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THE ULTRAMETRIC PROPERTIES OF

BINARY DATASETS

Abstract. Many multivariate algorithms commonly applied for binary
datasets depend on a proper metric (i.e., dissimilarity function) imposed
on binary vectors. In the following work the relationships between different
metrics defined on the randomly generated binary datasets and the cophe-
netic correlation coefficient (CCC) will be presented.

1. Introduction

Many data mining models are build on some similarity (or dissimilarity) mea-

sure which is used in order to collate how similar/dissimilar two data elements

are. In the modern multivariate analysis such techniques as non-metric dimen-

sional scaling, principal coordinate analysis and cluster analysis are instances of

studies that strongly depend on the adequate choice of similarity/dissimilarity

measure [15, 21, 24].

In the case of clustering it can be observed that the widespread applications of

this method have shown a number of problems encountered during cluster analysis.

In the data mining literature it is emphasized that the objective nature of cluster

analysis is compromised by the subjective selections of clustering algorithm and

measure of similarity/dissimilarity, since both the method and the measure exert

significant impact on the analytical outcome [15, 24].
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In the studies comparing similarity and dissimilarity coefficients applicable to

binary strings it is widely recognized that the behavior of these indices is data-

specific (i.e., dependent on the relative frequency of ones and zeros). Therefore, the

choice of an adequate measure is largely subjective and often is based on tradition

or on a posteriori criteria, for instance on the interpretability of the results. It can

be asserted that the selection of an proper measure is essential in cluster analysis.

For instance, Hastie, Tibshirami and Friedman stated in their comprehensive book

“The Elements of Statistical Learning” that “[s]pecifying an appropriate dissimi-

larity measure is far more important in obtaining success with clustering than the

choice of clustering algorithm. This aspect of the problem is emphasized less in the

clustering literature than the algorithms themselves, since it depends on domain

knowledge specifies and is less amenable to general research” [12].

Since the results of cluster analysis may depend on the choice of similar-

ity/dissimilarity measure, we need to understand the behavior of different types

of coefficients. Some indices have mathematical properties that make them in-

adequate for certain analyses. Also some kinds of clustering techniques will only

yield reproducible and meaningful results when certain indices are employed. The

implications of the selection of clustering method are well established [15,24]. On

the other hand, the implications of choosing different similarity/dissimilarity coef-

ficients in the case of cluster analysis of binary data are vaguely recognized. There

are numerous studies available which evaluate the usefulness of different similar-

ity/dissimilarity measures for clustering of continuous data, but there are only few

analyses comparing the influence of different indices on the results of clustering

procedures applied to categorical (e.g., binary) datasets [22, 23]. Furthermore, all

studies concerning binary datasets are confined only to low dimensional sets and

are restricted to the domain-specific data. Hence, it seems valuable to undertake

the comparative analysis of diverse binary similarity/dissimilarity measures in the

case of low as well as high dimensional datasets.

Clustering of binary data has attracted increasing attention since a variety of

natural phenomena as well as artifacts can be adequately described in the terms

of bivariate sequences. Also many multivariate processes can be modelled by the

dichotomized data. Such instances as standard Boolean model in information re-

trieval [11], Galois lattices in formal concept analysis [8], two-mode social networks

in network sciences [28], transactional databases [13, 18, 20], bivalued logical ma-

trices in quantum theory [29, 30], presence/absence matrices in ecological studies

and many others straightforwardly indicate that binary datasets are ubiquitous in

natural, technical and social sciences [25].
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Summing up, it can be claimed that the objective of the present studies was

to compare and benchmark the alternative similarity and dissimilarity measures

for clustering of binary datasets, to determine the relatedness between these in-

dices and to scrutinize their usefulness while they are applied to low and high

dimensional datasets as well as to sparse and dense binary datasets.

The random sampling procedure has enabled us to arrive at some conclusions

about the behavior of seven investigated similarity/dissimilarity coefficients in the

above contexts.

In this paper we will identify a binary dataset with a Boolean matrix (of

size k × n) whose rows are indexed by the set O = {x1, x2, . . . , xk} of objects

(or synonymously, data points, instances, cases, persons, entities, patterns, tuples,

transactions) and whose columns are indexed by the set A = {a1, a2, . . . , an} of

attributes (or synonymously, features, variables, items, events, dimensions, compo-

nents). A Boolean row vector of dimension n is an n−tuples x = {b1, b2, . . . , bn}

where bi ∈ {0, 1}. The set of all Boolean vectors of dimension n is denoted by Bn.

The characteristic vector of a subset (A′ ⊆ A) of the attributes is the Boolean row

vector x(A′) ∈ Bn whose i−th component is equal to 1 if and only if ai ∈ A′ and is

equal to 0 if and only if ai /∈ A′. We will identify the set Bn with n−dimensional

dataset on which different functions can be defined.

2. The dissimilarities on Bn and the cophenetic

correlation coefficient

One of the most popular approach in comparing two equal-length binary vec-

tors is to introduce some kind of similarity coefficient in order to quantitatively

assess the resemblance between them. Customary it is assume that any similarity

coefficient s defined on the dataset Bn should satisfy the conditions:

a) s(xi, xj) = s(xj , xi),

b) s(xi, xi) = 1 and

c) s(xi, xj) 6 1 for all xi, xj ∈ Bn [9, 10].

Similarity coefficients which were primarily proposed for binary data such as pres-

ence/absence matrices or answers to yes-no questions attain their maxima when

two patterns possess identical values across their variables. It should be pointed

out that similarity indices are never metric since it is always possible to indicate
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two datapoints, A and B, that are more similar than the sum of their resemblances

with another datapoint C.

In analogy to the conditions imposed on the similarity coefficients there are

axioms usually applied for the notion of dissimilarity. A function d is said to be

a dissimilarity coefficient if it satisfies:

a) d(xi, xj) = d(xj , xi),

b) d(xi, xi) = 0 and

c) d(xi, xj) > 0 for all xi, xj ∈ Bn.

Dissimilarities measures which can be conceptually (and often also mathemati-

cally) understood as the complements of similarity indices reach their maxima

when two datapoints share no common variable values. Further, we will identify

the dataset Bn with the similarity s or dissimilarity function d defined on it with

the n−dimensional similarity data space (Bn, s) or with n−dimensional dissimi-

larity data space (Bn, d), respectively. It is generally assumed that the structures

(Bn, s) and (Bn, d) are completely characterized by their similarity or dissimilarity

matrices [9,10]. Further, additional conditions can be imposed on the dissimilarity

data space (Bn, d). Namely, if the function d also satisfies the requirement of the

definiteness (i.e., d(xi, xj) = 0 if and only if xi = xj) and the triangle inequality,

then d is said to be a metric. The dissimilarity data space (Bn, d) is said to be

Euclidean if its datapoints can be embedded in a Euclidean space such that the

Euclidean distance between xi, xj ∈ Bn is equal to d(xi, xj) [10].

A direct manner to convert a similarity function s into a dissimilarity d is

to take the complement d = 1 − s. But as pointed out by Gower and Legendre

such obtained dissimilarity not always is a metric or not always has a Euclidean

representation. They proved that if (Bn, s) is given by a positive semidefinite

similarity matrix with elements 0 6 s(xi, xj) 6 1 and s(xi, xi) = 1, then the

dissimilarity data space (Bn, d) given by the dissimilarity matrix with elements

defined as d(xi, xj) =
√

(1− s(xi, xj)) is Euclidean (cf. Theorem 6 in [10]).

There exist many different similarity and dissimilarity indices [2, 3, 9, 10]. To

formally characterize these coefficients let us introduce the following four terms:

for any two datapoints xi, xj ∈ Bn the term xT
i xj denotes the number of positions

where both vectors xi and xj have value equal to 1, the term xi
Txj denotes the

number of positions where both patterns xi and xj have value equal to 0 (here,

x is the complement of binary vector x defined as x = I − x, where I is the unit

binary vector of the same dimension as x and xT denotes the transposition of the
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vector x). The terms xT
i xj and xi

Txj denotes the number of positions where the

pattern xi has value equal to 1 and the pattern xj has value equal to 0 and the

number of positions where xi has value equal to 0 and xj has the value equal to

1, respectively.

One of the most widely used measures in comparing two equal-length binary

vectors is the Hamming dissimilarity dH defined as:

dH(xi, xj) = xT
i xj + xi

Txj

for all datapoints xi, xj ∈ Bn. This index counts the number of bits that are

different in two patterns xi and xj . It was shown that the Hamming dissimilarity

is a metric [6]. dH can be simply considered as geometrical L1 distance applied to

n−dimensional binary dataset Bn. This metric has not Euclidean representation.

The so-called Hamming similarity sH is the number of identical positions in two

strings xi and xj , i.e.,

sH(xi, xj) = xT
i xj + xi

Txj .

The coefficient sH does not satisfy the conditions from the theorem of Gower

and Legendre and can not be directly transformed into an Euclidean dissimilarity

index. But this similarity measure was normalized by Sokal and Michener to the

form of the so-called simple matching coefficient sSM which is defined as:

sSM (xi, xj) =
xT
i xj + xi

Txj

xT
i xj + xT

i xj + xi
Txj + xi

Txj

for all xi, xj ∈ Bn. Another normalization of sH was introduced by Rogers and

Tanimoto:

sRT (xi, xj) =
xT
i xj + xi

Txj

xT
i xj + 2(xT

i xj + xi
Txj) + xi

Txj

for all datapoints xi, xj ∈ Bn. Therefore, The Sokal-Michener simple matching co-

efficient sSM as well as the Rogers-Tanimoto similarity measure sRT are considered

as the Hamming-based similarities. These two similarity functions can be trans-

formed according to the rule dz(xi, xj) =
√

(1− sz(xi, xj)) for z ∈ {SM,RT } in

order to yield corresponding Euclidean dissimilarities [10].

Another similarity measure is the Phi coefficient which is defined as:

sPhi =
xT
i xj × xi

Txj − xT
i xj × xi

Txj
√

(xT
i xj + xT

i xj)(xT
i xj + xi

Txj)(xi
Txj + xT

i xj)(xi
Txj + xi

Txj)
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for all xi, xj ∈ Bn. This index is equivalent to the Pearson’s product moment

correlation applied to binary data. From this similarity function it is possible to

obtain the following Euclidean dissimilarity measure [10]:

dPhi(xi, xj) =
√

(1− sPhi(xi, xj)).

Recall that the term xT
i xj is the inner product (IP ) of two vectors xi and xj

and it gives rise to the inner product similarity measure sIP which has the form:

sIP (xi, xj) = xT
i xj

for all xi, xj ∈ Bn. This similarity function also does not satisfy the requirements

of the theorem of Gower and Legendre and it is not possible to gain from sIP an

Euclidean dissimilarity index. But from this similarity index it is feasible to derive

the following normalized similarity coefficients:

a) Jaccard similarity coefficient sJ :

sJ (xi, xj) =
xT
i xj

xT
i xj + xT

i xj + xi
Txj

,

b) Dice-Sorensen similarity coefficient sDS :

sDS(xi, xj) =
2xT

i xj

2xT
i xj + xT

i xj + xi
Txj

,

c) Ochia similarity coefficient sO:

sO(xi, xj) =
xT
i xj

√

(xT
i xj + xT

i xj)(xT
i xj + xi

Txj)

for all binary patterns xi, xj ∈ Bn.

These normalized similarity indices can be converted into the corresponding Eu-

clidean dissimilarities according to the rule: dz(xi, xj) =
√

(1− sz(xi, xj)) for

z ∈ {J,DS,O} [10].

The Hamming, Simple Matching Coefficient, Rogers-Tanimoto, Jaccard, Dice-

Sorensen and Ochia dissimilarity indices are regarded as the so-called measures of

co-occurrence whereas the Phi coefficient is the measure of association.
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In order to illustrate the above introduced concepts let us consider two bi-

nary strings: x1 = (1, 1, 0, 0, 1, 1, 0, 1, 0) (whose complement is given by x1 =

(0, 0, 1, 1, 0, 0, 1, 0, 1)) and x2 = (1, 1, 0, 1, 0, 0, 0, 1, 1) (whose complement is given

by x2 = (0, 0, 1, 0, 1, 1, 1, 0, 0)). Then the four terms xT
1 x2, xT

1 x2, xT
1 x2, x

T
1 x2

have the values equal to: 3, 2, 2 and 2, respectively. Consequently, the values

of all similarities considered here are given by: sH(x1, x2) = 5, sSM (x1, x2) =
5
9 ,

sRT (x1, x2) =
5
13 , sPhi(x1, x2) =

1
10 , sIP (x1, x2) = 3, sJ(x1, x2) =

3
7 , sDS(x1, x2)

= 3
5 , sO(x1, x2) =

3
5 .

The Hamming dissimilarity dH(x1, x2) has the value equal to 4 and all dissim-

ilarities obtainable from the corresponding similarity measures according to the

transformation d(xi, xj) =
√

1− s(xi, xj) have the values: dSM (x1, x2) = 0.667,

dRT (x1, x2) = 0.784, dPhi(x1, x2) = 0.949, dJ (x1, x2) = 0.756, dSD(x1, x2) =

0.632 and dO(x1, x2) = 0.632, respectively.

If a dissimilarity d defined on Bn also satisfies the so-called strong triangle

inequality (i.e., the requirement d(xi, xj) 6 max {d(xi, xk), d(xj , xk)} for any dis-

tinct xi, xj , xk ∈ Bn), then the structure (Bn, d) is an ultrametric data space.

We will denote any ultrametric by du. In this case the pairwise distances be-

tween datapoints are given by an ultrametric (also known as cophenetic) distance

matrix [15, 24].

Based on the assumption that all hierarchical clustering algorithms can be

identified with a mappings from n−dimensional dissimilarity data space (X, d) into

n−dimensional ultrametric data space (X, du) it can be observed that there exists

a natural bijection between the set of all ultrametrics defined on the arbitrary

dataset X and the set of all dendrograms defined on it [15,24]. Also it was proved

that the single-linkage hierarchical clustering algorithm which take as an input

the dissimilarity data space (X, d) returns the ultrametric data space (X, du) (i.e.,

dendrogram) such that the function du is the so-called maximal subdominant

ultrametric for the dissimilarity d [24]. To define this concept formally, note first

that the whole set of dissimilarities D defined on X can naturally be ordered as

follows:

d′ 6 d←→ d′(xi, xj) 6 d(xi, xj) for all (xi, xj) ∈ X ×X and all d, d′ ∈ D.

Then it can be shown that for any set U↓ = {d′u ∈ U |d
′
u 6 d} of all ultramet-

rics on X which are smaller than d there exists the maximal element d↓u of U↓

which is unique. Such characterized ultrametric d↓u on X is termed the maximal

subdominant ultrametric associated with the dissimilarity d.
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In [26] Sokal and Rohlf introduced the so-called cophenetic correlation coeffi-

cient (CCC) in order to quantitatively evaluate how faithfully the ultrametric data

space (X, du) reflects the pairwise distances between the datapoints from the dis-

similarity data space (X, d). This coefficient is defined as the Pearson’s product

moment correlation coefficient between the dissimilarity matrix associated with

(X, d) and the ultrametric distance matrix associated with (X, du):

c =

∑

i<j

(

d(xi, xj)− d
) (

du(xi, xj)− du
)

√

√

√

√

[

∑

i<j

(

d (xi, xj)− d
)2

][

∑

i<j

(

du (xi, xj)− du
)2

]

,

where d is the average dissimilarity in (X, d) and du is the average ultrametric

distance in (X, du) [17, 21, 25, 26]. The high value of CCC indicates that the

resulting dendrogram exhibits the low distortion of the original data. It is usually

assumed that the clustering algorithm adequately represents the dissimilarity data

space (X, d) if it produces the dendrograms (i.e., the ultrametric data spaces

(X, du)) with the value of CCC equal or higher than 0.6 [1].

In our studies we will employ these general results to the dissimilarity data

spaces of the form (Bn, d) and we will show how the dimension of (Bn, d), kind

of dissimilarity d and the density of dataset Bn influence on the values of the

cophenetic correlation coefficient for the ultrametric data spaces (Bn, du) obtained

as the output of the single-linkage hierarchical clustering algorithm.

3. Experimental results and discussion

Assessing the adequacy of alternative similarity/dissimilarity measures for hi-

erarchical clustering necessitates the crucial step of choosing reference datasets.

A perfect reference dataset should imitate the variability encountered in experi-

mental data and it should possess some a priori known structure in order to deter-

mine the appropriateness of the outcomes recorded from the alternative studies.

Usually the methodologies based on parametric simulations, exampler datasets

and permutation reshuffling have been used to obtain such reference datasets in

assessing the adequacy of similarity/dissimilarity measures in clustering analysis.

To overcome the aforementioned data-specificity of the alternative coefficients

it was decided to use the random sampling method in order to obtain the variety

of reference datasets with some a priori determined structures. We have used the
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randomly generated datasets whose dimensions ranged from 1000 to 100000 and

whose densities ranged from 0.01 to 0.99.

Specifically, our methodology was based on the synthetic random bipartite

graphs since it is well known that binary object-by-attribute datasets can be

modelled by bipartite graphs [16, 19, 27]. Namely, every Boolean k × n matrix

representing binary dataset with |X | = k objects and |A| = n attribute corre-

sponds to the incidence matrix of bipartite graph G = (X ∪A,E) such that there

exists an edge e ∈ E between vertices x ∈ X and a ∈ A if and only if the object x

has the attribute a. Furthermore, it is possible to identify the density of a dataset

with the edge-density of bipartite graph G given by the equation:

density(G) =
m

kn
,

where |E| = m. Based on the above a one-to-one correspondence between bi-

nary datasets and bipartite graphs we have generated such graphs (of changing

edge-density) using the random graph generation model of Erdos-Renyi of type

G(N,m), where N = |X | + |A| and where the m edges are chosen uniformly

randomly from the set of all possible edges between X and A [7]. We have cho-

sen the number of objects |X | = 50 and the number of dimensions |A| = 1000,

10000, 20000, 30000, 40000, 50000, 60000, 70000, 80000, 90000, 100000. The pa-

rameter m was monitored in order to obtain the bipartite graphs corresponding

to binary datasets with densities: 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4,

0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99 in all dimensions. All

datasets Bn have been endowed with the metric dissimilarity function dz where

z ∈ {H,SM,RT, J,DS,O, Phi}. Consequently, we have obtained 1617 dissimi-

larity data spaces of the form (Bn, dz). All such created metric structures were

subjected to the single-linkage hierarchical clustering algorithm in order to gain

for each dissimilarity function dz its corresponding maximal subdominant ultra-

metric. Furthermore, we have calculated the value of the cophenetic correlation

coefficient for such formed ultrametric data spaces to assess quantitatively the

distortion between the input dissimilarity index dz and the output dendrograms

(cf. Table 1).

All simulations and calculations were done in the R programming language [4,

5, 14].

In our studies it was shown that the Euclidean dissimilarities dSM and dRT

yielded almost identical values of CCC as the non-Euclidean dissimilarity coeffi-

cient dH for a given density of the dataset Bn. These observations were indepen-

dent of the dimension of Bn. This behavior of the Hamming, the Sokal-Michener
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Table 1
The values of the cophenetic correlation coefficient for seven dissimilarity data

spaces for dimension n = 100000; the values above 0.6 are in bold

Density (Bn, dH ) (Bn, dSM ) (Bn, dRT ) (Bn, dJ ) (Bn, dDS) (Bn, dO) (Bn, dPhi)

0.01 0.791 0.791 0.791 0.258 0.258 0.258 0.262

0.05 0.757 0.757 0.757 0.143 0.143 0.142 0.170

0.1 0.664 0.663 0.664 0.260 0.259 0.259 0.162

0.15 0.627 0.627 0.628 0.213 0.213 0.212 0.153

0.2 0.625 0.625 0.625 0.225 0.225 0.225 0.207

0.25 0.430 0.431 0.431 0.227 0.227 0.227 0.129

0.3 0.265 0.265 0.266 0.253 0.252 0.252 0.225

0.35 0.271 0.271 0.272 0.402 0.402 0.401 0.171

0.4 0.288 0.288 0.289 0.335 0.334 0.333 0.176

0.45 0.193 0.193 0.193 0.402 0.402 0.401 0.191

0.5 0.204 0.205 0.205 0.241 0.241 0.241 0.205

0.55 0.239 0.239 0.240 0.423 0.423 0.422 0.235

0.6 0.240 0.241 0.241 0.484 0.484 0.483 0.216

0.65 0.280 0.280 0.281 0.459 0.459 0.458 0.178

0.7 0.335 0.335 0.335 0.483 0.483 0.483 0.173

0.75 0.446 0.446 0.446 0.608 0.608 0.608 0.176

0.8 0.621 0.621 0.621 0.704 0.704 0.704 0.120

0.85 0.575 0.575 0.575 0.628 0.628 0.627 0.224

0.9 0.750 0.750 0.750 0.767 0.767 0.767 0.247

0.95 0.763 0.763 0.763 0.769 0.769 0.769 0.202

0.99 0.873 0.873 0.873 0.873 0.873 0.873 0.191

and the Rogers-Tanimoto dissimilarities can be explained by the fact that these

indices are symmetrical with respect to the values given by the four terms: xT
i xj ,

xi
Txj , x

T
i xj , xi

Txj . The metric dH excludes simultaneously the joint presence of

0 and 1 in both vectors xi, xj ∈ Bn whereas the coefficients dSM and dRT include

all four terms. Recall that the Simple Matching Coefficient of Sokal and Michener

gives equal weight to both forms of agreement between two binary patterns, i.e.

double zeros and double ones. Therefore, when this index is used it is implicitly as-

sumed that there is no difference between positive matches and negative matches.

In turn, the Rogers-Tanimoto coefficient give double weight to mismatches (i.e.,

xT
i xj and xi

Txj).

The Hamming metric dH , the Sokal-Michener metric dSM and the Rogers-

Tanimoto metric dRT attained the satisfactory values of CCC (i.e., equal or higher

than 0.6) only for the relatively sparse (i.e., for density(Bn) 6 0.2) and relatively

dense (i.e., for density(Bn) > 0.8) binary datasets. These regularities were noted

regardless of the dimension of the dissimilarity data space.

The behavior of these indices can be presumably elucidated by the fact that

the Hamming measure whose formula includes only mismatches (i.e., xT
i xj and
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xi
Txj), the Simple Matching Coefficient and the Rogers-Tanimoto measure whose

formulae include joint absences in the numerators initiate clusters from the vectors

with the high frequency of ones as well as with the high frequency of zeros. The

simultaneous exclusion of double presences and double absences (in the case of

dH) or the inclusion of joint double zeros (in the case of dSM and dRT ) provides

equal importance to positive as well as negative matches. Therefore, the strings

with many 1 are as important as the strings with a few 1 in cluster formation.

Another tested dissimilarity measure was the Phi measure. The Phi metric

also is symmetrical but – in contrast with the Hamming-based coefficients dSM and

dRT – this distance measure can be seen as the multiplicative form of the terms

xT
i xj and xi

Txj whereas the Sokal-Michener and the Rogers-Tanimoto dissimi-

larities are additive forms of these terms. Nevertheless, the influence of positive

and negative matches are treated equally important in the Phi index as well as

Hamming-based measures. The numerator of the Phi measure is the determinant

of the 2 × 2 contingency table for two dichotomous variables. In fact, the Phi

coefficient is the square root of the χ2 (chi-square) statistics for 2 × 2 frequency

tables. It was observed that in the Phi-based dendrogram neither vectors with

the high frequency of ones nor vectors with the low frequency of ones are favored.

Regardless of the density and dimension of Bn the values of CCC for the Phi

metric never achieved the value higher than 0.35.

Also three Euclidean dissimilarities dJ , dDS , dO always yielded almost identical

values of CCC for a given density of the dataset Bn. It was observed for all

dimensions of the data space. For the Jaccard metric dJ , the Dice-Sorensen metric

dDS and the Ochia metric dO the sufficiently good values of CCC are reached only

in the case of the datasets Bn of the density equal or higher than 0.75 (cf. Table 1).

Recall that these three coefficient are symmetrical. The Jaccard measure excludes

double zeros and gives equal weight to positive matches and to mismatches. On

the other hand, the Sorensen-Dice measure is similar to dJ but it gives double

weight to non-zero agreement between two strings. Thus, dDS is monotonic with

respect to dJ and if the resemblance for a pair of datapoints obtained with the

Jaccard measure is higher than that of another pair of data elements then the

same will be true when using the Sorensen-Dice coefficient. In the case of dDS

it can be ascertained that the co-occurrence of variables among two patterns is

more informative or more important than their absences. Negative matches may

be brought about by various factors. They do not necessarily reflect differences

in two experimental data elements. On the contrary, double presences can be

undoubtedly regarded as a strong indication of similarity. The Ochia dissimilarity

is the quotient of the positive matches between two vectors and the square rooted
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product of the sums of positive matches and each form of mismatches (i.e., xT
i xj

and xi
Txj). Whereby, this coefficient is based on the idea of the geometric mean

and therefore outcomes with different ranges will be normalized before a resulting

value is obtained. This index is especially suitable in the case when the ranges

and variance of positive matches are very different from one another. Coefficients

including only double positive matches in the numerator initiate clusters from the

strings with the high frequency of ones and therefore the indices dJ , dDS , dO

attained the highest values of CCC when applied to dense binary datasets.

Summing up the above results it can be asserted that the quantitative mea-

sure of the distortion of the transformation d(xi, xj) → du(xi, xj) (where du is

the maximal subdominant ultrametric obtained as the result of the single-linkage

hierarchical clustering algorithm) in the form of the cophenetic correlation coeffi-

cient depends strongly on the kind of the input dissimilarity function d as well as

on the density of the underlying datasets Bn.

4. Conclusions

The synthetic binary datasets of the different dimensions and of the different

densities were used to analyze seven dissimilarity functions. Comparisons were

made of Hamming, Simple Matching, Rogers-Tanimoto, Phi, Jaccard, Sorensen-

Dice and Ochia measures using results from the distance-based clustering al-

gorithm applied to binary datasets. All tested dissimilarities have Euclidean

properties with the exception of the Hamming distance. The cophenetic cor-

relation coefficient was calculated for all distance measures. Dendrograms ob-

tained by the single-linkage clustering method have shown the high level of redun-

dancy among the co-occurrence coefficients. The Hamming, Simple Matching and

Rogers-Tanimoto measures have produced dendrograms with the nearly identical

ultrametric matrices. This pattern is also easily seen from the Jaccard, Sorensen-

Dice and Ochia dendrograms. This behavior of the co-occurence indices can be

explained by the fact that the functions dH , dSM and dRT are symmetrical with

respect to the terms xT
i xj , xi

Txj , x
T
i xj , xi

Txj . On the other hand, the Jaccard,

Sorensen-Dice and Ochia indices are rendered as asymmetrical since they ignore

the term xT
i xj and – consequently – do not involve negative matches. It can be

claimed that the inclusion or exclusion of double zeros has considerable influence

on the structure of the resulting dendrograms since in the case of binary data

such as presence/absence matrices zero values shared between two datapoints are



The ultrametric properties of binary datasets 81

not necessarily indications of the resemblance between these data elements. Zeros

values may arise not only in the cases of true absences of same variables but may

simply indicate that some variables were not reported or measured. In symmetrical

coefficients, the value zero for two data elements is considered in exactly the same

manner as any other pair of values. These indices can be used when the state zero

is an acceptable ground for comparing two data points and this state is regarded

as the same sort of information as any other value. All six co-occurence indices

perform differently for datasets with different densities. Also it was demonstrated

that the Phi-based ultrametric matrices attain unsatisfactory level of CCC. Thus,

the Phi distance should be used only in the special circumstances, in which the

researcher has some strong justification for this dissimilarity.

Accordingly, these findings suggest that due to the indices with similar prop-

erties exhibit very similar outcomes, the choice between them should be based on

the fact of considering or not the negative co-occurrences in their formulae.
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