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THE METHOD OF FINDING POINTS OF

INTERSECTION OF TWO CUBIC BÉZIER

CURVES USING THE SYLVESTER MATRIX

Abstract. Sylvester matrix is used to create a 9th degree polynomial
from coefficients of two cubic Bézier curves. The real roots of this poly-
nomial allow to compute points of intersection of aforementioned curves.
An additional constraint is used to indicate valid points. The “reverse-
inverse law” is presented in order to reduce the cost of calculation in this
particular case. Also some limitations of the method as well as the ways to
avoid them, if possible, are pointed out.

1. Introduction

Bézier curves have been known since 1912, the year they were invented by

S.N. Bernstein (1880–1968), Russian then Soviet mathematician. They were first

put to practical use in the early 1960s, when P.É. Bézier and P. de Casteljau,

French engineers, started using them in the automobile industry. They came to

spotlight once again when graphic capabilities of personal computers had become

advanced enough. Today Bézier curves are being frequently used in computer

graphics, animation, CAD, and many other related fields [3].

2010 Mathematics Subject Classification: 68U05.
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Despite their popularity, some questions still have not been answered satisfac-

torily in terms of intuitiveness or computational cost. The problem of intersection

of two cubic Bézier curves is one of them.

In paper [10] the method called Bezier clipping is described. In this method,

Bézier curves are substituted by their convex hulls, bounded by four line segments.

As a typical “divide and conquer” algorithm, it is quite simple to adopt. However,

the drawback of this method is associated with quadruple recursion, see the live

code snippet from [2]:

static void intersectBeziers(&intersections,

const Bezier &a, const Bezier &b){

if (accuracy) { ... } else {

Bezier leftA, rightA, leftB, rightB;

a.subdivide(leftA, rightA);

b.subdivide(leftB, rightB);

intersectBeziers(intersections, leftA, leftB);

intersectBeziers(intersections, rightA, leftB);

intersectBeziers(intersections, leftA, rightB);

intersectBeziers(intersections, rightA, rightB);

}

}

Therefore this method for today users has a big disadvantage, forcing a low accu-

racy under threat of slowdown of an application or even a stack-overflow crash.

Another approach is presented in [5]. In that case points of intersection emerges

as eigenvalues of a properly created matrix. Those matrix-oriented transforma-

tions absorb most computational time. Provided example shows highly accurate

results. However, these computations depend on libraries available on specific

mainframes, so they are hard to reproduce and verify.

This paper presents a new approach to the problem of intersection of two cubic

Bézier curves. The solution is based on the shortening or lengthening one of them.

Proper length change is possible through use of a Sylvester matrix.

2. Sylvester matrix

Sylvester matrices are named after J.J. Sylvester, a mathematician [9] who

lived in England 1814–1897. He made fundamental contributions to matrix theory,

invariant theory, number theory, partition theory, and combinatorics.
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A Sylvester matrix is a matrix associated to two univariate polynomials. For

purpose of this article, let us limit these polynomials to the 3rd degree:

f(x) = a3x
3 + a2x

2 + a1x + a0, a3 6= 0,

g(x) = b3x
3 + b2x

2 + b1x + b0, b3 6= 0.

The entries of the Sylvester matrix are coefficients of these polynomials:

Sf,g =





















a3 a2 a1 a0 0 0

0 a3 a2 a1 a0 0

0 0 a3 a2 a1 a0

b3 b2 b1 b0 0 0

0 b3 b2 b1 b0 0

0 0 b3 b2 b1 b0





















.

The determinant of the Sylvester matrix of two polynomials is their resultant [4]:

R(f, g) = a3
3 b3

3

3
∏

i=1

3
∏

j=1

(αi − βj).

where: αi and βj (i, j = 1, 2, 3) are roots of f(x) and g(x), respectively.

We will use the following theorem [6]:

Theorem 1. Two polynomials have a common root if and only if the resultant is

equal to zero:

∃i, ∃j : αi = βj ⇐⇒ R(f, g) = det(Sf,g) = 0.

3. Introductory example

To present a general idea, a simple example with two line segments will be

used.

Let us examine a possible intersection of two line segments, given in a para-

metric form, as presented in Figure 1. The first will be:

l1 =

[

x1(t)

y1(t)

]

=

[

1 + 9t

2 + 3t

]

=

[

1 9

2 3

] [

1

t

]

= C1T, t ∈ (0, 1〉. (1)
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Fig. 1. Intersection of line segments

and the second one:

l2 =

[

x2(t)

y2(t)

]

=

[

5 − 2t

1 + 4t

]

=

[

5 −2

1 4

][

1

t

]

= C2T, t ∈ (0, 1〉. (2)

Double arrows indicate an increase in the parameter t. The intersection occurs at

the point P (4, 3), for parameters t1 = 1/3 and t2 = 1/2, respectively:

l1(t1 =
1

3
) = l2(t2 =

1

2
) =

[

4

3

]

.

These values of t1 and t2 were calculated using elementary methods of an analytical

geometry.

Now let us compute the subtracted curve l1−2:

l1−2 = l1 − l2 = (C1 −C2)T =

[

−4 11

1 −1

][

1

t

]

, (3)

thus:

l1−2 =

[

x1−2(t)

y1−2(t)

]

=

[

−4 + 11 t

1 − 1 t

]

.

An associated Sylvester matrix [8] to x1−2 and y1−2 polynomials is:

S1−2 =

[

11 −4

−1 1

]

.

Because t1 6= t2, therefore det[S1−2] = 7 6= 0. Can Sylvester matrix be useful in

this case? The answer is presented below:
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If two line segments l1 and l2:

• intersects at t1 and t2, respectively,

• 0 < t1 < t2 ≤ 1

then l1 can be shortened by factor k < 1 in such manner that the

new shortened line segment l1K will intersect l2 at the same param-

eter t = t2. Effectively, the determinant of associated Sylvester matrix

det[S1K−2] = 0.

If 0 < t2 < t1 ≤ 1, then l2 should be shortened.

In the discussed example, it happens when l1 turns into l1K after shortening

by factor k1 = 2
3 . The new endpoint will have coordinates Q(7, 4). In this case,

t1 = t2 = 1
2 . In Figure 2 all these changes are shown.

4 8

4

y

x2 6 10

2

6

Q (7, 4)

l1K

l2

Fig. 2. Line segment l1 shortened to l1K

As will be explained later, equivalently l2 can be lengthened into l2K by factor

k2 = 3
2 . The new endpoint of l2K will have coordinates R(2, 7). In this case,

t1 = t2 = 1
3 . These changes are shown in Figure 3.

To achieve these results, (1) has to be modified

l1K = C1KT =

[

1 9

2 3

][

1 0

0 k

][

1

t

]

=

[

1 + 9kt

2 + 3kt

]

, t ∈ (0, 1), (4)

where K is a shortening matrix [1]:

K =

[

1 0

0 k

]

, 0 < k ≤ 1. (5)
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Fig. 3. Line segment l2 lengthened to l2K

Then (3) takes the form:

l1K−2 = l1K − l2 = (C1K −C2)T =

=

[

x1K−2(t, k)

y1K−2(t, k)

]

=

[

−4 + (9k + 2) t

1 + (3k − 4) t

]

. (6)

Now, Sylvester matrix to x1K−2 and y1K−2 polynomials is:

S1K−2 =

[

(9k + 2) −4

(3k − 4) 1

]

,

and its determinant has form:

det[S1K−2] = 21k − 14.

The important point to note here is the search for the intersection has been

substituted by a root-finding issue for a simple polynomial.

It is clear, which value of k ensures zero-value of determinant of Sylvester

matrix:

k = k1 =
2

3
⇒ det[S1K−2] = 0, 0 < k ≤ 1.

Intersection of given line segment is confirmed.

Choosing the parameter k1 is always possible for given 0 < t1 ≤ t2 ≤ 1. Due

to symmetry also for k2 is always possible for 0 < t2 ≤ t1 ≤ 1. Both cases are

shown in Figure 4.
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Fig. 4. Dependencies of k1 and k2 for given t1, t2

If we know value of k then it is possible to compute:

• value of t, where intersection occurs,

• coordinates x, y of the point of intersection.

Because at the intersection point:

l1K−2 =

[

x1K−2(t, k)

y1K−2(t, k)

]

=

[

0

0

]

,

then putting k = k1 = 2
3 into any equation (the first one, for instance) of (6) we

get:

0 = −4 + (9k + 2) t =

= −4 + (9 · 2
3 + 2) t =

= −4 + 8t,

hence t = 1
2 . Knowing t after insertion into unchanged equation (2), we get

coordinates of the point of intersection P :

P =

[

x2(t)

y2(t)

]

=

[

5 − 2t

1 + 4t

]

=

[

4

3

]

.

One could have doubts, because there is no a priori knowledge about which

line segment intersects at lower value of t. To explain this, let us replace line

segments. After that, we get:

l2K = C2KT =

[

5 −2

1 4

] [

1 0

0 k

] [

1

t

]

=

[

1 − 2kt

1 + 4kt

]

, t ∈ (0, 1).



162 B. Bi ly

The modified (3) will be:

l2K−1 =

[

x2K−1(t, k)

y2K−1(t, k)

]

=

[

4 + (−2k − 9) t

−1 + (4k − 3) t

]

.

Sylvester matrix:

S2K−1 =

[

(−2k − 9) 4

(4k − 3) −1

]

,

and his determinant:

det[S2K−1] = −14k + 21.

Hence

k = k2 =
3

2
⇒ det[S2K−1] = 0.

In fact we can stop here, because from the shortening matrix (5) we require

0 < k ≤ 1, but for reasons explained later, let us continue.

Now k > 1 and the l2 is extended beyond its endpoint, so it could be t /∈ 〈0, 1〉.

To check this, let take into account the determinant of l2K−1 matrix, which will

have zero values in the intersection point:

l2K−1 =

[

x2K−1(t, k)

y2K−1(t, k)

]

=

[

4 + (−2k − 9) t

−1 − (4k − 3) t

]

=

[

0

0

]

,

what gives two equations:

4 + (−2k − 9) t = 0,

−1 − (4k − 3) t = 0.

Putting k = 3
2 and solving any of them, we get t = 1

3 , so t belongs to the required

range t ∈ 〈0, 1〉, where the intersection occurs.

As before, this value of t can be inserted into unchanged equation (1), to get

the coordinates of point of intersection P :

P =

[

x1(t)

y1(t)

]

=

[

1 + 9t

2 + 3t

]

=

[

4

3

]

.
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Summary:











k ∈ 〈0, 1〉 – intersection occurs;

k > 1 – additional check is required; most simple one is: kt ≤ 1;

k < 0 – no intersection (self-evident).

Finally, let us notice some kind of similarity between:

det[S1K−2] = 21k − 14,

and

det[S2K−1] = −14k + 21.

It is not a coincidence, but an evidence of reverse-inverse law, introduced later.

4. Intersection of two cubic Bézier curves

Moving on from linear to a cubic Bézier curves, patterns become more compli-

cated. The first cubic Bézier curve we denote as:

B1 =

[

x1(t)

y1(t)

]

=

[

c0x c1x c2x c3x

c0y c1y c2y c3y

]











1

t

t2

t3











= CT,
t ∈ (0, 1〉,

c2
3x + c2

3y > 0,
(7)

and the second one:

B2 =

[

x2(t)

y2(t)

]

=

[

d0x d1x d2x d3x

d0y d1y d2y d3y

]











1

t

t2

t3











= DT,
t ∈ (0, 1〉,

d2
3x + d2

3y > 0.

The shortening matrix K [1]:

K =











1 0 0 0

0 k 0 0

0 0 k2 0

0 0 0 k3











, 0 < k < 1.
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For instance, let us shorten B2 curve. Afterwards it will look like B2K:

B2K = DKT =

[

x2K(t)

y2K(t)

]

=

[

d0x d1xk d2xk
2 d3xk

3

d0y d1yk d2yk
2 d3yk

3

]











1

t

t2

t3











.

The subtracted curve:

l2K−1 = B2K −B1 = CT−DKT =

[

x1,2K(t)

y1,2K(t)

]

=

=

[

d0x − c0x d1x − c1xk d2x − c2xk
2 d3x − c3xk

3

d0y − c0y d1y − c1yk d2y − c2yk
2 d3y − c3yk

3

]











1

t

t2

t3











=

=

[

d0x − c0x (d1x − c1xk)t (d2x − c2xk
2)t2 (d3x − c3xk

3)t3

d0y − c0y (d1y − c1yk)t (d2y − c2yk
2)t2 (d3y − c3yk

3)t3

]

. (8)

After loading this into Sylvester matrix, it gets a following form:

S2K−1 =





















a− bk3 c− dk2 e− fk ∆x 0 0

0 a− bk3 c− dk2 e− fk ∆x 0

0 0 a− bk3 c− dk2 e− fk ∆x

m− nk3 p− qk2 r − sk ∆y 0 0

0 m− nk3 p− qk2 r − sk ∆y 0

0 0 m− nk3 p− qk2 r − sk ∆y





















,

where:
a = d3x, b = c3x,

c = d2x, d = c2x,

e = d1x, f = c1x, ∆x = d0x − c0x,

m = d3y, n = c3y,

p = d2y , q = c2y,

r = d1y , s = c1y, ∆y = d0y − c0y.
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Calculating a determinant of this matrix requires considerable effort1, which

can be significantly reduced2. It is still too large to be shown here, though. After

some factorizing it rises the sum:

det[S1,2K] =
9

∑

i=0

βik
i = 0, (9)

where:

βi = ∆x · βix(a, b, c, d, e, f,∆x,m, n, p, q, r, s,∆y) +

+ ∆y · βiy(a, b, c, d, e, f,∆x,m, n, p, q, r, s,∆y). (10)

This is a polynomial of 9th degree of variable k, which can have up to 9 real roots.

In fact, it is easy to show two cubic Bézier curves which intersect 9 times, as shown

in Figure 5.

Fig. 5. Two cubic Bézier curves with 9 points of intersection

According to Abel-Ruffini theorem, it is possible to find the roots of this poly-

nomial most likely by numerical approximation3. Now, it is required to:

• solve (9) to find all real roots ki,

• select those from 0 < ki ≤ 1 range, each of them is responsible for one point

of intersection,

1The work consist of adding up 1728 (= 54 · 32) elements, each containing a product of at
least 6 multipliers, because the determinant of sparse Sylvester matrix consist of 54 non-zero
permutations.

2It is possible to rotate the curves in such way that ∆x (or ∆y) is reduced to zero. As a result,
the count of non-zero permutations drops from 54 to 17.

3The negligible exception are symmetrical equations [6], mentioned later due to other reasons.



166 B. Bi ly

• optionally: calculate4 all real roots of x1,2K(t) and y1,2K(t) from equation

(8), corresponding to known ki values, then select the identical ti from these

two groups of roots (existence of such identical roots warrants theorem [1]),

• optionally: calculate coordinates of intersection points of Pi(xi, yi) from

equation (7) corresponding to ti.

It might seem like there is a need to replace the curves and repeat the process.

So that was, if not the reverse-inverse law.

5. Reverse-inverse law

As one might have noticed already, a certain pattern emerges. It is called:

Theorem 2 (The reverse-inverse law). Let p(z) is a polynomial of n-th degree

with real coefficients ai:

p(z) =

n
∑

i=0

aiz
i = a0 + a1z + a2z

2 + · · · + anz
n,

where:
ai ∈ R, i = 0, 1, 2, . . . , n,

an 6= 0,

a0 6= 0.

If polynomial q(z) of n-th degree

q(z) =

n
∑

i=0

biz
i

has coefficients bi associated with ai of p(z) in reverse order:

bi = an−i, i = 0, 1, 2, . . . , n,

then the roots ζi of the equation q(z) = 0, both real and complex, are associated

with the roots zi of the equation p(z) = 0 in inverse manner:

ζi =
1

zi
.

4Cardano method is required to solve 3-rd degree polynomial.
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Proof. Let us divide p(z) by zn:

p(z)/zn =
n
∑

i=0

aiz
(i−n) =

a0

zn
+

a1

z(n−1)
+

a2

z(n−2)
+ · · · +

an−1

z
+

an
1
.

This transformation does not change the roots of the new polynomial. Next, let

us substitute z by ζ = 1
z
:

p(z)/zn = p(
1

ζ
) ζn = a0ζ

n + a1ζ
(n−1) + a2ζ

(n−2) + · · · + an−1ζ + an =

= an + an−1ζ + an−2ζ
2 + · · · + a0ζ

n =

= b0 + b1ζ + b2ζ
2 + · · · + bnζ

n =

=

n
∑

i=0

biζ
i =

= q(ζ).

Finally:

p(z) = znq(ζ).

Hence, if p(z) has roots at zi: p(zi) = 0, then q(ζi = 1
zi

) = 0. �

Remark 3. This law works also for less restrictive assumptions, namely when

a few of leading coefficients of polynomial p(z) have value equal to zero:

p(z) =
n
∑

i=k

aiz
i = akz

k + ak+1z
k+1 + · · · + anz

n,

where:
0 < k < n,

ai ∈ R, i = k, k + 1, . . . , n,

an 6= 0,

ak 6= 0.

In this case, p(z) changes into:

p(z) = zk p̆(z),
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where:

p̆(z) =

n−k
∑

i=0

ai+kz
i

meets all assumptions of the law.

Example 4. Let:

p(x) = x5 − 5x4 + 6x3 = x3(x2 − 5x + 6) ⇒ p̆(x) = x2 − 5x + 6

(reverted coefficients)

q(x) = 6x2 − 5x + 1

then:

p(2) = p(3) = p(0) = 0

⇓ (inverted roots)

p̆(2) = p̆(3) = 0 ⇐⇒ q(1
2 ) = q(1

3 ) = 0.

Symmetric equations

Symmetric equations [6] are equations, where a polynomial has symmetric

coefficients, e.g.:

∀i : ai = an−i.

Example 5. Following equations:

0 = 1 − 10x + 100x2 − 10x3 + x4,

0 = 1 + 2x + 3x2 + 4x3 + 5x4 + 4x5 + 3x6 + 2x7 + x8,

0 = 1 + 5x4 + x8,

all are symmetric equations.

For these equations, we provide two laws, because they naturally result from

the reverse-inverse law [2].

Theorem 6. If z is a root of a symmetric equation, then 1
z
is also a root of this

equation.
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Theorem 7. All symmetric equations of degree 2n (even ones) can be created by

this formula:

f(x) = a

n
∏

i=1

(x− zi)
(

x−
1

zi

)

and symmetric equations of degree 2n + 1 (odd ones):

f(x) = a (x + 1)

n
∏

i=1

(x− zi)
(

x−
1

zi

)

.

Importance of reverse-inverse law for this method of finding

intersections

First thought was the process of shortening should be performed twice, one

time for each of two curves. This involves calculating a determinant of Sylvester

matrix from equation (9):

det[S1K−2],

then repeating the same steps for:

det[S2K−1].

However, the polynomials resulting from these two Sylvester matrices are always

reversed each other. So there is no need to solve two polynomial equations, because

roots of both polynomials are governed by reverse-inverse law.

Finally, instead of:

• solving two equations, then

• seeking roots twice in range ri ∈ (0, 1〉,

it is enough to solve one equation and seek its roots in range ri ∈ (0,+∞).
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6. Example

Determine the point of intersection K of two curves shown below.

P0 P1

P2P3Q0

Q1

Q2

Q3

y

x1 2 3 4

1

2

3

0
0

K

Fig. 6. Two intersecting cubic Bézier curves

Here are detailed calculations:

Points of the 1st curve: P0(1,1) P1(5,1) P2(5,2) P3(4,2)

Coefficients of the 1st curve:

c3x = 3 c3y = -2

c2x = -12 c2y = 3

c1x = 12 c1y = 0

c0x = 1 c0y = 1

{

x1(t) = 3t3 − 12t2 + 12t + 1,

y1(t) = −2t3 + 3t2 + 0t + 1.

Points of the 2nd curve: Q0(2,2) Q1(1,3) Q2(3,3) Q3(4,1)

Coefficients of the 2nd curve:

d3x = -4 d3y = -1

d2x = 9 d2y = -3

d1x = -3 d1y = 3

d0x = 2 d0y = 2

{

x2(t) = −4t3 + 9t2 − 3t + 2,

y2(t) = −1t3 − 3t2 + 3t + 2.
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Sylvester matrix:





















3 + 4k3 −12 − 9k2 12 + 3k −1 0 0

0 3 + 4k3 −12 − 9k2 12 + 3k −1 0

0 0 3 + 4k3 −12 − 9k2 12 + 3k −1

−2 + k3 3 + 3k2 −3k −1 0 0

0 −2 + k3 3 + 3k2 −3k −1 0

0 0 −2 + k3 3 + 3k2 −3k −1





















.

Coefficients of the 9th degree polynomial:

coeff(0) = -332 coeff(1) = -2673

coeff(2) = 3789 coeff(3) = -567

coeff(4) = 7074 coeff(5) = -1107

coeff(6) = -6615 coeff(7) = 1215

coeff(8) = -6804 coeff(9) = 2619

Real roots of the 9th degree polynomial : 5

ROOT 1 = 2.73698707 > 0, initially approved

root 2 = -0.10727734 < 0, rejected

ROOT 3 = 0.69536681 > 0, initially approved

root 4 = -0.96568768 < 0, rejected

ROOT 5 = 0.77505278 > 0, initially approved

ROOT 1, k = 2.73698707

==============================

FIRST EQUATION :

3rd degree, Coefficients :

a3= 85.01215564

a2= -79.41988385

a1= 20.21096120

a0= -1.00

3 Roots :

(1)= 0.5218056 (2)= 0.0648624 (3)= 0.3475500

SECOND EQUATION :

3rd degree, Coefficients :

b3= 18.50303891

b2= 25.47329462
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b1= -8.21096120

b0= -1.00

3 Roots : (1)= 0.3475500 (2)= -1.6287869 (3)= -0.0954719

---------------------------

COMMON ROOT : 0.3475500

---------------------------

1st curve, t1 = 0.3475500 , 0 < t1 <= 1 , OK

2nd curve, t2 = 0.9512399 , 0 < t2 <= 1 , OK

Point of intersection:

x = 3.8470508

y = 1.2784112

ROOT 3, k = 0.69536681

==============================

FIRST EQUATION :

3rd degree, Coefficients :

a3= 4.34493675

a2= -16.35181498

a1= 14.08610042

a0= -1.00

3 Roots :

(1)= 2.5067572 (2)= 0.0778887 (3)= 1.1787725

SECOND EQUATION :

3rd degree, Coefficients :

b3= -1.66376581

b2= 4.45060499

b1= -2.08610042

b0= -1.00

3 Roots : (1)= 1.7823281 (2)= -0.2860817 (3)= 1.1787725

---------------------------

COMMON ROOT : 1.1787725

---------------------------

1st curve, t1 = 1.1787725 , outside limits, rejected.
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ROOT 5, k = 0.77505278

==============================

FIRST EQUATION :

3rd degree, Coefficients :

a3= 4.86231797

a2= -17.40636137

a1= 14.32515835

a0= -1.00

3 Roots :

(1)= 2.3766154 (2)= 0.0768249 (3)= 1.1264081

SECOND EQUATION :

3rd degree, Coefficients :

b3= -1.53442051

b2= 4.80212046

b1= -2.32515835

b0= -1.00

3 Roots : (1)= 2.3766154 (2)= -0.2684614 (3)= 1.0214447

---------------------------

COMMON ROOT : 2.3766154

---------------------------

1st curve, t1 = 2.3766154 , outside limits, rejected.

Summing up for the analysed example, there exist only one point of intersection

for k ≈ 0.34755.

7. Remarks

At first glance, the presented method has great potential. However, it has its

own weaknesses, listed below. It also depends on other methods, especially on

polynomial root – finding algorithms, which bring its own imperfections.

7.1. Common beginning

When both cubic Bézier curves have the same starting point, then:

∆x = d0x − c0x = 0 and ∆y = d0y − c0y = 0,
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then, from (10), all coefficients βi = 0, hence the value of determinant (9) is equal

to zero for any k and the method fails.

It can be somewhat remedied by switching the beginning and the end of the

curve, as shown in Figure 7, because curves can also have a common ending point.

Fig. 7. Common begin of curves

A radical way to solve this issue would be to extend both curves in such way

that their beginnings do not overlap. It is always possible to do so, see [1].

7.2. Rounding errors

If one of the roots of the equation is:

k = 3

√

c3x

d3x

(

or k = 3

√

c3y

d3y

)

,

then due to rounding error

c3x − d3xk
3 6= 0

(

or c3y − d3yk
3 6= 0

)

.

Without special treatment of such cases there is possible to compute roots of

a wrong polynomial with the highest coefficient value an close to zero. In such

case, the result is going to be unacceptable.

7.3. Both curves belonging to one K-family

Definition 8 (K-family, [1]). Let C and D determine two cubic Bézier curves:

C =

[

c0x c1x c2x c3x

c0y c1y c2y c3y

]

, D =

[

d0x d1x d2x d3x

d0y d1y d2y d3y

]

.
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Let K be a transformation matrix:

K = K(u, v) =











1 0 0 0

u v 0 0

u2 2uv v2 0

u3 3u2v 3uv2 v3











, u, v ∈ R.

If exist (u, v) such a:

D = KC,

then C and D belong to one K-family.

The presented method fails when both curves belong to one K-family. Such

a case is shown on the left side of Figure 8. To prove that they are members of

K-family, on the right it is shown another member of this family, which includes

both curves. There is not known way to find a solution in this case, although such

instances are extremely rare.

Fig. 8. K-group members

7.4. Errors in the polynomial root finding methods

Since we seek real roots of a polynomial, it is forbidden to use any method

that may provide complex roots instead, like Bairstow method [7].

7.5. Errors due to wrong usage

The example shown in Figure 9 is a case of lower degree polynomial

c3x = c3y = 0 (or d3x = d3y = 0).
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Fig. 9. Exemplary curves for lower order of matrix

In such a case we need to lower order of the Sylvester matrix, since shown examples

work only for 3rd degree polynomials.
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