the identity on X for
every g € G; Stabg(x) = Z(G) for every x € X.

4




Step 2: Topological reductions
(o] lelelele)

Central action

Definition
A central action of a finite group G on a line bundle 7 : L — X is a pair
of group morphisms (¢ : G — Diff(L),5: G — Diff(X)) such that
@ equivariant: 9(g) om = o o(g) for every g € G
o linear: o(g) : Lx — Lg(g(x)) is C-linear for every g € G
o central (non-standard notion): X is compact, connected, H**(X,Z)
torsion free; o is injective; 9(g) is homotopic to the identity on X for
every g € G; Stabg(x) = Z(G) for every x € X.

4

Z(G) is necessarily cyclic.



Step 2: Topological reductions
(o] lelelele)

Central action

A central action of a finite group G on a line bundle 7 : L — X is a pair
of group morphisms (¢ : G — Diff(L),5: G — Diff(X)) such that

@ equivariant: 9(g) om = o o(g) for every g € G

o linear: o(g) : Lx — Lg(g(x)) is C-linear for every g € G

o central (non-standard notion): X is compact, connected, H**(X,Z)
torsion free; o is injective; 9(g) is homotopic to the identity on X for
every g € G; Stabg(x) = Z(G) for every x € X.

4

Z(G) is necessarily cyclic.

1 — Z(G) G — G/Z(G) — 1

faithful, A, o o, free
v ¢ ‘ A

Cx » Diff,(L) > DIff(X)
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Building central actions on maximal central products

Lemma (Central product construction)

Any two central actions o; : G; O m; induce a natural central of some
G1 Yy Go.

Quotient the natural G; x Gy-action on 71 X7, by its kernel.
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Step 2: Topological reductions
[e]e]e] lele)

Trivialising central actions

Proposition (Trivialising actions)
There exists f : Ng — Ng such that whenever o is a central action of G
onm:L— X, then G C Diff(X x CPfdimX)),

Remark

X x CPfldmX) is compact and is independent of G (which is the main
goal), although typically L very much can depend on G.

| \

Poof Strategy:
@ Find a direct complement 7 of fixed rank N with a compatible
G-action using K-theory and by hand

@ This gives a faithful action on the fixed space X x CN+!

© Compactify it considering its projective bundle.
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@ By assumptions and using Atiyah—Hirzebruch theorem, we have:

K(X)® Q «2— K°(X/3)® Q

%lch %lch

H2*(X,Q) «2— H*(X/3,Q)

where p : X — X /o is the projection. So for some d € Ny,
ch™!(d - H**(X,Z)) carries a natural G-action compatible with o.
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@ By assumptions and using Atiyah—Hirzebruch theorem, we have:

K(X)® Q «2— K°(X/3)® Q

%lch %lch

H2*(X,Q) «2— H*(X/3,Q)

where p : X — X /o is the projection. So for some d € Ny,
ch™!(d - H**(X,Z)) carries a natural G-action compatible with o.

@ Enough to find a multiset A 5 1 of integers of fixed size such that

ch(@P =) — |Al = ZZ a( w)k e d-H>*(X,Z).

A k=1 acA
ac ac eH2‘<(X Z)
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@ By assumptions and using Atiyah—Hirzebruch theorem, we have:

K(X)® Q «2— K°(X/3)® Q
%lch %lch

H2.(X,Q) p*

——

~—— H*(X/2.Q)

where p : X — X /o is the projection. So for some d € Ny,
ch™!(d - H**(X,Z)) carries a natural G-action compatible with o.

@ Enough to find a multiset A 5 1 of integers of fixed size such that

k=1 acA

n K
® _ a k e
ch(@P =) — |Al = ZZH a(m)* €d-H*(X,Z).
a€A €H?(X,Z)
@ This leads to the following Waring-type problem with § = dn!.

O
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@ Modulo Waring problem: modulo any number, —1 can be expressed
as a sum of at most W kth powers.
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Number theory

Lemma

For arbitrary natural n, ¢, every initial sequence of integers as,...,an can
be extended to ay,...,am,am+1,---,ac of length C = C(n, m) such that

c
5|Zaf-‘ Vi< k<n.
i=1

The independence of G on the manifold we are looking for translates to
the independence of C(n,|M|) on 4.

@ Modulo Waring problem: modulo any number, —1 can be expressed
as a sum of at most W kth powers.

@ Expand (- M+ > cpa)[lir (T+aks+ ... akw,). O

kth power sum € 6Z
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Proof of main theorem

@ Let G be a 2-nilpotent group of rank < r.
@ Bystepl: GCJ[;_,Hiand Hi=Ej1Y Ej2¥---Y E [,/ and
each E;; is given by a concrete presentation.

o One can construct a central action of each E; ; over the fixed T.
(Idea: the Appell-Humbert theorem describes fully the holomorphic
vector bundles over T? and we lift the action of Z2 on T2.)

o Apply the Central Product Construction [r/2] — 1 times to get a
central action of each H; (over T2["/2]).

@ The Trivialising Proposition gives a compact manifold X,
independent of H; such that each H; C Diff(.X}).

@ Then G C Diff(M,) where M, = (X,)" is a manifold as required. [J

V.




Thank you for your attention!
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