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THE MODES OF A MIXTURE OF TWO

NORMAL DISTRIBUTIONS

Abstract. Mixture distributions arise naturally where a statistical pop-
ulation contains two or more subpopulations. Finite mixture distributions
refer to composite distributions constructed by mixing a number K of com-
ponent distributions. The first account of mixture data being analyzed was
documented by Pearson in 1894. We consider the distribution of a mix-
ture of two normal distributions and investigate the conditions for which
the distribution is bimodal. This paper presents a procedure for answer-
ing the question of whether a mixture of two normal distributions which
five known parameters µ1, µ2, σ1, σ2, p is unimodal or not. For finding
the modes, a simple iterative procedure is given. This article presents the
possibility of estimation of modes using biaverage.

1. Introduction

Mixture models have been widely used in econometrics and social science, and

the theories for mixture models have been well studied Lindsay (see [5]). The

importance of the research for unimodality or bimodality in statistics have been

described by Murphy (see [6]). Consider

f(x, p) = pf1(x) + (1 − p)f2(x) (1)
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where, for i = 1, 2,

fi(x) =
1

σi

√
2π

e−(x−µi)
2/2σ2

i

with 0 < p < 1. The function f(x, p) is the probability density function of

a mixture of two normal distributions. Here we are concerned with the study

of the modes of the mixtures (1). The density f(x, p) may have more then one

mode, but, except in a very special case, there is no simple rule to know whether

the mixture is unimodal or bimodal.

2. Theoretical discussion

The separation of the components of a two-component Gaussian mixture can

be expressed by the difference between the component means, which is

∆ = µ2 − µ1.

Eisenberger (see [4]) gave the sufficient condition that a mixture is unimodal if

∆2 <
27σ2

1σ
2
2

4(σ2
1 + σ2

2)
.

Accordingly to this condition, a mixture with σ1 = σ2 = 1 is unimodal for ∆ <

1.84. Behboodian (see [3]) considered this problem, too, and derived the following

sufficient condition for a mixture of two Gaussian distributions to be unimodal

∆ ≤ 2 min{σ1, σ2}.

Since σ1 = σ2 = 1 is assumed, his classification corresponds to that one chosen in

this work,which is ∆ < 2.

We consider the following conditions:

1) If µ1 = µ2 f(x, p) is unimodal for all p, 0 < p < 1.

f ′(x, p) = −p(x− µ1)√
2πσ3

1

exp

[−(x− µ1)2

2σ2
1

]

−

− (1 − p)(x− µ2)√
2πσ3

2

exp

[−(x− µ2)2

2σ2
2

]

= 0. (2)

Equation (2) has one root x = µ1 = µ2.
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2) If µ1 6= µ2 and σ1 = σ2 = σ and p = 1
2 .

The mixture density

f(x, p) =
0.5√
2πσ

exp

[−(x− µ1)2

2σ2

]

+
0.5√
2πσ

exp

[−(x− µ2)2

2σ2

]

of two normal probability density functions with the same standard deviation, σ,

but with different means, µ1 and µ2 respectively, is bimodal if and only if

|µ2 − µ1| > 2σ.

Depending on the distance between µ1 and µ2, the mixture density will have

either a maximum at x0 = 1
2 (µ1 + µ2) (the unimodal case) or a local minimum at

x0 = 1
2 (µ1 + µ2) (the bimodal case). Indeed, x0 is a stationary point because

f ′(x0) =
1

2
√

2πσ

−(x0 − µ1)

σ2
exp

[−(x0 − µ1)2

2σ2

]

+

+
1

2
√

2πσ

−(x0 − µ2)

σ2
exp

[−(x0 − µ2)2

2σ2

]

=

=
1

2
√

2πσ

−(µ2−µ1)
2

σ2
exp

[−( (µ2−µ1)
2 )2

2σ2

]

+
1

2
√

2πσ

−(µ1−µ2)
2

σ2
exp

[−(µ2−µ1

2 )2

2σ2

]

=0.

Now we must check the second derivative to see whether a maximum or a minimum

occurs.

f ′′(x0) =
1

2
√

2πσ3

(

− exp
[−(x0 − µ1)2

2σ2

]

+
(x0 − µ1)

σ2

2

exp
[−(x0 − µ1)2

2σ2

]

−

− exp
[−(x0 − µ2)2

2σ2

]

+
(x0 − µ2)

σ2

2

exp
[−(x0 − µ2)2

2σ2

]

)

=

=
1

2
√

2πσ3

(

− exp
[

(

−(µ2−µ1)
2

)2

2σ2

]

+

(

−(µ2−µ1)
2

)2

σ2
exp

[

(

−(µ2−µ1)
2

)2

2σ2

]

−

− exp
[

(

−(µ1−µ2)
2

)2

2σ2

]

+

(

−(µ1−µ2)
2

)2

σ2
exp

[

(

−(µ1−µ2)
2

)2

2σ2

]

)

=

=
1

2
√

2πσ3

(

− exp
[

(

−(µ2−µ1)
2

)2

2σ2

]

)(

− 1 +

(

−(µ2−µ1)
2

)2

σ2

)

> 0

if (µ2 − µ1)2 > 4σ2 or, equivalently, if |µ2 − µ1| > 2σ. Thus, a minimum occurs

only if the distance between the two means exceeds two standard deviations.
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3) If µ1 6= µ2 and σ1 6= σ2. A sufficient condition that there exists values of p,

0 < p < 1 for which f(x, p) is bimodal is that

(µ2 − µ1)2 >
8σ2

1σ
2
2

(σ2
1 + σ2

2)
.

For every set of values µ1, µ2, σ1, σ2 exist p, 0 < p < 1 for which f(x, p) is

unimodal.

Now suppose µ2 > µ1. Since x = µ1 is not a root of f ′(x, p) = 0, one can

divide (2) by the first term of f ′(x, p). After rearranging, one obtains

g(x) =
µ2 − x

x− µ1
h(x) =

σ3
2p

σ3
1(1 − p)

,

where

h(x) = exp

[

− (x− µ2)2

2σ2
2

+
(x− µ1)2

2σ2
1

]

.

Since
σ3
2p

σ3
1(1 − p)

> 0

and this term takes on all finite positive values exactly once on the interval 0 <

p < 1 for all fixed values σ1 and σ1, each value x for which g(x) > 0 there is a root

of equation

g(x) =
σ3
2p

σ3
1(1 − p)

for some unique p, and hence is a root of f ′(x, p) = 0 for exactly one value of p.

For x > µ2 and x < µ1, g(x) 6 0, so that one is interested only in values of x

on the interval µ1 < x < µ2. In this interval g(x) > 0, g(x) → ∞ as x → µ1 and

g(µ2) = 0.

Therefore, since g(x) is continuous on µ1 < x < µ2, g(x) takes on all positive

finite values at least once in the interval. Moreover, if g(x) is monotone decreasing

in this interval, all positive values will be attained exactly once so that since

there will then exist a one-to-one correspondence between the values of g(x) for

µ1 < x < µ2 and
σ3
2p

σ3
1(1 − p)

for 0 < p < 1, f(x, p) will have a single maximum for all p and will be unimodal.

Since decreasing monotonicity is implied by g′(x) < 0, on µ1 < x < µ2, condition

for which this relation is satisfied will now be investigated.
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For µ1 < x < µ2:

g′(x) =
h(x)

σ2
1σ

2
2(x− µ1)2

[

σ2
1(x− µ1)(µ2 − x)2 +

+ σ2
2(x− µ1)2(µ2 − x) − σ2

2σ
2
1(µ2 − µ1)

]

<

<
h(x)

σ2
1σ

2
2(x− µ1)2

[27

4
(σ2

1 + σ2
2)(µ2 − µ1)3 − σ2

2σ
2
1(µ2 − µ1)

]

< 0

if

(µ2 − µ1)2 <
27σ2

1σ
2
2

4(σ2
1 + σ2

2)
. (3)

Thus for values of µ1, µ2, σ1, σ1, satisfying the inequality (3), g(x) decreases mono-

tonically on µ1 < x < µ2. Then, for each value of p, 0 < p < 1, there exists only

one value of x for which f ′(x, p) = 0. This must be a maximum since f(x, p) → 0

as x → ±∞.

However, for x = (µ1+µ2)
2 :

g′
(µ1 + µ2

2

)

=
4h(µ1+µ2

2 )

σ2
1σ

2
2(µ2 − µ1)2

[1

8
(σ2

1 + σ2
2)(µ2 − µ1)3 − σ2

2σ
2
1(µ2 − µ1)

]

> 0

if

(µ2 − µ1)2 >
8σ2

1σ
2
2

(σ2
1 + σ2

2)
.

3. Biaverage and modes of a mixture of two normal

distributions

We consider a mixture of two normal distributions

f(x, p) =
p√

2πσ1

exp

[−(x− µ1)2

2σ2
1

]

+
1 − p√
2πσ2

exp

[−(x− µ2)2

2σ2
2

]

.

The modes of this mixture is determined from the condition

pf ′

1(x, µ1, σ1) + (1 − p)f ′

2(x, µ2, σ2) = 0.



64 G. Sitek

This formula can be written as [2]:

x =

pµ1

σ3

1

exp
[

−(x−µ1)
2

2σ2

1

]

+ (1−p)µ2

σ3

2

exp
[

−(x−µ2)
2

2σ2

2

]

p

σ3

1

exp
[

−(x−µ1)2

2σ2

1

]

+ (1−p)
σ3

2

exp
[

−(x−µ2)2

2σ2

2

] . (4)

The above equation can be solved iteratively.

Suppose there are two numbers m and m such that

min
a,b

= E((X − a)(X − b))2 = E((X −m)(X −m))2, (5)

where

E(X) =

∫

∞

−∞

xf(x)dx.

The numbers m and m then call biaverage.Biaverage is a two-dimensional vector

(m,m).

If a random variable X has four first moments and variance different from zero,

the equation (5) has the following solution

m =
1

2

(

P −
√

P 2 + 4Q
)

, (6)

m =
1

2

(

P +
√

P 2 + 4Q
)

, (7)

P =
E(X3) − E(X2)E(X)

E(X2) − E2(X)
, (8)

Q =
E2(X2) − E(X3)E(X)

E(X2) − E2(X)
. (9)

The dispersion of the random variable around the biaverage can be calculated as

V0 = E ((X −m) (X − m̄))
2
. (10)

Then, the standard deviation of the biaverage has the following form:

σ0 = 4

√

V0. (11)
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The value of biaverage can be evaluated using the random sample

X1, X2, . . . , Xn

chosen from a bimodal population. It is shown (Antoniewicz [1]) that if sample

moments are good estimators of population moments, the biaverage is a good

estimator of modes and specifies concentration of two probability masses.

4. Examples

Example 1. We consider a mixture of normal distributions with the following

parameters

µ1 = 0, µ2 = 3, σ1 = σ2 = 1, p =
2

3
.

Using the formula (4) we calculate iteratively modes: M01 = 0.0175 and M02 =

2.917. We calculate the first three raw moments

E(X) = pµ1 + (1 − p)µ2 = 1,

E(X2) = p(µ2
1 + σ2

1) + (1 − p)(µ2
2 + σ2

2) = 4,

E(X3) = p(µ3
1 + 3µ1σ

2
1) + (1 − p)(µ3

2 + 3µ2σ
2
2) = 12.

Based on the formulas (8) and (9) we are setting the parameters P , Q and biav-

erage

P =
8

3
, Q =

4

3
, m = −0.43 m = 3.09.

Example 2. Some examples of two component Gaussian mixtures are illustrated

in Figures 1–4. The figures show mixtures with standard deviations σ1 = σ2 = 1,

mixing proportions p = 0.5 and different component means, starting with ∆ =

µ2 − µ1 = 1, ending with ∆ = 3.

Example 3. Figure 5 illustrates the dependency of the bimodality property on

the parameter p. For both cases

(µ2 − µ1)2 = 4 >
8σ2

1σ
2
2

(σ2
1 + σ2

2)
= 1.6

yet f(x, 0.85) is unimodal although f(x, 0.4) is bimodal.
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Fig. 1. Mixture of two normal distributions with ∆ = 1; the unimodal case
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Fig. 2. Mixture of two normal distributions with ∆ = 2; the unimodal case
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Fig. 3. Mixture of two normal distributions with ∆ = 2.1; the bimodal case
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Fig. 4. Mixture of two normal distributions with ∆ = 3; the bimodal case
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Fig. 5. Mixture of two normal distributions; dependency on p of the bimodality property
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