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Abstract. The paper presents the analytic-numerical hybrid method
using, among others, the Taylor transformation, thanks to which the solu-
tion of the Stefan problem is replaced by the solution of a nonlinear system
of equations.

1. Introduction

A very important task in simulation of the continuous casting process is a pos-

sibly exact reconstruction of the temperature field u(t, x) determining, in turn,

an essential element of the continuous casting process, that is the interface lo-

cation [2–4]. Furthermore, location of the interface determines the thickness of

a skin, that is the thickness of the solidified layer. Precise retrieval of this parame-

ter is of great importance because when the skin layer increases too slowly, it may

generate the financial losses caused by the leakage of liquid metal, whereas when

it increases to quickly, it may cause the cracks of the ingot in consequence of the

thermal stresses.
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In this paper there is presented an analytic-numerical method for determining

an approximate solution of the selected class of problems possible to be replaced

by the one-phase problem of solidifying plate with the unknown and varying in

time boundary of a region, in which the solution is sought.

Simulation of the heat conduction process, with the solid – liquid phase transi-

tions taken into account, requires the solution of the parabolic type partial differen-

tial equations. Moreover, the desire of determining the moving interface location

needs, very often, to apply some advanced mathematical methods. Mathemat-

ical models, invented for such kind of problems, are usually, in stage of their

creation and implementation as well, quite complex from the computational and

programming point of view. For solving such kind of problems one can use vari-

ous approaches, for example the Adomian decomposition method [5–7], methods

based on the genetic algorithms and other biologically inspired optimization algo-

rithms [8, 12] and some other methods as well [9–11]. Therefore in this paper we

propose to solve the considered problem in a quite different way, by using the, so

called, Taylor transformation hybrid method consisted in connecting the Taylor

transformation method with the finite difference method. This will be not a typi-

cal approach since we do not intend to seek directly the temperature field u(t, x),

we will just look for the temperature fields ul(x) in the discretized time layers tl.

In other words, the procedure for solving the investigated problem, proposed

in this paper, is based on the expansion into the Taylor series [1] of the appro-

priate functions generated by using the functions u(t, x) discretized with respect

to variable t and, in consequence, on the solution of some nonlinear system of

equations.

2. The Taylor transformation

Before defining the mathematical model of discussed problem, let us describe

shortly the idea of Taylor transformation. We assume that only the functions

of real variable t, defined in some region T ⊂ R, which can be expanded into

the Taylor series, will be considered here. These functions will be called as the

originals or the transformable functions and will be denoted by the small letters of

Latin alphabet, for example f , u, v, and so on. Thus, if function f is the original

then the following equality holds true

f(t) =

∞
∑

k=0

f (k)(α)

k!
(t− α)k, t ∈ T, (1)
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where α ∈ T denotes a point, in the neighbourhood of which function f is expanded

into the Taylor series.

Each original f corresponds to function F of nonnegative integer arguments

k = 0, 1, 2, . . ., according to formula

F (k) =
f (k)(α)

k!
, k = 0, 1, 2, . . . (2)

Function F will be called as the image of function f , whereas T will be named as

the T -function of function f or the transform of function f and the transformation

itself will be called as the Taylor transformation or the Taylor transform.

An obvious fact is that if we have the T -function, we can, according to for-

mula (2), find the corresponding original in the form of its expansion into the

Taylor series, that is

f(t) =
∞
∑

k=0

F (k)(t − α)k, t ∈ T. (3)

Transformation (2), associating the original with its image, will be called as

the direct transformation. Whereas transformation (3), associating the image

with the corresponding original, will be named as the inverse transformation.

The connection between these two transformations, more precisely, their mutual

correspondence, will be denoted with symbol ≖ and described in the following way

f(t) =

∞
∑

k=0

F (k)(t− α)k ≖ F (k) =
f (k)(α)

k!
, k = 0, 1, 2, . . . (4)

Apart from notation (4), there exists also, similarly like in case of the integral

transformations [1], the alternative notation for Taylor transformation, that is

F (k) = T [f(t); k] , (5)

for the direct transformation and

f(t) = T −1 [F (k); t] , (6)

for the inverse transformation, where T and T −1 are the symbols of respective

transformations.
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Following the taken notational convention, for example for function f(t) = et

and α = 0 we have

F (k) = T [f(t); k] = T [et; k] = T

[

∞
∑

k=0

tk

k!
; k

]

=
1

k!
, k = 0, 1, 2, . . .

Whereas in case of the inverse transform for the above function we write

f(t) = T −1[F (k); t] = T −1

[

1

k!
; t

]

=

∞
∑

k=0

tk

k!
= et.

The Taylor transformation possesses a number of useful properties, thanks to

which the usage of this tool is quite simple. Here we present few of the most

important properties [1]:

f(t) = u(t) ± v(t) ≖ F (k) = U(k) ± V (k), (7)

f(t) = c · u(t) ≖ F (k) = c · U(k), (8)

f(t) = u(t)v(t) ≖ F (k) =
k
∑

r=0

U(r)V (k − r), (9)

f(t) = u′(t) ≖ F (k) = (k + 1)U(k + 1), (10)

f(t) = u′′(t) ≖ F (k) = (k + 1)(k + 2)U(k + 2), (11)

f(t) =
u(t)

v(t)
≖ F (k) =

1

V (0)

[

U(k) −

k−1
∑

r=0

F (r)V (k − r)

]

. (12)

3. Formulation of the problem

Let us define now the mathematical model of discussed problem. Firstly we

assume that the conduction is the most essential element determining transport

of the heat (which is the consequence of the assumption that temperature of the

system is constant in the initial moment of time and it is equal to the phase tran-

sition temperature ū). Second assumption concerns the material property – we

consider the material as the ideal eutectic which allows us to suppose that the

phase transition occurs in the given and constant (as mentioned before) tempera-

ture ū. Moreover we assume that the material parameters γ, λ, c, κ and a (density,

thermal conductivity, specific heat, latent heat of fusion and thermal diffusivity

coefficient, respectively) do not depend on temperature nor on the phase. Addi-
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tionally, if we assume that the heat transport is symmetric and one-dimensional,

that is the investigated object is a plate with the same cooling conditions from

both of its sides, then we can eliminate the liquid phase from our considerations

and the one-phase Stefan problem, posed in this way, will be described by the

following system of equations:

— the heat conduction equation describing the temperature field in the solid

phase
∂u

∂t
= a

∂2u

∂x2
, x ∈ (s(t), xmax), t ∈ (0, tmax], (13)

— the boundary condition of the first kind on the heat exchange surface

u(t, xmax) = ϕ(t), t ∈ (0, tmax], (14)

— the energy balance conditions in the interface

u(t, s(t)) = ū, t ∈ [0, tmax], (15)

λ
∂u(t, s(t))

∂x
= κs′(t), t ∈ (0, tmax]. (16)

In the above equations x denotes the spatial variable, t – time, xmax – half of the

plate thickness, tmax – duration of the process (time of the plate solidification), f –

varying in time temperature of the plate surface (ϕ(t) ≤ ū), finally s denotes the

function describing the varying in time interface location and we have s(0) = xmax.

4.Method of solution

In the first step of the proposed method of solving the discussed problem we

discretize the time variable t, that is we divide the interval [0, tmax] with the

equidistant points tl = l · ∆t, l = 0, 1, . . . ,M , where ∆t = tmax

M
, thanks to which

the considered spatial-time object takes the layer structure with the layers tl ×

[s(tl), xmax], l = 0, 1, . . . ,M . On each of such created layers the temperature field

function u(t, x) is the function of one variable x because t is fixed (see Figure 1).

Let us call such defined function as the function associated to the given layer and

expand it into the Taylor series around the fixed xmax. So, according to (3), we

have

ul(x) =

∞
∑

k=0

U(l, k)(x− xmax)k, l = 0, 1, 2, . . . ,M, (17)
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where U(l, k), k = 0, 1, 2, . . . are the values of the image of function ul(x). Next

we take the N -th partial sum of such received series and we obtain in this way

some approximation of this function, that is

ul(x) =

∞
∑

k=0

U(l, k)(x− xmax)k ≈

N
∑

k=0

U(l, k)(x− xmax)k, l = 0, 1, . . . ,M (18)

where the coefficients U(l, k) – values of T -function U – are unknown for now,

except the values U(0, k), k = 0, 1, . . . , N , which, in view of (2), result directly

from condition (15), so we have U(0, k) = 0, k = 1, 2, . . . , N and U(0, 0) = ū.

∆xl

xmax

x

x = s(t)

tl+1

tl

tl−1

tmax

∆t

∆t

ul(x)

l − 1

l

l + 1

t

xl

∆xl−1

li
qu
id

p
h
a
se

solid phase

Fig. 1. Geometric interpretation of the discussed problem

By including the introduced discretization and by replacing the differentiation

operator on the left hand side of equation (13) with the forward difference operator,
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the equation (13) can be written in the form

ul(x) − ul−1(x)

∆t
= a

d2ul(x)

dx2
, l = 1, 2, . . . ,M − 1, (19)

hence, after taking the properties (7), (8) and (11) into account, we obtain the

relations for the unknown values of T -function U :

U(l, k + 2) =
U(l, k) − U(l − 1, k)

a∆t(k + 1)(k + 2)
, (20)

for k = 0, 1, . . . , N − 2 and l = 1, 2, . . . ,M . Moreover, by using the relation (14)

and relation (2) we get the succeeding, for k = 0, relations for the unknown values

of T -function U :

U(l, 0) = ul(xmax) = ϕ(l∆t), (21)

where l = 1, 2, . . . ,M .

Applying the condition (15) and property (3) we obtain the next series of

relations
N
∑

k=0

U(l, k)(xl − xmax)k = ū, (22)

for l = 1, 2, . . . ,M . Whereas from condition (16), by replacing the differentiation

operator with the forward difference operator and by including property (10), after

simple transformations we get

N
∑

k=0

kU(l, k)(xl − xmax)k−1 =
κ(xl − xl−1)

λ∆x
, (23)

for l = 1, 2, . . . ,M . We have in relations (22) and (23) the other unknowns – the

unknown values xl, l = 1, 2, . . . ,M (x0 is known and equal to xmax – see Figure 1).

Thus we have M · N unknown elements which are the values of T−function

U(l, k), k = 1, 2, . . . , N , l = 1, 2, . . . ,M and the next M unknown values xl,

l = 1, 2, . . . ,M . However, by using relation (20) and the known values of U we

can make the unknowns U(l, k), k = 2, 3, . . . ,M , l = 1, 2, . . . ,M dependent on

the unknowns U(l, 1), l = 1, 2, . . . ,M . In result we get 2M unknown elements:

U(l, 1), l = 1, 2, . . . ,M and xl, l = 1, 2, . . . ,M . But we have also 2M equations

(relations (22) and (23)), thus, by solving them, we obtain the values of sought

unknowns.

The proposed approach requires to explain two more issues: how the above

described system of equations is solved and how do we know the value M which
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depends on the unknown value tmax, which, in turn, is connected with the value M .

It appears that these questions are strictly joined: let us notice that instead of

solving the full system of 2M equations, we can solve this system sequentially, by

solving each time, for the successive l = 1, 2, . . . ,M , the system of two equations

with two variables – we select each time one equation from relations (22) and

one equation from relations (23), respectively. Thanks to this approach, in the

numerical method of solving such reduced system we select as the zero approxi-

mation (starting point) the solution of the previous system and the value M will

be determined by the found value xl – if it differs from zero less than the fixed

ε > 0, then we take that the solidification process has terminated which implies

the termination of computing.

5. Example

Let the sought temperature field function has the form u(t, x) = 4 − et+x−1.

Additionally, let us take that xmax = 1, λ = κ = a = 1 and let us fix the value ∆t.

Under these assumptions we know that ϕ(t) = 4 − et, s(t) = 1 − t, hence ū = 3.

In the successive figures there are presented the selected reconstructions of the

interface location for the varying values of elements responsible for the density of

discretization ∆t and for the number N of terms in expansions into the Taylor

series of functions ul(x), l = 1, 2, . . . ,M , and also the plots of temperature fields

in the time layers tl (the exact temperatures u(tl, x) and approximate ul(x) –

obtained on the basis of formula (18)) for the successive l = 1, 2, . . . ,M . The cases

have been selected so that they confirm the effectiveness of investigated method.

We show that for the given density of time variable t discretization, more precisely

– for the fixed ∆t, one can choose the number N so that the reconstruction of

the interface location would be of the expected good quality. We also show that

when the number N increases, the quality of reconstruction improves as well. The

successive pairs of plots are the following:

— first pair of plots (Figures 2, 4, 6, 8, 10):

— left hand side – interface location (solid line) and its reconstruction

(points),

— right hand side – values of the absolute errors δ(l) of this reconstruction

(points) determined for the given tl, l = 1, 2, . . . ,M , from relation

δl = |s(xl) − tl| = |(1 − xl) − tl|, where xl denote the values computed
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from the system of equations (22)–(23). For better illustration of results

these points have been connected by the line segments;

— second pair of plots (Figures 3, 5, 7, 9, 11):

— left hand side – M pairs of plots of the temperature fields (the exact

ones – solid line and calculated from formula (18) – dashed line) in the

selected layers tl,

— right hand side – plots of the absolute errors δul of reconstructing the

temperature fields ul(x) in the selected layers tl, determined from rela-

tion |ul(x) − u(tl, x)|.
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Fig. 2. Reconstruction of the solidification front and absolute errors of this reconstruction
in layers tl, l = 1, 2, . . . ,M , for N = 3, ∆t = 0.1 and M = 10
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Fig. 3. Reconstruction of the temperature fields and absolute errors of this reconstruction
in layers tl, l = 1, 2, . . . ,M , for N = 3, ∆t = 0.1 and M = 10
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Fig. 4. Reconstruction of the solidification front and absolute errors of this reconstruction
in layers tl, l = 1, 2, . . . ,M , for N = 6, ∆t = 0.1 and M = 10
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Fig. 5. Reconstruction of the temperature fields and absolute errors of this reconstruction
in layers tl, l = 1, 2, . . . ,M , for N = 6, ∆t = 0.1 and M = 10

0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

t

x

0.2 0.4 0.6 0.8 1.0

0.000

0.001

0.002

0.003

0.004

0.005

δ

t

Fig. 6. Reconstruction of the solidification front and absolute errors of this reconstruction
in layers tl, l = 1, 2, . . . ,M , for N = 4, ∆t = 0.04 and M = 25

6. Conclusion

The examples, presented above, confirm the effectiveness of proposed method.

It appears that for the given discretization one can choose the appropriate number

of terms in series (17) so that the obtained reconstruction would be of satisfying
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Fig. 7. Reconstruction of the temperature fields and absolute errors of this reconstruction
in layers tl, l = 1, 2, . . . ,M , for N = 4, ∆t = 0.04 and M = 25
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Fig. 8. Reconstruction of the solidification front and absolute errors of this reconstruction
in layers tl, l = 1, 2, . . . ,M , for N = 8, ∆t = 0.04 and M = 25
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Fig. 9. Reconstruction of the temperature fields and absolute errors of this reconstruction
in layers tl, l = 1, 2, . . . ,M , for N = 8, ∆t = 0.04 and M = 25

quality. The reconstruction errors behave rationally – when the number of terms

in the series increases, the error decreases. Also when the density of variable t

discretization is greater, the error becomes respectively smaller and, similarly like

for the lower value of parameter N , by increasing the number of terms in the series

we get the reconstruction of good quality.
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Fig. 10. Reconstruction of the solidification front and absolute errors of this reconstruc-
tion in layers tl, l = 10, 20, . . . ,M , for N = 12, ∆t = 0.005 and M = 200
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Fig. 11. Reconstruction of the temperature fields and absolute errors of this reconstruc-
tion in layers tl, l = 10, 20, . . . ,M , for N = 15, ∆t = 0.005 and M = 200
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