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APPLICATION OF THE TAYLOR

DIFFERENTIAL TRANSFORMATION FOR

SOLVING THE INTEGRO-DIFFERENTIAL

EQUATIONS

Abstract. A method of solving the integro-differential equations is
presented. The discussed equations will be solved by the Taylor differential
transformation. By using appropriate properties of this transformation the
integro-differential equation will be transformed to a respective recurrence
equation. Unfortunately, the high degree of generality and complexity of
such defined problem does not allow to obtain the solution in general form.
Each equation requires a special method of solution.

1. Introduction

The Taylor differential transformation [4], due to its specific properties signif-

icantly simplifying most of the considered problems, is widely applied to various

problems in mathematics, engineering and technics. Authors of the present paper

have already used these properties for solving, among others, the nonlinear or-

dinary differential equations [5], the problems from the calculus of variations [8],

systems of nonlinear ordinary differential equations [7] and the Stefan problem [6].
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Also the other scientists have applied the Taylor transformation to various prob-

lems, for example to the several types of differential equations (ordinary and par-

tial) or to integral equations [1, 2, 9–13]. The Taylor differential transformation is

known for a long time, but only recently the methods based on this transforma-

tion became useful due to the development of computers and programs enabling

to execute the symbolic calculations. In this paper we use the Mathematica soft-

ware [3, 14, 15].

In this paper we investigate the integro-differential equations of the following

form

f(x, y(x), y′(x), . . . , y(n)(x))+

m
∑

i=1

∫ b

a

gi(x, y(x))dx+

k
∑

i=1

∫ x

a

hi(t, y(t))dt = 0, (1)

in the class of continuous functions y possessing the continuous derivatives of all

n orders in the interval 〈a, b〉 and satisfying the conditions

y(a) = A1, y′(a) = A2, . . . , y
(n−1)(a) = An,

where a, b, A1, . . . , An ∈ R, f is the continuous function in set 〈a, b〉 × R
n+1,

whereas the functions gi, i = 1, 2, . . . ,m, and hj , j = 1, 2, . . . , k, are continuous in

set 〈a, b〉 × R.

The function f can be nonlinear, whereas the integrals arisen in this equation

can take the particular forms of integrals appearing in the Fredholm and Volterra

integral equations, or they can have such form only with respect to the boundaries

of integration and the antiderivatives g(x) and h(x) can be nonlinear also with

respect to the sought function y(x).

We will solve equation (1) by using the Taylor differential transformation and,

due to its properties, we will transform equation (1) to a more simple form, usually

recurrent with respect to the coefficients. In this way we will be able to find

the approximate solution (and sometimes even exact solution) of the considered

equation.

2. The Taylor transformation

Let us assume that we consider only such functions of the real variable x,

defined in some region X ⊂ R, that can be expanded into the Taylor series within

some neighborhood of point α ∈ X . We call such functions as the originals and
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denote by the small letters of Latin alphabet, for example f , y, u, v, w, and so

on. Thus, if the function y is the original, then the following equality holds

y(x) =
∞
∑

k=0

y(k)(α)

k!
(x− α)k, (2)

where α ∈ X denotes the point, in the neighborhood of which the function y is

expanded into the Taylor series.

Each original corresponds to a function Yα of nonnegative integer arguments

k = 0, 1, 2, . . ., according to formula

Yα(k) =
y(k)(α)

k!
, k = 0, 1, 2, . . . (3)

The function Yα will be called the image of the function y, the Tα–function of the

function y or the transform of the function y, and the discussed transformation

will be called the Taylor transformation.

The obvious fact is that, by having the Tα–function Yα one can find, according

to formulas (2) and (3), the corresponding original in the form of its expansion

into the Taylor series, that is

y(x) =

∞
∑

k=0

Yα(k)(x− α)k, x, α ∈ X. (4)

Transformation (3), assigning to each original its image, will be called the di-

rect transformation. Whereas the transformation (4), assigning the corresponding

original to the image, will be called the inverse transformation. Connection be-

tween these both transformations will be denoted by using the following symbols

Yα(k) = T [y(x); k, α]

for the direct transformation and

y(x) = T −1[Yα(k);x]

for the inverse transformation, where T and T −1 symbolize the proper transfor-

mations.
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In the used notation, for example for the function y(x) = sinhx and α = 0 we

have

Y0(k) = T [sinhx; k, 0] = T

[

1

2

∞
∑

k=0

1 − (−1)k

k!
xk; k, 0

]

=
1 + (−1)k+1

2k!
,

where k = 0, 1, 2, . . . Whereas in case of the inverse transformation we get for the

above function

y(x) = T −1[Y0(k);x] = T −1

[

1 + (−1)k+1

2k!
;x

]

=
1

2

∞
∑

k=0

1 − (−1)k

k!
xk = sinhx.

The Taylor transformation possesses a number of properties causing that the

application of this tool, with the aid of computational platforms giving the pos-

sibility to execute the symbolic calculations, Mathematica for example, is quite

simple.

Since we use here the specific case of the Taylor series, the Maclaurin series,

hence α, equal to zero, will be henceforward omitted.

In particular, the following properties are especially useful [4]:

T [xn; k] = δ(k − n) =







1, k = n,

0, k 6= n,
(5)

T [eax; k] =
ak

k!
, (6)

T [sin(ax); k] =
ak

k!
sin

πk

2
, (7)

T [cos(ax); k] =
ak

k!
cos

πk

2
, (8)

T [arctan; k] =







0, k = 0,

1
k

sin πk
2 , k ≥ 1,

(9)

T [c · u(x); k] = c · U(k), (10)

T [u(x) ± w(x); k] = U(k) ±W (k), (11)

T [u(x) · w(x); k] =

k
∑

r=0

U(r)W (k − r), (12)

T [u′(x); k] = (k + 1)U(k + 1), (13)

T [u(n)(x); k] =
(k + n)!

k!
U(k + n), (14)
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T [u(x) · w′(x); k] =

k
∑

r=0

(k + 1 − r)U(r)W (k − r + 1), (15)

T [u(x) · w′′(x); k] =
k

∑

r=0

(k − r + 1)(k − r + 2)U(r)W (k − r + 2), (16)

T [u′(x) · w′(x); k] =
k

∑

r=0

(r + 1)(k − r + 1)U(r + 1)W (k − r + 1), (17)

T [

∫ x

0

u(t)dt; k] =







0, k = 0,
U(k−1)

k
, k ≥ 1,

(18)

T [

∫ x

0

u(t)w(t)dt; k] =











0, k = 0,
k−1
∑

r=0

U(r)W (k−r−1)
k

. k ≥ 1,
(19)

where a, c ∈ R, n ∈ N ∪ {0}, and k = 0, 1, 2, . . .

3. Computational examples

Example 1. Let us consider the equation

2y(x)y′(x) +

∫ π

0

(π − 2x)y(x)dx = sin 2x, (20)

for 0 ≤ x ≤ π, with the condition

y(0) = 0, (21)

the exact solution of which is given by the function y(x) = sinx.

Equation (20), under the assumption that

∫ π

0

(π−2x)y(x)dx = λ ∈ R and after

the usage, among others, of properties (7), (10), (11) and (15), is transformed to

the form

2

k
∑

r=0

(k + 1 − r)Y (r)Y (k + 1 − r) + λδ(k − 0) −
2k

k!
sin

πk

2
= 0, k ≥ 0, (22)

and additionally, by the initial condition (21) we have Y (0) = 0.
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By taking k = 0 in equation (22) we get

2Y (0)Y (1) + λ = 0 ⇒ λ = 0.

For k = 1 we have

−2 + 2((Y (1))2 + 2Y (0)Y (2)) = 0 ⇒ Y (1) = ±1.

Thus we obtain two families of solutions generated by the values Y (1) = 1 and

Y (1) = −1. By taking Y (1) = 1, for k = 2 we obtain

6(Y (1)Y (2) + Y (0)Y (3)) ⇒ Y (2) = 0,

for k = 3 we have

4

3
+ 4((Y (2))2 + 2Y (1)Y (3) + 2Y (0)Y (4)) = 0 ⇒ Y (3) = −

1

6
,

and for k = 4 we get

10(Y (2)Y (3) + Y (1)Y (4) + Y (0)Y (5)) = 0 ⇒ Y (4) = 0.

As a result of calculations with Mathematica we get the values given in Table 1.

Table 1
Values of Y (i) for 0 ≤ i ≤ 9

i Y (i)

0 0

1 1 −1

2 0 0

3 − 1
6 = 1

3!
1
6 = 1

3!

4 0 0

5 1
120 = 1

5! − 1
120 = − 1

5!

6 0 0

7 − 1
5040 = − 1

7!
1

5040 = 1
7!

8 0 0

9 1
362880 = 1

9! − 1
362880 = − 1

9!
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It is easy to notice that we obtain two solutions

y1(x) =

∞
∑

i=0

(−1)ix2i+1

(2i + 1)!
and y2(x) = −

∞
∑

i=0

(−1)ix2i+1

(2i + 1)!
,

leading to the well known functions

y1(x) = sinx and y2(x) = − sinx,

being the exact solutions of the investigated problem, which is easy to check.

Example 2. Let us consider the equation

y′′(x) − 3y′(x) + 3y(x) +

∫ x

0

(e−t − 1)y(t)dt =
x3

3
− 4x− 2, (23)

for 0 ≤ x ≤ 2, with conditions

y(0) = y′(0) = −4, (24)

the exact solution of which is defined by the function y(x) = (x2 − 4)ex.

Equation (23), in result of applying, among others, the properties (5), (6),

(10), (11), (13), (14) and (19), is transformed to the form

(k + 1)(k + 2)Y (k + 2) − 3(k + 1)Y (k + 1) + 3Y (k) + 2δ(k − 0)+

+















k−1
∑

r=0

(

(−1)r

r! − δ(r − 0)
)

Y (k − r − 1)

k
, k ≥ 1

0, k = 0

+ 4δ(k − 1) =
1

3
δ(k − 3)

(25)

and additionally, by the initial conditions (24) we have Y (0) = Y (1) = −4.

By taking k = 0 in equation (25) we receive

2 + 3Y (0) − 3Y (1) + 2Y (2) = 0 ⇒ Y (2) = −1.

For k = 1 we have

4 + 3Y (1) − 6Y (2) + 6Y (3) = 0 ⇒ Y (3) =
1

3
.
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Further calculations, by using the Mathematica software, lead us to the results

collected in Table 2.

Table 2
Values of Y (i) for 0 ≤ i ≤ 9 in Example 2

i 0 1 2 3 4 5 6 7 8 9

Y (i) −4 −4 −1 1
3

1
3

2
15

13
360

19
2520

13
10080

17
90720

By taking 7 successive values Y (i) we receive the approximate solution y7(x) =
6
∑

i=0

Y (i)xi:

y7(x) = −4 − 4x− x2 +
x3

3
+

x4

3
+

2x5

15
+

13x6

360

and for 15 terms we have the approximate solution y15(x) in the form

y15(x) = − 4 − 4x− x2 +
x3

3
+

x4

3
+

2x5

15
+

13x6

360
+

19x7

2520
+

13x8

10080
+

17x9

90720
+

+
43x10

1814400
+

53x11

19958400
+

x12

3742200
+

19x13

3742200
+

89x14

43589145600
.

The plots of the above obtained approximate solutions, together with the plots of

their absolute errors ∆n(x) defined by equation

∆n(x) = |y(x) − yn(x)|,

are presented in Figures 1 and 2, where the solid line denotes the exact solution

(in the left figure) and the error ∆ (in the right figure), whereas the dashed line

represents the approximate solution (in the left figure).

We can observe the general form of elements Y (i) presented in Table 3.

Table 3
Values Y (i) and their general form for 0 ≤ i ≤ 9 in Example 2

i 0 1 2 3 4 5 . . . k

Y (i) −4 −4 −1 1
3

1
3

2
15 . . .

Y (i) 0·(−1)−4
0!

1·0−4
1!

2·1−4
2!

3·2−4
3!

4·3−4
4!

5·4−4
5! . . .

k·(k−1)−4
k!



Application of the Taylor differential transformation . . . 41

0.0 0.5 1.0 1.5 2.0

-8

-6

-4

-2

0

y
(x

),
y
7
(x

)

x

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

x

∆
7
(x

)

Fig. 1. Exact solutions y(x) and approximate solution y7(x) together with the absolute
error of the approximate solution
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Fig. 2. Exact solutions y(x) and approximate solution y15(x) together with the absolute
error of the approximate solution

Thus we get y(x) =

∞
∑

i=0

i · (i − 1) − 4

i!
xi = (x2 − 4)ex, which is the exact

solution.

Example 3. We investigate the equation

3(x3 − 2x)y(x) + (1 + x2)2y′′(x) +
8

4 ln 2 − 3

∫ 1

0

(3xy(x) − 1)y(x)dx+

+ 12

∫ x

0

(1 − t2)y(t)dt = x3 + 9(arctanx− x),

(26)

for 0 ≤ x ≤ 1, with conditions

y(0) = y′(0) = 0, (27)

the exact solution of which is given by function y(x) = x arctanx.
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Equation (26), under the assumption that
8

4 ln 2 − 3

∫ 1

0

(3xy(x) − 1)y(x)dx =

λ ∈ R and after applying, among others, the properties (5), (9), (10)–(12), (16)

and (19), is transformed to the form

3
k

∑

r=0

(δ(r − 3) − 2δ(r − 1)Y (k − r)) + λδ(k − 0)+

+
k

∑

r=0

(k − r + 1)(k − r + 2)(δ(r − 0) + 2δ(r − 2) + δ(r − 4))Y (k − r + 2)+

+ 12















k−1
∑

r=0

(δ(r − 0) − δ(r − 2))Y (k − r − 1)

k
, k ≥ 1

0, k = 0

+

+ 9δ(k − 1) − δ(k − 3) − 9







1

k
sin

πk

2
, k ≥ 1

0, k = 0
= 0,

(28)

and additionally, the initial conditions (27) yield Y (0) = Y (1) = 0.

By taking k = 0 in equation (28) we get

λ + 2Y (2) = 0 ⇒ Y (2) = −
λ

2
.

For k = 1 we have

6(Y (0) + Y (3)) = 0 ⇒ Y (3) = 0,

for k = 2 we get

4(Y (2) + 3Y (4)) = 0 ⇒ Y (4) = −
Y (2)

3
=

λ

6
,

and for k = 3 we obtain

2 − Y (0) − 2Y (2) + 12Y (3) + 20Y (5) = 0 ⇒ Y (5) = −
λ + 2

20
.

By using the Mathematica software we get the successive elements Y (i) dependent

on λ collected in Table 4.

To obtain the solution independent on λ we need to determine this value. For

this purpose we will use the following fact

8

4 ln 2 − 3

∫ 1

0

(3ty(t) − 1)y(t)dx = λ.
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Table 4
Values Y (i) dependent on λ for 0 ≤ i ≤ 9 in Example 3

i 0 1 2 3 4 5 6 7 8 9

Y (i) 0 0 −λ
2 0 λ

6 −λ+2
20 − λ

10
29(λ+2)

420
19λ−2
280 − 127(λ+2)

1680

Substituting the function yn(t) =
n−1
∑

i=0

Y (i)ti instead of the function y(t) in the

above relation we get the equation, the real root of which makes the function yn

unique and this function exactly will be taken as an approximate solution of the

considered equation.

So, for n = 7 the equation possesses two real roots: λ = −1.8734 and λ =

−0.0933. In result of verification, consisted in substituting function yn(x) in place

of function y(x) in equation (26), it turned out that λ = −0.0933 is unacceptable.

For λ = −1.8734 (let us notice that the exact value of λ is equal to −2) we get

the solution presented in Figure 3 (description of figure is the same as explained

before).
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Fig. 3. Exact solutions y(x) and approximate solution y7(x) together with the absolute
error of the approximate solution

In case of n = 31 we have the similar situation – we also get here two values:

λ = −1.9903 and λ = −0.0466, but for the latter value of λ the equation (26) is

not satisfied. For λ = −1.9903 we obtain the solution presented in Figure 4.

Let us also point our attention in this example to the convergence region of

the Maclaurin series of the function y(x) = x arctanx =
∞
∑

n=1

(−1)n+1x2n

2n−1 , which is

the interval (−1, 1). For x = 1 the approximate solution yn(x) behaves like it was

discussed in the example, which results from the (only) conditional convergence

of the number series
∞
∑

n=1

(−1)n+1

2n−1 (moreover, its convergence speed is not high – to
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Fig. 4. Exact solutions y(x) and approximate solution y31(x) together with the absolute
error of the approximate solution

obtain the precision rate of the sum equal to 1
m

we need to take the partial sum

with 1
2 (m + 1) terms).

Example 4. Now we investigate the equation

4

π
(y(x) − y(4)) +

1

π

∫ π

0

(t− x− y(t))2dt+

− 2

∫ x

0

t(1 + t + 3 cos t− sin t− y(t))dt = 5,

(29)

for 0 ≤ x ≤ π, with conditions

y(0) = 3, y′(0) = 0, y′′(0) = −3, y′′′(0) = 1, (30)

the exact solution of which is defined by function y(x) = x− sinx + 3 cosx.

In the process of solution we will use the following relations

1

π

∫ π

0

(t− x− y(t))2dt =
1

π

∫ π

0

(t2 − 2tx + x2)dt−
2

π

∫ π

0

ty(t)dt +

+
2x

π

∫ π

0

y(t)dt +
1

π

∫ π

0

y2(t)dt = h1(x) − α + βx + γ,

where h1(x) =
1

π

∫ π

0

(t2 − 2tx + x2)dt, α =
2

π

π
∫

0

ty(t)dt, β =
2

π

π
∫

0

y(t)dt and
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γ =
1

π

π
∫

0

y2(t)dt and additionally

−2

∫ x

0

t(1 + t + 3 cos t− sin t− y(t))dt = −2

∫ x

0

t(1 + t + 3 cos t− sin t)dt+

+ 2

∫ x

0

ty(t)dt = h2(x) + 2

∫ x

0

ty(t)dt,

where h2(x) = −2

∫ x

0

t(1 + t + 3 cos t− sin t)dt.

By determining the functions h1(x) and h2(x) and by applying, among others,

the properties (5), (7), (8), (10)–(12), (14) and (19), we get the relation written

below

4

π

(

Y (k) −
(k + 4)!

k!
Y (k + 4)

)

+ δ(k − 0)

(

γ − α + 1 +
π2

3

)

+

+ δ(k − 1)(β − π) −
2

3
δ(k − 3) −

6

k!
cos

πk

2
+

2

k!
sin

πk

2
+

− 2

k
∑

r=0

δ(k − r − 1)

r!
cos

πr

2
− 6

k
∑

r=0

δ(k − r − 1)

r!
sin

πr

2
+

+















k−1
∑

r=0

δ(r − 1)Y (k − r − 1)

k
, k ≥ 1

0, k = 0

= 0, for k ≥ 0,

(31)

and moreover, from the initial conditions (30) we get Y (0) = 3, Y (1) = 0, Y (2) =

− 3
2 , Y (3) = 1

6 .

By taking in equation (31) the successive values k ≥ 0 due to the Mathematica

software we are able to calculate as follows

Y (4) = 1
288

(

−3πα + 3πγ + π3 − 15π + 36
)

, Y (5) = − 1
480π(π − β), Y (6) = − 1

240 ,

Y (7) = 1
5040 , Y (8) = −3πα+3πγ+π3

−15π+36
483840 , Y (9) = − π(π−β)

1451520 , . . .

One can observe that the approximate solution yn(x) depends on parameters

α, β and γ. To make the solution unique, we need to determine values of these

parameters on the way of solving the system of equations
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2

π

π
∫

0

tyn(t)dt = α,

2

π

π
∫

0

yn(t)dt = β,

1

π

π
∫

0

(yn)2(t)dt = γ.

(32)

So, for n = 7 we obtain the couple of solutions: α = 0.5828, β = 1.8214,

γ = 2.4989 and α = 12.0135, β = 6.1059, γ = 15.0464, however the verification

shows that the latter one is incorrect. For the former solution we receive the

result presented in Figure 5 (description of figure is the same as in the previous

examples).
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Fig. 5. Exact solutions y(x) and approximate solution y7(x) together with the absolute
error of the approximate solution
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In case of n = 11 the situation is similar – the system of equations (32) returns

two sets of solutions: α = 0.7586, β = 1.868, γ = 2.4702 and α = 11.3925,

β = 5.8436, γ = 14.0483, but for the latter triple the equation (29) is significantly

not fulfilled. For the former triple of α, β and γ we obtain the solution presented

in Figure 6.

4. Conclusion

In this paper we have presented the possibility of applying the Taylor differen-

tial transformation to solve the selected types of the integro-differential equations.

The discussed examples indicate that the proposed method is efficient in solving

the problems of considered kind and as the additional advantage of this method

one can take into account the simplicity of its application.

Moreover, we would like to notice that the fact of taking value one by variables

m and k, denoting the upper bounds of summation in equation (1), should not be

questionable. Example 4 shows that although the summation is seemingly limited

to one term, the method of solution increases in fact this number. Additionally,

Example 4 shows that the discussed method can be used for solving also a wider

class of problems – the antiderivative h is the function of two variables x and

t, which makes the integral on this function more complex as it is presented in

equation (1).
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