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ESTIMATING RAPID FLOW TRANSIENTS

USING EXTENDED KALMAN FILTER

Abstract. Theoretical and numerical modeling of flow transients in
pipelines is a challenging field of research. The governing flow equations
constitute a system of nonlinear hyperbolic partial differential equations
enforcing the conservation laws for mass, momentum and energy. The ap-
plication of these mathematical models might be limited due to the absence
of complete knowledge about the physical phenomena and uncertainties.
Information about the initial and boundary conditions is usually obtained
from measurements. The presence of noise and inaccuracies, as well as in-
exactness of the flow model and numerical approximations for solving the
full model can lead to predictions that differ from reality. In this paper,
we deal with the problem of extracting information about states of the sys-
tem in real time given noisy measurements. We solved the isothermal flow
model during a hydraulic shock while using the extended Kalman filter to
estimate the hidden state variables. To avoid spurious oscillations in the
solution, the flow model in conservative form was solved using Roe’s flux
limiter within the finite volume framework to ensure the total variation
diminishing property. Numerical approximation of the Jacobian was done
with an adaptive routine and showed that most entries in the matrix are
zero and therefore sparse. The robustness of the extended Kalman filter
was examined by varying the noise statistics. In most of the situations, we
can conclude that the extended Kalman filter was successful in estimating
the rapid transients of natural gas.
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1. Introduction

Mathematical modeling of flow transients in pipelines is a challenging research

area. The governing equations constitute a system of nonlinear hyperbolic partial

differential equations (PDEs) enforcing the conservation laws for mass, momentum

and energy. Several authors [1, 2, 8, 9, 13] have simulated the behavior of natural

gas under transient conditions.

The application of these mathematical models might be limited due to the

absence of complete knowledge about the physical phenomena and uncertainties.

Noise and inaccuracies in measurements, as well as model inexactness and nu-

merical errors, can lead to results that substantially differ from the reality. More

accurate models increase computational complexity that may limit its applicabil-

ity, particularly for real-time estimation.

When the stochastic dynamical system is linear with additive Gaussian noises,

the optimal solution is found by the well-known Kalman filter (KF) [11]. Although,

attempts were made to use the KF for state estimation applied to flow models [4,16,

19,23], the filter is intractable for such nonlinear systems. For this reason, different

approximate nonlinear filtering algorithms were developed, whereas the extended

Kalman filter (EKF) [5, 10, 15] is one of the most popular filters. A complete

overview of recursive Bayesian estimators can be found in [3].

In this work, the flow transients were estimated using the EKF during a severe

condition, namely a rapid valve closure at the end of the pipeline. We evaluate

the filter on estimation accuracy, robustness and computation time.

2. Fluid flow model

The flow transients in pipelines are described by a set of hyperbolic PDEs,

which are derived from the conservation laws and expressed as follows [21]:

∂ρ

∂t
+

∂

∂x
(ρv) = 0, (1)

∂(ρv)

∂t
+

∂(ρv2 + p)

∂x
= −w

A
− ρg sinα, (2)

ρ

(

∂h

∂t
+ v

∂h

∂x

)

− ∂p

∂t
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∂p

∂x
=

Ω + wv

A
, (3)
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within domain D = {(x, t) : x ∈ [0, L], t ∈ [0, tf ]} where L and tf denote the

pipeline length and final simulation time, respectively. Other variables and pa-

rameters are density ρ, velocity v, pressure p, frictional force w, cross-sectional

area A, gravitational acceleration g, angle of inclination α, enthalpy h and heat

flow into the pipe Ω. The independent variables x and t represent the spatial and

time coordinates, respectively.

In line with Kiuchi [13] we assumed an isothermal flow field and ignored the

convective term in equation (2) because it is small compared to the other terms.

If we assume that compressibility factor z and temperature T are constant, then

for the equation of state we write

p

ρ
= zRT = a2s, (4)

with constant wave speed as and specific gas constant R. Using the expression

for the mass flow rate ṁ = ρvA, the equations (1) and (2) for the simplified

one-dimensional, isothermal flow model yield

∂p

∂t
+

a2s
A

∂ṁ

∂x
= 0, (5)

∂ṁ

∂t
+A

∂p

∂x
+

fa2s
2dA

ṁ |ṁ|
p

= 0. (6)

with friction factor f and pipe diameter d.

Equations (5) and (6) are convenient to work with in engineering practice.

For more accurate predictions, the energy equation (3) should be included [1,

2]. However, improving the model accuracy results in higher computation times

that might make it less applicable to real-time estimation. Uncertainties in flow

modeling are related to changes in natural gas composition, roughness factor [14],

surrounding temperature along the pipeline and burial depth [8, 9]. For buried

pipelines, soil properties such as heat capacity, thermal conductivity and diffusivity

of the soil change over time as it alternately wets and dries. These quantities are

difficult to determine. Even if we have a perfect flow model, the information

about the initial and boundary conditions is not perfect. Thus, results will not be

in agreement with reality.

In this work, we approach the state variables p and ṁ as realizations of

a stochastic process whereas the most likely state can be extracted from the proba-

bility density function (pdf). We have an approximated flow model with uncertain

estimates of model parameters, initial and boundary conditions and on the other
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hand, we have noisy measurements. Mathematically, the evolution of the state

sequence {xk, k ∈ N} can be written as follows:

xk = f(xk−1) + vk−1, (7)

where the aim is to estimate xk from measurements,

yk = h(xk) + nk, (8)

where f and h represent the flow and measurement model, respectively. In the

stochastic state space model vk−1 is a random vector that captures uncertainties

in the flow model and nk denotes the measurement noise. In the EKF both are

mutually independent with normal probability distributions, vk−1 ∼ N (0,Qk−1)

and nk ∼ N (0,Rk) with covariances Qk−1 and Rk, respectively. The state vector

xk refers to system variables p and ṁ.

3. Numerical solution

The isothermal flow model was solved with a high-resolution finite volume

scheme using Roe’s superbee flux limiter [17]. High resolution schemes try to

suppress numerical dissipation and unwanted oscillations due to shocks or steep

gradients in the solution domain. Flux limiters ensure the total variation dimin-

ishing (TVD) property [7] at which the local under- and overshoot is avoided.

First, we formulate the set of equations in compact form as follows:

∂u

∂t
+

∂f(u)

∂x
= S(u), (9)

with

u (x, t) = u =

[

p

ṁ

]

, f (u) =

[

a2

s

A ṁ

Ap

]

, S (u) =

[

0

− fa2

s

2dA
ṁ|ṁ|

p

]

. (10)

Within the finite volume framework, we divide the interval [0, L] in cells defined

by Ii=[xi−1/2, xi+1/2], i ∈ Z where xi = (xi+1/2, xi−1/2)/2 is the midpoint of Ii. Let

∆xi = xi+1/2 − xi−1/2 be the mesh size, ∆xi+1/2 = xi+1 − xi. The mesh is fixed in

time. Integration of (9) over Ii yields
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d

dt
ui(t) +

1

∆xi
(f(u(xi+1/2, t))− f(u(xi−1/2, t))) =

1

∆xi

∫

Ii

S(u(x, t)) dx, (11)

Let ui be the cell average of u on Ii, then we read

ui(t) =
1

∆xi

i+1/2
∫

i−1/2

u(x, t) dx. (12)

Defining χIi as the characteristic function of cell Ii, we aim to find a piecewise

constant function,

uu(x, t) =
∑

i∈Z

Ui(t)χIi(x), (13)

with
d

dt
Ui(t) +

1

∆xi
(Fi+1/2 −Fi−1/2) = Si, (14)

Ui(0) =
1

∆xi

i+1/2
∫

i−1/2

u(x, 0) dx, (15)

where Fi+1/2 = F(U−
i+1/2, U

+
i+1/2) is the monotone numerical flux that approximates

f(u(xi+1/2, t)). The source Si is calculated from the expression

Si = Si(Ui) ≈
1

∆xi

i+1/2
∫

i−1/2

S(u(x, t)) dx (16)

The approximations U−
i+1/2, U

+
i+1/2 of the point value u(x1+1/2, t) of Ii and Ii+1

are obtained via a reconstruction process. For our purpose, the classical MUSCL

(Monotonic Upstream-Centered Scheme for Conservation Laws) linear reconstruc-

tion [22] is applied. It assumes a piecewise-linear interpolation from the average

values. The reconstruction for each component can be defined as

U−
i+1/2 = Ui +

1

2
φ(θi)(Ui+1 − Ui), (17)

and

U+
i+1/2 = Ui+1 −

1

2
φ(θi)(Ui+2 − Ui+1), (18)

where θ is

θi =
Ui − Ui−1

Ui+1 − Ui
, (19)
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and φ is a slope limiter function [20] that limits the slope of the piecewise ap-

proximations to ensure TVD and avoid spurious oscillations that would otherwise

occur around discontinuities or shocks. In this scheme, numerical dissipation is

minimized when φ(θ) increases. Its resolution is higher at the discontinuities or

shocks. On the other hand, more dissipation from the limiter is expected when

φ(θ) decreases. It has a lower resolution. In this work, we used Roe’s superbee

flux limiter [17] because it is considered as a good compromise between accuracy

and computational efficiency [6]. This limiter is given as follows:

φ(θ) = max(0,min(2θ, 1),min(θ, 2)), lim
θ→∞

φ(θ) = 2. (20)

The finite volume discretization of the source term is done as follows:

1

∆x

∫

Ii

S dx ≈ Si−1/2 + Si+1/2

2
, (21)

where

Si+1/2 = S
(

U−
i+1/2 + U+

i+1/2

2

)

. (22)

In order to solve the time-dependent problem the resulting spatially discretized

equations must be integrated in time. This is done with the classical fourth-order

Runge-Kutta method.

4. Extended Kalman filter

The most used estimator for nonlinear systems is probably the extended Kal-

man filter because of its simplicity, robustness and suitability for real-time im-

plementations. It approximates the optimal estimate based on linearization of

both process and measurement model. Below we give a brief overview, the more

theoretical considerations are described in [5, 10, 15].

The process model we use is our flow model (9), whereas the state vector is

defined by pressure and mass flow rate. At time step k − 1, the prediction step is

performed by finding the a priori state estimate x̂k|k−1 via integration using the

Runge-Kutta scheme. Next, the a priori estimate of the error covariance is written

as

Pk|k−1 = FkPk−1|k−1F
⊤
k +Qk−1, (23)
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where Qk−1 is the covariance of the process noise, Pk−1|k−1 is the a posteriori

estimate of the error covariance and matrix Fk contains the partial derivative

elements of the Jacobian that is calculated as follows:

Fk,[i,j] =
∂fi
∂xj

∣

∣

∣

∣

(x̂k−1|k−1)

. (24)

where f represents the flow model. Given the covariance matrix Rk of the mea-

surement noise, the correction step calculates the a posteriori state estimate via

x̂k|k = x̂k|k−1 +Kk(yk −Hkx̂k|k−1), (25)

where Kk is the Kalman gain and Hk is the measurement matrix. The Kalman

gain reads

Kk = Pk|k−1H
⊤
k (HkPk|k−1H

⊤
k +Rk)

−1, (26)

and the elements of the measurement matrix as

Hk,[i,j] =
∂hi

∂xj

∣

∣

∣

∣

(x̂k−1|k−1)

. (27)

At the end we compute the a posteriori estimate of the error covariance, which is

defined by

Pk|k = Pk|k−1 −KkHkPk|k−1. (28)

When the state variables are directly available, the Jacobian is equal to the

identity matrix. The Jacobian of the flow model is computed with the adaptive-

routine called numjac coded in Matlab and developed by Salane [18] for the ap-

proximation of partial derivatives when integrating a system of ODEs. For large

ODE systems, most entries in the matrix are zero and therefore sparse.

5. Numerical experiments

Numerical experiments were conducted to examine the estimation accuracy,

robustness and computation time of the EKF. The first measure in terms of root

mean square error (RMSE) is defined as
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RMSE =
1

τ

τ
∑

j=1

(

‖X− X̂‖F√
NdNk

)

, (29)

where τ is the number of Monte Carlo runs, X is the true and X̂ is the estimated

matrix representing p and ṁ within domain D. The number of nodes and time

steps are denoted as Nd and Nk, respectively. The state estimates are compared

with the true values, which are the numerical solution with additive Gaussian

random noise.

The robustness of the EKF was examined by varying the noise statistics. The

CPU time was measured using Matlab’s built-in tic-toc dual function and av-

eraged over τ runs. Simulations have been performed on a PC with an Intel(R)

Core(TM) i3-2348M 2.30 GHz, 8 GB RAM, Windows 7 64-bit. The numerical ap-

proximations of the PDE system together with the EKF were written in Matlab

R2014a 64-bit.

The state variables pressure and mass flow rate were estimated during a hy-

draulic shock. The system was characterized by a pipeline length of 20 km and

internal diameter of 0.5 m. The friction factor was assumed to be 0.008. The nat-

ural gas density under normal conditions is 0.856 kgm−3 with a compressibility

factor of 0.9. The boundary conditions were set to p(0, t) = 5.0 MPa and ṁ(L, t)

is shown in Figure 1.

Fig. 1. Mass flow rate boundary condition

After 10 min the valve at the outlet node was closed for 20 min and opened

again, whereas the gas flow increased from zero to 71.3 kg s−1. We assumed that

the valve closed linearly within 60 s. To avoid inverse crime [12], the solutions

were first obtained using a finer step size of the grid ∆x = 100 m and time step

∆t = 0.25 s for the integration. The size of Jacobian matrix for the fine resolution
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model was 402 × 402 with 1200 nonzero elements and for the coarse model we

obtained a 102 × 102 matrix with 300 nonzero elements. The reduced model

solution was obtained using ∆x = 400 m and ∆t = 1 s with a CPU time of 14.6 s.

Fig. 2. Spatial-temporal evolution of pressure and mass flow rate without noise

Figure 2 shows the evolution of pressure and mass flow rate without model

noise. The CPU time for the solution with fine resolution grid spacing was 231.7

s. When the valve was closed, the natural gas adjacent to the valve was brought

to rest. As a consequence, it propagated a pressure and flow rate wave backward.

The reverse flow decreased the pressure and caused oscillations in pressure and

flow. The maximum estimated values during the oscillation were 7.522 kg s−1 and

5.005 MPa, while the minimum values were -11.676 kg s−1 and 4.993 MPa. The

frictional dissipation damped out the oscillation. Although, flux limiters aim to
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obviate numerical dissipation in the solution, its existence can lead to erroneous

estimation of the amplitudes of the pressure and flow rate waves.

The measurements were obtained by adding to the fine grid solution a Gaussian

random noise of N
(

nk; 0, 0.05
2
)

and N
(

nk; 0, 1
2
)

with variance in MPa2 and

(kg s−1)2, respectively. The standard deviation of the model noise for pressure

σvk,p and mass flow rate σvk,ṁ was set to 0.055 MPa and 1.1 kg s−1, respectively.

It was assumed 10% higher than that of the measurement noise (σnk,p = 0.05 MPa

and σnk,ṁ = 1 kg s−1). We conducted 20 simulation runs (τ = 20) with different

initial realizations.

The initialization of the EKF was done by setting ∂h/∂t in (9) equal to zero.

The a priori estimate of the error covariance matrix was set equal to the identity

matrix. The off-diagonal entries of Q and R were zero and the diagonal entries

correspond to the process and measurement noise covariance, that is, σ2
vk and σ2

nk
,

respectively. The results of the EKF are illustrated in Figure 3.

Fig. 3. Measurements, true and estimates of pressure and mass flow rate; σvk
= 1.1 ·σnk

where σnk,p = 0.05 MPa and σnk,ṁ = 1 kg s−1
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To test the robustness of the EKF we examined different noise statistics by

varying the standard deviation of the model noise σvk and measurement noise

σnk
. Besides this, the RMSE, its ± 1 standard error (SE) over τ simulations

with different realizations and mean CPU time t̄cpu were calculated. First, we

kept σnk
constant and varied σvk . Table 1 shows that the standard deviation

of the model noise impacts the performance of the filter. Higher values for the

process noise result in a higher Kalman gain (26) meaning that more measurement

information is included to adjust the predicted state variables p and ṁ. Thus, we

trust the measurements more than the model. In case of a too low value for the

process noise, the EKF might fail to converge because it depends too much on

our inexact flow model and too less on measurements. This situation occurred

for σvk = 0.1 · σnk
as we see in Table 1 and Figure 4. Moreover, the higher SE

over τ runs for both state variables indicated that the random changes become

more significant. Between t ∈ [10, 30] we can see that the filter tries to recover

and seems to perform better for the pressure estimates. This might be a result of

having a lower degree of nonlinearity in the pressure waves compared to the mass

flow rate. The latter showed a lag behind the actual values. Non-convergence for

both state variables was resolved when we added more uncertainty regarding our

knowledge about the pressure. When we increased it only for the mass flow rate,

the filter still failed for the pressure estimates. This implies that the uncertainty

associated with the pressure is an important tuning parameter in the EKF for

the flow model. In Table 2 we kept σvk constant and varied σnk
. If we increase

the measurement noise, the Kalman gain gets smaller, thus we trust more the

flow model. The filter did not show convergence problems for the selected noise

statistics in Table 2.

Table 1
RMSE, SE and tcpu for different standard deviations of model noise;

σnk,p
= 0.05 MPa and σnk,ṁ

= 1 kg s−1

σvk = 1.9 · σnk
1.1 · σnk

0.9 · σnk
0.1 · σnk

RMSEp/10
−1MPa 1.053 0.689 0.603 0.501

SE/10−4MPa 0.471 0.241 0.240 2.650
RMSEṁ/kg s−1 2.143 1.479 1.337 6.066
SE/10−3kg s−1 0.725 0.396 0.548 2.631
tcpu/s 291.8 289.7 260.7 257.1
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Fig. 4. Measurements, true and estimates of pressure and mass flow rate; σvk
= 0.1 ·σnk

where σnk,p = 0.05 MPa and σnk,ṁ = 1 kg s−1

Table 2
RMSE, SE and tcpu for different standard deviations of measurement

noise; σvk,p
= 0.055 MPa and σvk,ṁ

= 1.1 kg s−1

σnk
= 1.9 · σvk 1.1 · σvk 0.9 · σvk 0.1 · σvk

RMSEp/10
−2MPa 8.678 6.671 6.246 5.027

SE/10−5MPa 4.602 2.529 2.401 1.228
RMSEṁ/kg s−1 2.123 1.478 1.340 1.005
SE/10−4kg s−1 6.274 5.843 3.889 2.631
tcpu/s 246.5 256.0 259.6 260.4

6. Conclusion

In this paper, we investigated the performance of the EKF applied to hyper-

bolic flow model to estimate the transients during a hydraulic shock. In general,

we can conclude that EKF is in most of the situations successful. Limitations
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emerge when we operate in the low model noise domain, the filter might show

convergence problems. In this situation, it relies too much on the inexact flow

model and too less on measurements. Especially, model uncertainty associated

with the pressure state variable seems to be an important tuning parameter in the

EKF.

Further research should be focused on the role of numerical dissipation and

investigating different system configurations. Simulated data based on more ac-

curate flow models would be interesting, instead of introducing more uncertainty

in the simplified flow model as we did. Real data would be prefered.
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