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BASIC SUMS AS PARAMETERS

CHARACTERIZING

Abstract. We discuss the method of distributions’ characterization of
geometric objects on the plane. The method is based on the basic sums.
These basic sums perform the same role in description of image as the n-
point correlation functions. In this paper we present some applications of
this theory.

1. Introduction

Description of images’ geometry1 it’s fundamental meaning in different branch

of science i.e. engineering materials, medicine, biology, astronomy etc. In the-

ory pattern recognition dominant attitude whose objective is to extract visible

features from analyzed image. The next step in image analysis is the process of

extracting the hidden features – invisible to the human, but significant (for ex-

ample isotropy of material). This issue we can reduce to the construction of set

G containing some parameters which describe geometry. We can treat this set

as a representation of the analyzing image, because n-point correlation functions

entirely describe geometry of considered images. Computational difficulties in the

n-point correlation functions for n > 3 confine practical applications of this ap-

proach. In this paper apply alternative definition approach based on the G set

2010 Mathematics Subject Classification: 74Q15, 92B15.
Keywords: basic sums, non-overlaping geometric objects, modeling of bacteria’s distributions.
Corresponding author: R. Czapla (czapla@up.krakow.pl).
Received: 05.10.2016.

1Without loss of generality, we can consider only two-phase images [16, p. 24].
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consisting of the elements ep called basic sums (or e-sums). This term was in-

troduced in [10] and systematically investigated in [6, 7, 11–13]. The e-sums are

functionals on the correlation functions which determine the effective properties of

media. We use this representation for images containing non-overlapping circles,

but in the further part we will extend the method to other shapes.

2. Basic sums

Consider a lattice Q which is determined on the complex plane by two vectors

ω1 and ω2 (for definiteness, it is assumed that Im
[
ω2/ω1

]
> 0). We introduce the

cell (0, 0) as the parallelogram:

Q(0,0) ··=

{
z = s1ω1 + s2ω2 : −

1

2
< sk <

1

2
(k = 1, 2)

}
.

The lattice Q consists of the cells

Q(m1,m2)
··=
{
z ∈ C : z −m1ω1 −m2ω2 ∈ Q(0,0)

}

where m1, m2 run over integer numbers. We will consider unit cells which include

N non-overlapping geometric objects. This distribution will be realized in the

torus topology (see Figure 1 case a)). Therefore, we will treat the analysed two-

phase image as the set of geometric objects on the complex plane C and study its

restriction to the cell Q(0,0).

a) b)

Fig. 1. a) – double periodic lattice Q; b) – example of cell Q(0,0) (square cell)
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Before we introduce the basic sum we will provide some additional definitions.

Let Q will be the lattice described in the previous paragraph. Consider the lattice

sums which for even values of n can be calculated using the following formulas [10]:

S2 =

(
π

ω1

)2
(
1

3
− 8

∞∑

m=1

mq2m

1− q2m

)
,

S4 =
1

60

(
π

ω1

)4
(
4

3
− 320

∞∑

m=1

m3q2m

1− q2m

)
,

S6 =
1

140

(
π

ω1

)6
(

8

27
−

448

3

∞∑

m=1

m5q2m

1− q2m

)
,

where q = e
πiω2

ω1 . Sums S2n (n > 4) are calculated by the recurrence formula:

S2n =
3

(2n+ 1)(2n− 1)(n− 3)

n−2∑

m=2

(2m− 1)(2n− 2m− 1)S2mS2(n−m).

For odd values n it is known that Sn = 0.

The following definition of Weierstrass function ℘ is based on the lattice

sums [8]:

℘(z) =
1

z2
+

∞∑

m=2

(2m− 1)S2mz2m−2.

Function ℘ is double periodic.

The Eisenstein functions Em (m = 2, 3, . . . ) and the Weierstrass functions are

related by the following dependence:

E2(z) = ℘(z) + S2, Em(z) =
(−1)m

(m− 1)!

dm−2℘(z)

dzm−2
(m = 3, 4, . . . ). (1)

Each of functions (1) is double periodic and has a pole of order n at z = 0. The

value at zero of function En is defined as En(0) ··= Sn.

Consider points ak = xk + iyk (k = 1, 2, . . . , N) in the cell Q(0,0). Let q

be a natural number, k0, k1, . . . , kq run over integer numbers from 1 to N , and

pj > 1 (j = 1, 2, . . . , q) are integer numbers. The following sum was introduced

by Mityushev [3, 10]:

ev0,v1,...,vqp1,p2,...,pq
=

∑

k0,k1,...,kq

vs00 vs11 vs22 · · · vsqq Ep1
(ak0

− ak1
)Ep2

(ak1
− ak2

)×

× Ep3
(ak2

− ak3
) · · ·Cq+1Epq

(akq−1
− akq

),

(2)
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where functions Em (m = 2, 3, . . . ) are the Eisenstein functions corresponding

to double periodic cell Q(0,0). Indexes sn (n = 0, 1, 2, . . . , q) are provided by

recurrence formulas

s0 = 1,

sn = pn − sn−1, n = 1, 2, . . . , q.

Symbol C denotes operator of complex conjugation. The sum (2) is called ba-

sic sum (or e-sum) of the multi-index p = (p1, p2, . . . , pq) and number |p| =
p1+p2+···+pq

2 is called the order of the basic sum. When the points ak (k =

1, 2, . . . , N) are interpretted as centers of the circles with radii rk (k = 1, 2, . . . , N),

the values 0 < vk 6 1 (k = 1, 2, . . . , N), describe polidispersity of circles [3] and

are defined as rk
R
, where R denotes radius of the biggest circle.

Example 1. If we consider N circles with the same radii, the sums e2 and e3,3,2

have the form:

e2 =

N∑

k0=1

N∑

k1=1

E2(ak0
− ak1

),

e3,3,2 =
N∑

k0=1

N∑

k1=1

N∑

k2=1

N∑

k3=1

E3(ak0
− ak1

)E3(ak1
− ak2

)E2(ak2
− ak3

).

Now we explain why the e-sums can be treated as parameters describing the

distribution of geometric objects. In the papers [2, 9] the explicit functional form

for the effective conductivity of a macroscopically isotropic composite was ob-

tained. Considered a two-dimensional composite contains non-overlapping circular

inclusions and it is a cross-section of the three-dimensional fiber composite. The

above functional has the form of a series which is dependent on concentrations of

inclusions ν

λ̂ = 1 + 2ρν + 2ρν

∞∑

q=1

Aqν
q, (3)

where ρ = λi−λm

λi+λm
stands for the Bergman parameter [1], λi and λm denote con-

ductivity (permeability) of inclusions and host, respectively. The constants Aq are

linear combinations of basic sums ep, which coefficients depend on ρ. First five



Basic sums as parameters characterizing 89

Aq have the following form

A1 =
ρ

π
e2, A2 =

ρ2

π2
e2,2, A3 =

1

π3
[−2ρ2e3,3 + ρ3e2,2,2],

A4 =
1

π4

[
3ρ2e4,4 − 2ρ3(e3,3,2 + e2,3,3) + ρ4e2,2,2,2

]
,

A5 =
1

π5

[
− 4ρ2e5,5 + ρ3(3e4,4,2 + 6e3,4,3 + 3e2,4,4)−

− 2ρ4(e3,3,2,2 + e2,3,3,2 + e2,2,3,3) + ρ5e2,2,2,2,2
]
.

The next coefficients Ak can be written in closed form by application of the al-

gorithm presented in [15]. Optimized and fast algorithm of calculation was de-

veloped in [12]. We consider the set Me multi-indexes p = (p1, p2, . . . , pq) and

G ··= {ep, p ∈ Me}. We say that a multi-index belongs to Me if it is a factor

of a coefficient in the expansion (3).

The basic sums and distributions of any shape geometric objects

We confine ourselves to study two-phase images where we can separate phase

consisting a set of non-overlapping geometric objects of fixed shapes and sizes

and the remaining part of the image. More precisely, we consider a set of objects

{Dk, k = 1, 2, 3, . . .} where each object Dk has a fixed geometry. We assume that

the distribution of objects in space is random. Thus, the deterministic elements Dk

are introduced independently but the set {D1,D2,D2, . . . } is introduced randomly.

The diversity of random locations is expressed by joint probabilistic distributions

of the non-overlapping objects Dk. Using basis sums to describe the geometry of

this two-phase image is justified when the geometric objects are circles. However,

any geometric object, can be approximated by the circles with different radii (with

some precision). Introduce the concept of error of approximation. Let D ⊂ C will

be a geometric object with nonzero area. The following number

ε ··=
|PD − PKn

|

PD

,

is called the error of approximation of a geometric object D by set of n circles

Kn, where PD is the area of the geometric object D and PKn
is the sum of the

areas of the circles Kn. We can construct a general algorithms of approximation

for object D, for example by circles of the same radii or of two different radii, etc.

Of course, approximation should have a small error, but should also adequately

represent the considered geometric object. We calculate some of the basic sums (2)
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for distributions of geometric objects in a cell, Q(0,0). In a given cell, we have N

objects and each of them is approximated by n circles hence we have to calculate

the value of e-sums for N · n circles. We are interested in such an approximation

for which the value of error is acceptable and the number of approximating the

circles is as small as possible. For example, we consider stadium – see Figure 2.

In the Section 3, we will describe some distributions of such geometric objects

by e-sums and introduce formal definition of stadium. We will approximate this

stadium by two circles (see case b) on the Figure 2).

a) b)

Fig. 2. a) – approximation of unit stadium with radius R1 =
√

π+12
π+12

and the distances

between the centers µ = 6R1 by circles with two different radii R1 and R2 = R1

4
.

Error of approximation ε = 0.0663355. Below, Delaunay graph with weights
of vertex (defined as the area of a circle) represents this approximation; b) –
approximation of the same stadium as in case a), by two circles with a radius
of R1. Below, Delaunay graph corresponding to this approximation. Error of
approximation ε = 0.585038

In order to represent the approximation of the object D we use the so-called

Delaunay graph for circles’ centers of the approximation. In this graph a weight

equal to areas of circles from approximations is assigned to each vertex (see Fig-

ure 2).

3. Example of an algorithm generating random

distribution of stadiums

In this section we present and characterize distributions of geometric objects

called stadium. The study of such distributions is related to the collective behavior

of bacteria [4].
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First, we introduce a formal definition of stadium. Let R > 0 be a real number

and a, b ∈ C be such that a 6= b. The stadium S
(
(a, b), R

)
⊂ C is defined as follows

S
(
(a,b), R

)
··=

{
z ∈ C : |z − a| 6 R ∨

∨ |z − b| 6 R ∨
(
Im[z − a] · Im[a− b] +

+ Re[z − a] ·Re[a− b] 6 0 ∧ Im[z − b] · Im[a− b] +

+ Re[z − b] ·Re[a− b] > 0 ∧
∣∣∣Im
[
(b − a) · Re[z] +

+ (z − b) · Re[a] + (a− z) ·Re[b]
]∣∣∣ 6 R · |a− b|

)}
,

where R is called its radius and the (a, b) its centers. Now, we will describe the

algorithm for generating distributions of stadiums, where their some directions are

in some way determined. Consider a lattice Q which is defined by two fundamental

translation vectors ω1 = 1 and ω2 = i. Now, we have a square cell Q(0,0) (see Figu-

re 1 case b)). Consider N non-overlapping stadiums Sk = Sk

(
(ak, bk), r

)
of radius

r with centers ak, bk ∈ Q(0,0) and such that |ak − bk| = µ = 6r. More precisely, we

obtain the distribution of the variable v = (a1, a2, . . . , aN , aN+1, aN+2, . . . , a2N)

where ak = bk−N for k = N+1, N+2, . . . , 2N , with the restrictions |ai−aN+i| = µ

(i = 1, 2, . . . , N) and provided that stadiums Sk are non-overlapping. It should

be noted that stadiums are considered in the double periodic torus topology when

the opposite sides of Q(0,0) are glued by pairs. The random variable v can be

statistically realized for large N by Monte Carlo method to get numerical results.

We characterize distributions generated by this algorithm by the basic sums.

We select a point a1 as the realization of a random variable uniformly distributed in

the cell Q(0,0) and the angle α1 as the realization of a random variable uniformly

distributed in (−π, π]. We define the first stadium S1

(
(a1, b1)r

)
, where b1 =

a1 + µeiα1 . k-th stadium (k = 2, 3, . . . , N) is selected according to the following

rules:

1. We randomly take a point ak uniformly distributed in Q(0,0).

2. We create a list of L stadiums centers cj , such that (µ + 2r) 6 |ak − cj | 6

3(µ+ 2r) and organize them as follows. As the first item in the list we put

center cj , which is located to the nearest ak and at the next position of list

we put those centers of stadiums beginning from this which was chosen at

the latest and ending in this, which was chosen at the earliest. If the list L is

empty, go to step 4, otherwise we realise the procedure described in step 3.
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3. We iterate through the list L defining αj = Arg(ak − cj) if for some j, the

stadium S
(
(ak, b = ak ± µeiαj )

)
(where we choose plus or minus so that b

lies closer to cj) does not cross stadiums Si, (i = 1, 2, . . . , k− 1) is a as k-th

stadium of generated distribution we choose Sk

(
(ak, bk), r

)
where bk ··= b

and finish process of selection k-th stadium. Otherwise, we move on next

step.

4. If steps from 1 to 3 were done only once, we repeat them, and if twice, we

go to step 5.

5. We select a point ak as the realization of a random variable uniformly dis-

tributed in the cell Q(0,0) and the angle αk as the realization of a random

variable uniformly distributed in (−π, π]. We define stadium Sk

(
(ak, bk), r

)
.

If

k⋂

i=1

Si 6= ∅ as k-th stadium of generated distribution choose Sk and finish

process of selection k-th stadium.

6. Repeat this procedure until it will be finished by choice of k-th stadium in

step No. 3 or No. 5.

Let ν stands for the concentration of stadiums in the unit cell, i.e.

ν = N(r2π + 2rν). (4)

Table 1
The averaged basic sums for various concentrations

ν Re
[
〈e2〉

]
〈e2,2〉 〈e3,3〉 〈e4,4〉

0.05 3.17182 207.594 −3487.48 98177.0
0.1 3.13031 79.5483 −691.009 9900.70
0.15 3.12769 47.3060 −271.648 2634.18
0.2 3.13401 33.5164 −139.067 1023.83
0.25 3.14044 26.2781 −82.6753 488.258
0.3 3.13264 22.0212 −54.9372 272.772
0.35 3.14658 19.4481 −39.1987 166.575
0.4 3.14245 17.6875 −29.6321 110.858

The algorithm described above generates a probability distribution Uν depen-

ding on the concentration (4). In order to describe this distribution we need
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Table 2
The averaged basic sums for various concentrations

ν Re
[
〈e2,2,2〉

]
Re
[
〈e3,3,2〉

]
〈e2,2,2,2〉

0.05 1306.38 −11127.3 166078
0.1 465.662 −2168.06 19594.6
0.15 263.374 −835.543 6002.47
0.2 179.511 −433.533 2712.60
0.25 133.876 −259.218 1514.52
0.3 107.359 −170.819 985.459
0.35 91.2993 −123.670 711.790
0.4 80.0331 −93.1401 553.584

theoretically all the probabilistic moments, whose number is infinite. In practice,

a finite number of moments can be analysed. We will use the following e-sums

corresponding to the precision at O(ν3) [6, 7]2.

In order to characterize the distribution of stadiums Uν , we calculate the basic

sums using Monte Carlo method with a fixed parameters (the number of object

in a cell (N) and number of experiments (M). Following [4] we assume N = 500

and M = 400.

The averaged e-sums e2, e2,2, e3,3, e4,4, e2,2,2, e3,3,2 and e2,2,2,2 are computed

for the distributions Uν for the concentrations ν ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3,

0.35, 0.4}.

The results are shown in Tables 1 and 2. These are the fundamental parameters

of the uniform non-overlapping distribution Uν of stadiums on the plane.

4. Bacteria’s distribution and conclusion

In papers [4, 5] distributions of some swimming bacteria were studied. In first

of them the locations of bacteria were modeled by segments randomly embedded in

medium without overlapping and in second of them by non-overlapping stadiums.

The sizes of geometric objects were determined by the observed sizes of bacteria.

First, the values of e-sums for the observed experimental locations of bacteria in

very thin liquid film (31 film frames of bacteria [14]) were computed. Second, the

2We omit the sum e2,3,3, because according to the Lemma 2 (see [12, p. 10]), we have e2,3,3 =
e3,3,2.
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values of e-sums for the disordered distributions3 were computed. The obtained

sets of the basic sums were different. Based on this, there was concluded that

behavior of bacteria is not disordered, but it is collective.
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Fig. 3. The comparison of the values e2,2, e3,3 and e4,4 for 3 sets of 31 samples (M)
distributions of stadiums (black points – the real distributions of bacteria, grey
points – distributions generated by the algorithm based on the RSA method,
lightgrey points – distributions generated by the algorithm presented in Section 3)

The natural question is whether we can generate such distributions stadiums

that approximate real locations of bacteria. The Figure 3 shows comparison the

values of some e-sums for 3 sets of 31 samples distributions of stadiums: first set are

real distributions of bacteria, second are distributions generated by the algorithm

based on the RSA method and third are generated by algorithm presented in

Section 3.4 We can see that the algorithm described in Section 3 generate the

distributions of stadiums which seem to be very similar to the real distributions of

bacteria. This algorithm is based on the observation that bacteria are reproduced

by division which determines the orientation of their locations. In order to improve

the model we need more information about behavior of these organisms.

3The distributions were generated by the algorithms based on RSA method (random sequen-

tial adsorption). Therefore we can assume that the locations of geometric objects are totally
random–disordered.

4There were assumed the following values of parameters for the stadiums r = 0.00214096 and
µ = 6r (it is based on real sizes of bacteria). Because the average number of bacteria in the
frame is 1965 so in order to generate this distributions by the two algorithm there was assumed
N = 1965.
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