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CHARACTERISTICS AND DECOMPOSITION

OF EXPRESSIONS IN THE PF-NOTATION

Abstract. The paper presents a selected aspects of classical paren-
thesis-free notation. With the introduction of the concepts of the pattern
of expression and the characteristics were obtained convenient tools for
classification and decomposition of expressions in the PF-notation. Some
original results and the independent proofs of known results are presented.

1. Introduction

The parenthesis-free notation (PF-notation) is widely known in professional

literature and practice as the Polish notation. It was introduced in the 1920s by

the Polish logician and philosopher Jan  Lukasiewicz [3, 4]. It concerned mainly

the expressions which contained one or binary functors, as it was used to describe

classical logical formulas [5]. Over the years it was also used in arithmetic, and

its dynamical carrier was marked with the development of computer technology,

which in many cases, was the basics of programming languages, as its twin form

of the reverse notation. Its main advantage is the simplicity of syntax. In this

paper an attempt has been made to systematize some of the concepts associated

with the PF-notation. The concept of pattern of expression is introduced, on the

base of which the majority of the proofs of theorem concerning the PF-notation is
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derived. Thanks to established pattern, it is easy to introduce the concept of the

characteristic X for any expression of notation. The characteristic with the entered

operation ◦ makes it easy to calculate the characteristic of compound expressions.

On the ground of the theorem about the decomposition, it is easily to analyze any

expressions of PF notation. The final part of the article is focused on the graphs

interpretation of the expressions and characteristics and some additional concepts

and properties of PF-notation [7]. It has been shown that if the notation symbols

contain at least one more than one-arity operator symbol, then none of the classes

of expressions 〈α, β〉 is not empty. Moreover, invariant sets and normalizing sets

of expression to the term form (well-formed expression) are indicated.

2. Symbols of notation

Let A be an arbitrary set. Let’s create a set of operators

F = {fA : An → A/n = 1, 2, . . .} (1)

and introduce the mapping arn : F → N :

∀(fA ∈ F) (arn(fA) = n ↔ dl(fA) = An). (2)

The mapping arn assigns a number equal to the dimension of the operator domain

to each operator.

In order to facilitate further discussion, we introduce the mapping η : F → N0:

∀(fA ∈ F) (η(fA) = arn(fA) − 1). (3)

Let’s build a non-empty set A, whose elements are the symbols of:

1. variables whose field is set A,

2. names of elements of A.

F denotes a set of the symbols of the functions that belong to F . Assuming that

arn(f) = arn(fA), where f is the symbol of function fA. A similar concurrence

applies to mapping η.

Definition 1. The set of symbols of parenthesis-free notation for A and for the

set of operators F described in(1) is the set F ∪A and is denoted as V (A,F).

In the next parts of this paper V (A,F) shall be denoted by V .



Characteristics and decomposition of expressions in the PF-notation 7

3. Expressions. Terms

Definition 2. An expression in V is a finite sequence of the symbols of V .

The set of all expressions of V (A,F) may be labeled as a set of expressions of

the parenthesis-free notation (PFN) A and F and denoted as
∗

V (A,F) (hereunder

referred to as
∗

V =
∗

V (A,F)). One-element sequence is also an expression. Hence

V ⊂
∗

V .

We introduce the mapping δ :
∗

V → N :

∀(v ∈
∗

V )(δ(v) = n ↔ (∃(v1, v2, . . . , vn) ∈ V n v = (v1, v2, . . . , vn))), (4)

δ(v) shall be called the length of expression v.

On the elements of set
∗

V the operation ∗ :
∗

V ×
∗

V →
∗

V shall be described

∀(v1 = (v11 , v
1
2 , . . . , v

1
n) ∈

∗

V ) ∀(v2 = (v21 , v
2
2 , . . . , v

2
m) ∈

∗

V )

v1 ∗ v2 = (v11 , v
1
2 , . . . , v

1
n, v

2
1 , v

2
2 , . . . , v

2
m).

(5)

Operation ∗ is referred to as concatenation.

It is easy to notice that δ(v1 ∗ v2) = δ(v1) + δ(v2).

Set
∗

V with concatenation ∗ is a semi-group. Including empty expression it is

free monoid under
∗

V (see [8]).

In set of expressions
∗

V we can distinguish the set of terms [1, 5, 6] (in some

publications it is labeled as the set of well-formed expressions (wfe) and in some

WFF [2]).

Definition 3. The set of the terms of notation
∗

V (A,F) where V = F ∪A is the

smallest set T (A,F), such that

T (A,F) ⊃

∞⋃

n=0

Tn, where (6)

1. T0 = A (one-element sequence of A),

2. ∀(f ∈ F) (arn(f) = k ↔ ∀(t1, . . . , tk) ∈ (
n−1⋃

i=0

Ti)
k f ∗ t1 ∗ . . . ∗ tk ∈ Tn)

for n = 1, 2, . . .

Surely T (A,F) ⊂
∗

V (A,F).



8 M. Balcer

4. Patterns of expressions

Now we define the main notion used for the investigation and classification of

the parenthesis-free notation. It is the concept of the pattern of the expression

which enables the replacement leading from the study of expressions to the study

of sequences of the integers.

Let us assign the mapping

ω :
∗

V →
∗

N−1, where N−1 = {−1, 0, 1, 2, . . .} and V = F ∪A, (7)

1. ∀(v ∈ A) ω(v) = −1,

2. ∀(v ∈ F) ω(v) = η(v),

3. ∀(v = (v1, . . . , vn) ∈
∗

V ) ω(v) = (ω(v1), . . . , ω(vn)) for n = 2, 3, . . .

Definition 4. The pattern of expression v ∈
∗

V is a sequence ω(v).

ω(
∗

V ) is the set of all patterns of notation
∗

V . Note that any pattern from ω(
∗

V )

can be a pattern of more than one expression belonging to the
∗

V .

Let mx be the next relation

∀(v ∈
∗

V ) ∀(w ∈
∗

V ) (v mx w) ↔ ω(v) = ω(w). (8)

Accordingly, mx is the equivalence relation.

Class [v]mx represents its pattern. Let m pattern of expression belonging to

ω(
∗

V ). Class [v]mx that ω(v) = m we name the representation of pattern m of

notation
∗

V and denote (m) ∗

V
.

5.Main theorem of the parenthesis-free notation

Now we construct two mappings W1 and W2. Let Z be a set of the integers,

W1 :
∗

Z → {0, 1},

∀(k ∈ N) ∀z = (z1, . . . , zk) ∈
∗

Z

(9)
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(W1(z) = 1 ⇔

k∑

i=1

zi = −1) ∧ (W1(z) = 0 ⇔

k∑

i=1

zi 6= −1) (10)

and

W2 :
∗

Z → {0, 1},

(∀(z ∈ Z) W2(z) = 1) ∧
(

∀(k > 2) ∀z = (z1, . . . , zk) ∈
∗

Z
(11)

(W2(z) = 1 ⇔ ∀l (1 6 l < k)

l∑

i=1

zi > 0) ∧

(W2(z) = 0 ⇔ ∃l (1 6 l < k)

l∑

i=1

zi < 0)
)

.

(12)

If for a ∈
∗

Z W1(a) = 1 (W2(a) = 1; W1(a) = 0; W2(a) = 0) we may say

that sequence a satisfies the first condition (respectively: it satisfied the second

condition; not satisfied the first condition; not satisfied the second condition).

Theorem 5 (main). Let v be an expression of notation
∗

V . The next two expres-

sions are equivalent:

1. pattern ω(v) satisfied the first and second condition;

2. expression v is a term of notation
∗

V .

Proof. (1 ⇒ 2) The proof of induction due to the length of the expression δ(v).

Let δ(v) = 1. Hence ω(v) = a ∈ Z. If W1(a) = 1 and W2(a) = 1 then a = −1.

And, hence v ∈ A = T0 that v is a term.

Let us assume that

∀(v ∈
∗

V ) ((δ(v) 6 n− 1 ∧ W1(ω(v)) = 1 ∧ W2(ω(v)) = 1) → v ∈ T ).

Let us take any expression v ∈
∗

V , such that δ(v) = n and v = (v1, . . . , vn) ∈

V n. We shall show that if W1(ω(v)) = 1 ∧ W2(ω(v)) = 1 then

v = f ∗ u1 ∗ . . . uk, where f ∈ F, arn(f) = k and ui ∈ T

for i = 1, 2, . . . , k.
(13)
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Let ω(v) = a = (a1, . . . , an). If W2(a) = 1 and δ(a) > 1 then a1 > 0, and

hence v1 ∈ F . Let us assume that k = arn(v1). In the next step, we shall find

indexes l0, l1, . . . , lk, so that 1 = l0 < l1 < . . . < lk = n and ∀i (1 6 i 6

k) W1(ali−1+1, . . . , ali) = 1 ∧ W2(ali−1+1, . . . , ali) = 1. If

l1 = min(l : (2 6 l 6 n) ∧ (
l∑

i=2

ai = −1)), (14)

then W2((a2, . . . , al1)) = 1. Supposing that this condition is not met. Let m be

the minimal index (2 6 m < l1), for which
m∑

i=2

ai < 0. Hence:

1.

m∑

i=2

ai = −1 (contradiction to (14)),

or

2.
m∑

i=2

ai < −1;
m−1∑

i=2

ai + am < −1; because am > −1 then
m−1∑

i=2

ai 6 −1

which is contrary to the assumption of minimality of m.

Because

n∑

i=1

ai = −1 = η(v1) +

n∑

i=2

ai that

l1∑

i=2

ai +

n∑

i=l1+1

ai = −arn(v1) and

n∑

i=l1+1

ai = −arn(v1) + 1.

Similarly we find li (i = 2, . . . , k) where li = min{l : (li−1 + 1 6 l 6 n) ∧

W1(ali−1+1, . . . , al) = 1}. Hence v = f ∗u1 ∗ . . .∗uk where f = v1 and arn(f) = k

and ui = (vli−1−1, . . . , vli) (i = 1, 2, . . . , k).

Since W1(ω(ui)) = 1, W2(ω(ui)) = 1 and δ(ui) < n then ui ∈ T (i =

1, 2, . . . , k), so from the definition of the term v ∈ T .

(2 ⇒ 1) Proof of induction based on definition of the term. Let v ∈ T0. Because

T0 = A then ω(v) = −1 and thus W1(ω(v)) = 1 and W2(ω(v)) = 1. If v ∈ T1

then v = f ∗ t1 ∗ . . . ∗ tk; f ∈ F and arn(f) = k, ti ∈ T0 (i = 1, . . . , k), that

ω(v) = (k− 1,−1, . . . ,−1
︸ ︷︷ ︸

k times

). It’s easy to see that W1(ω(v)) = 1 and W2(ω(v)) = 1.

Let n > 2. Let’s assume that:

∀v ∈

n−1⋃

i=0

Ti W1(ω(v)) = 1 ∧ W2(ω(v)) = 1.
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Let’s take any term v ∈ T . Then v = f ∗ t1 ∗ . . . ∗ tk f ∈ F , arn(f) = k,

ti ∈

n−1⋃

j=0

Tj (i = 1, . . . , k). For facilitate we introduce v in the form

v = (v1, va1
, . . . , vb1 , va2

, . . . , vbk−1
, vak

, . . . , vbk), (15)

where in v1 = f , (vai
, . . . , vbi) = ti (i = 1, . . . , k). Hence

bk∑

i=1

ω(vi) = k − 1 +

k∑

i=1

bi∑

j=ai

ω(vj) = k− 1 +
k∑

i=1

(−1) = −1 because W1(ω(ti)) = 1 for ti ∈
n−1⋃

j=0

Tj , and

hence W1(ω(v)) = 1.

Note that ∀p (1 6 p < k) ∀l (ap 6 l 6 bp)

l∑

j=1

ω(vj) = k − 1 + (p− 1)(−1) +

l∑

s=ap

ω(vs) > k − 1 + p(−1) > 0 and for l (ak 6 l < bk)
l∑

j=1

ω(vj) = k − 1 +

(k − 1)(−1) +

l∑

i=ak−1

ω(vi) > 0 because W2(ω(ti)) = 1 for ti ∈

n−1⋃

j=0

Tj . Hence

W2(ω(v)) = 1. �

6. Examples

Let A – be the set of two-elements and F – the set of operators (see (1)).

Let’s create A as the smallest set satisfying conditions

1. {0, 1} ⊂ A where 0, 1 names of elements of A,

2. {p, q, r} ⊂ A where p, q, r names of variables whose fields is set A,

and F the set of the symbols of the operators that belong to F where {N,C, I} ⊂ F

are symbols of operator

NA : A → A NA(x) = 1 − x,

CA : A2 → A CA(x, y) = x · y,

IA : A2 → A IA(x, y) = 1 + x− x · y.
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That {N,C, I, 0, 1, p, q, r} ⊂ F ∪A = V(A,F). For example the expression of

notation
∗

V (A,F) is

v = (N, 0, p, C, 1, r, q, I, 0), and its pattern is

ω(v) = (0,−1,−1, 1,−1,−1,−1, 1,−1).

The next expression

t = (C,N,C, p, q, I, 1, r), is a term with pattern

ω(t) = (1, 0, 1,−1,−1, 1,−1,−1).

It’s easy to notice that ω(t) satisfying first and second condition.

7. Characteristic X

Let us define on the parenthesis-free notation
∗

V (A,F) the mapping which

assigns pair (α, β) ∈ N × N0 to each expression. This mapping shall be labeled

as the characteristic X . It is the basic tool for the decomposition of expressions.

The characteristic X could be improved in many different ways. The following

two definitions are equivalence.

Definition 6 (using pattern). X :
∗

V → N ×N0

∀v = (v1, . . . , vn) ∈
∗

V X (v) = (α, β) where

α = 1 + min
{

k ∈ N0 | k +

n∑

i=1

ω(vi) > −1 ∧

∧ ∀j (1 6 j < n) k +

j
∑

i=1

ω(vi) > 0
}

, (16)

β = α +

n∑

i=1

ω(vi). (17)
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Definition 7 (using term). X :
∗

V → N ×N0

∀v = (v1, . . . , vn) ∈
∗

V X (v) = (α, β) where

α = min
{

k ∈ N | ∃f ∈ F
(
arn(f) = k ∧ ∃l ∈ N0∀(t1, . . . , tl) ∈ T l

f ∗ v ∗ t1 ∗ . . . ∗ tl ∈ T
)}

, (16′)

β = l ↔ ∀f ∈ F ∀
(
(t1, . . . , tl) ∈ T l

)(
(arn(f) = α) →

(f ∗ v ∗ t1 ∗ . . . ∗ tl ∈ T )
)
. (17′)

Furthermore, there is also interesting graph definition of X which will be pre-

sented on the end of this article. On the grounds of the main theorem of PFN we

shall now proof the equivalence of Definitions 6 and 7.

Proof. 1◦ Let us assume that v = (v1, . . . , vn) and, accordingly Def. 7, X (v) =

(α, β). Then for any f ∈ F : arn(f) = α and for any sequence (t1, . . . , tβ) ∈ T β

u = f ∗ v ∗ t1 ∗ . . . ∗ tβ ∈ T . Because the pattern of expression u satisfied the first

condition so

α− 1 +
n∑

i=1

ω(vi) − β = −1 and thus β = α +
n∑

i=1

ω(vi).

Because α−1+

n∑

i=1

ω(vi) = β−1 > −1 and W2(ω(u)) = 1, that α−1+

j
∑

i=1

ω(vi) > 0

for j = 1, 2, . . . , n − 1. It should be notice that α is minimal also according to

a Definition 6.

2◦ Let’s assume that v = (v1, . . . , vn) and accordingly Def.6 X (v) = (α, β). Let’s

create u = f ∗ v ∗ t1 ∗ . . . tβ where f ∈ F, arn(f) = k and ti ∈ T (i = 1, 2, . . . , β).

It should be noticed that α− 1 +
n∑

i=1

ω(vi) + (−β) = −1 because β = α +
n∑

i=1

vi.

Thus W1(ω(u)) = 1, and for j = 1, 2, . . . , n− 1 α− 1 +

j
∑

i=1

ω(vi) > 0 it meets the

second condition. Again, α is a minimal but now in accordance with Definition 7.

�

The definitions lead to the following conclusions:

(W1) ∀(v ∈
∗

V )(X (v) = (1, 0) ↔ v ∈ T ).
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Proof. 1◦ Let v = (v1, . . . , vn) ∈
∗

V and X (v) = (1, 0). Hence and from (17)

0 = 1 +
n∑

i=1

ω(vi) that W1(ω(v)) = 1. From (16) 1 − 1 +

j
∑

i=1

ω(vi) > 0 which

implies W2(ω(v)) = 1. More from the main PFN theorem v ∈ T .

2◦ Let v ∈ T , then for any f ∈ F (arn(f) = 1 ⇒ f ∗ v ∈ T ) and from the

Definition 7. X (v) = (1, 0). �

(W2) ∀(f ∈ F ) X (f) = (1, arn(f));

(W3) ∀(n ∈ N) ∀(t1, . . . , tn) ∈ T n X (t1 ∗ . . . ∗ tn) = (n, 0).

Proof. Let n ∈ N and (t1, . . . , tn) ∈ T n and f ∈ F and arn(f) = k. If k < n

then f ∗ t1 ∗ . . . ∗ tk /∈ T and for any l > 0 and for any (vl, . . . , vl) ∈ T lf ∗ t1 ∗

. . . tn ∗ v1 ∗ . . . ∗ vl /∈ T which follows from the definition of term. When k = n

then f ∗ t1 ∗ . . . tn ∈ T and from the Definition 7, X (t1 ∗ . . . ∗ tn) = (n, 0). �

(W4) ∀(v ∈
∗

V ) ∀(u ∈
∗

V )(ω(v) = ω(u) → X (u) = X (v)).

Based on the definition of characteristic we also obtain the next theorem.

Theorem 8. Let us assume that v = (v1, . . . , vn) ∈ V and X (v) = (α, β) and

u = (vi1 , . . . , vin), where

1◦ (i1, . . . , in) is a permutation of (1, 2, . . . , n),

2◦ X (u) = (γ, δ),

then α− β = γ − δ.

Proof. Let us observe that
n∑

j=1

ω(vj) =
n∑

j=1

ω(vij ). Because from (17)
n∑

i=1

ω(vi) =

β − α and
n∑

j=1

ω(vij ) = δ − γ so α− β = γ − δ. �

8. Concatenation of expressions

In the second part of this paper concatenation of expressions will be defined.

However, a question arises: If for v ∈
∗

V X (v) = (α, β) and for u ∈
∗

V X (u) = (γ, δ)
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what is the characteristic of X (v∗u) and how does it depend on the characteristics

(α, β), (γ, δ). To address this question let us introduce in set N×N0 the following

operation ◦:

◦ : (N ×N0)2 → N ×N0

∀(α, β) ∈ N ×N0 ∀(γ, δ) ∈ N ×N0,

(α, β) ◦ (γ, δ) = (α + H(γ − β), δ + H(β − γ)), where (18)

H(x) = max{0, x} for x ∈ Z. (19)

Theorem 9. For any two expressions v, u from
∗

V the following equation is true

X (v ∗ u) = X (v) ◦ X (u). (20)

Proof. Let us assume that v = (v1, . . . , vn) ∈
∗

V , u = (u1, . . . , um) ∈
∗

V and

X (v) = (α, β), X (u) = (γ, δ). Two cases should be considered: 1◦) for β > γ and

2◦) for β < γ.

1◦) β > γ. Let’s create w = v ∗ u = (w1, . . . , wn, wn+1, . . . , wn+m). Moreover,

let us assume that X (w) = (x, y). Let k = α − 1. Then k +

n∑

i=1

ω(wi) > −1 and

k+

j
∑

i=1

ω(wi) > 0 for j = 1, . . . , n−1. Because k+

n∑

i=1

ω(wi) = β−1, and β > γ that

k+

n∑

i=1

ω(wi) > γ− 1. Notice that k+

n+m∑

i=1

ω(wi) = k+

n∑

i=1

ω(wi) +

n+m∑

i=n+1

ω(wi) >

γ − 1 +

n+m∑

i=n+1

ω(wi) = γ − 1 +

m∑

i=1

ω(ui) > −1 because X (u) = (γ, δ). Similarly

k+

j
∑

i=1

ω(wi) > 0 for j(1 6 j < n+m). That x 6 α. If x < α then X (v) 6= (α, β).

Therefore x = α. Let us now find y : y = α +

n+m∑

i=1

ω(wi) = α +

n∑

i=1

ω(vi) +

n∑

i=1

ω(ui) = β + δ − γ = δ + (β − γ) and, likewise X (w) = (α, δ + (β − γ)).
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2◦) β < γ. Let k = α+(γ−β)−1. Because γ > β then k > α−1 and the same

holds for k +

n∑

i=1

ω(wi) > −1 and for j(1 6 j < n) k +

j
∑

i=1

ω(wi) > 0. Hence

k+

n∑

i=1

ω(vi) = α+γ−β−1+β−α = γ−1 so that k+

n+m∑

i=1

ω(wi) = γ−1+

m∑

i=1

ω(ui) >

−1 because X (u) = (γ, δ). Similarly, for j(1 6 j < n + m) k +

j
∑

i=1

ω(wi) > 0

which leads to x 6 α + (γ − β). If x < α + (γ − β) then X (v) 6= (α, β) or

X (u) 6= (γ, δ). Thus x = α + (γ − β) and y = α + γ − β +

n+m∑

i=1

ω(wi) = α + γ −

β +

n∑

i=1

ω(vi) +

m∑

i=1

ω(ui) = δ and, consequently X (w) = (α + (γ − β), δ).

By combining cases 1◦ and 2◦ X (w) = (α + H(γ − β), δ + H(β − γ)). �

On the ground of the proved theorem, operation ◦ on set (N ×N0)2 makes it

possible to use characteristic X for composing and decomposing any expressions

of the PF notation.

9. Decomposition theorem

Decomposition theorem is an illustration of the importance of the characteristic

X . In addition, it shows us that any expression of PF notation
∗

V is either an

expression with characteristic X equal to (1, β), (β = 0, 1, 2, . . .) or a concatenation

of finite number of the expressions of described above.

Theorem 10 (about decomposition). Let v ∈
∗

V . If this is assumed X (v) =

(α, β) and α > 2 there is exactly one sequence (t1, . . . , tα−1) ∈ Tα−1 and there

exists only one expression u ∈
∗

V with characteristic X (u) = (1, β) such that

v = t1 ∗ . . . ∗ tα−1 ∗ u. (21)

At first, we proof the following lemmas:

Lemma 11. Let v ∈
∗

V . If X (v) = (α, 0) there is exactly one sequence (t1, . . . , tα)

∈ Tα such that

v = t1 ∗ . . . ∗ tα. (22)
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Proof. (by induction)

1◦ For α = 1 the lemma is obvious, see (W1).

2◦ Let’s assume that lemma is satisfied for any v ∈
∗

V for which X (v) = (α−1, 0)

it meaning that there is an unambiguous decomposition of expression v into α− 1

terms (α > 2). Let’s consider the expression v = (v1, . . . , vn) ∈
∗

V for which

X (v) = (α, 0). Because

n∑

i=1

ω(vi) = −α there exists l(1 6 l < n) such that

W1(ω(v1, . . . , vl)) = 1 and W2(ω(v1, . . . , vl)) = 1. (23)

Let l0 be the smallest l that satisfies equation (23). Therefore t = (v1, . . . , vl0) ∈ T

and X (t) = (1, 0). Let u = (vl0+1, . . . , vn). Hence v = t ∗ u. By solving the

equation: X (v) = X (t)◦X (u) ie. (α, 0) = (1, 0)◦(x, y) we derive x = α−1, y = 0

ie. X (u) = (α − 1, 0).

So, under the assumption 2◦ there exists exactly one sequence (t1, . . . , tα−1) ∈

Tα−1 such that u = t1 ∗ . . . ∗ tα−1 and accordingly

v = t ∗ t1 ∗ . . . ∗ tα−1 where (t, t1, . . . , tα−1) ∈ Tα. (24)

Now we shall show that this decomposition is unambiguous. If t = (v1, . . . , vl)

and l < l0 on the ground of the minimality l0 t /∈ T . Otherwise, if l > l0 it is

W2(ω(t)) = 0. So, assuming the minimality l0 and unambiguous decomposition

of the expression u, we obtain that (24) is an unambiguous decomposition of v,

which proves (22). �

Lemma 12. Let v be any expression of the PF notation
∗

V . If X (v) = (α, β) and

(α > 2) there is exactly one expression u1 ∈
∗

V of characteristic X (u1) = (α−1, 0)

and exactly one expression u2 of characteristic X (u2) = (1, β) such that v = u1∗u2.

Proof. Let v = (v1, . . . , vn) and X (v) = (α, β). Therefore (α−1)+

n∑

i=1

ω(vi) > −1

and (α − 1) +

j
∑

i=1

ω(vi) > 0 for j = 1, 2, . . . , n − 1 so there exist l(1 6 l < n)

such that (α− 1) +

l∑

i=1

ω(vi) = 0 basing on definition 5. and the minimality of α.

Let l0 will be the smallest l which satisfied this condition. It should be noticed,
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that for w1 = (v1, . . . , vl0) X (w1) = (α− 1, 0) because α− 2 +

l0∑

i=1

ω(vi) = −1 and

α− 2 +

j
∑

i=1

ω(vi) > 0 for j(1 6 j < l0). Assuming that w2 = (vl0+1, . . . , vn) on the

ground of based on Theorem 3. (α, β) = (α − 1, 0) ◦ (x, y) where (x, y) = X (w2),

after the solution of the equation, (x, y) = (1, β). Thus v = w1 ∗ w2 where

X (w1) = (α − 1, 0) and X (w2) = (1, β). Similarly just like in Lemma 11 the

unambiguity of the decomposition is proved. �

Proof of Theorem 10 directly follows from Lemmas 11 and 12.

Elements (t1, . . . , tα−1) are called the term components of expression v, element

u – the degenerated component, if X = (1, β) and β > 0; but if β = 0 then element

tα = u is also the term component of expression v.

10. Supplements

In the preceding paragraphs we defined the characteristic X and decomposition

theorem by means of the definition based on the pattern of expression. To study

PF-notation we may also use graph theory by applying this notation to objects of

the graph theory [7].

Definition 13. Let v = (v1, . . . , vn) ∈
∗

V . The graph of expression v is referred to

as pair (Xv, Uv) where

1◦ Xv = {1, 2, . . . , n},

2 ◦ Uv ⊂ Xv ×Xv,

3 ◦ pair (j, i) ∈ Xv ×Xv belongs to Uv if and only if the following conditions are

met:

a) j > i,

b) vi ∈ F ,

c) W2(ω(vi, . . . , vj)) = 1,

d) for m(i < m < j) W2(ω(vm, . . . , vj)) = 0.
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Definition 14. The tree graph shall be labeled as the connectivity graph without

loops and cycles.

Definition 15. The forest graph shall be labeled as no connectivity graph without

loops and cycles.

Theorem 16. Let v ∈
∗

V and Gv(Xv, Uv) be a graphs of expression v.

1◦ Graph Gv(Xv, Uv) is a tree or a forest.

2 ◦ W2(ω(v)) = 1 if and only if Gv(Xv, Uv) is connective.

3 ◦ Graph Gv(Xv, Uv) has (|Xv| − |Uv|) connective elements.

Proof. 1 ◦ From definition of the graph of expression, point 3a eliminates the cycles

and loops. Because from definition it also follows that for any j there is only one

pair (j, i) ∈ Xv ×Xv, which belongs to Uv, which definitely eliminates any cycles.

2 ◦ Let v = (v1, . . . , vn) and Gv(Xv, Uv) be the graph of expression v. If

W2(ω(v)) = 1, then for each j ∈ Xv and j 6= 1 there exists i ∈ Xv such that

(j, i) ∈ Uv and j > i and, in consequence, there is a path to node 1. This property

is equivalent to the connectivity of graph Gv(Xv, Uv).

If graph Gv(Xv, Uv) is connective, there exist a path from any vertex j ∈

Xv j 6= 1 to vertex 1. Let 1 = j0 < j1 < . . . < jk−1 < jk = n vertexes of the

path connecting n with 1. Then, for any l (1 6 l 6 k) W2(ω(vjl−1
, . . . , vjl)) = 1

and for any m (jl−1 < m < jl) W2(ω(vm, . . . , vjl) = 0, which implies that

W2(ω(v)) = 1.

3 ◦ If graph Gv(Xv, Uv) is a tree, there |Xv| − |Uv| = 1. If graph Gv(Xv, Uv) is

a forest, that it is a disjoint union of trees. Let any graph of expression v is a forest

and has q connective elements. Let Di(Xi, Ui) be the ith element. Because for

any trees |Xi| − |Ui| = 1, so |Xv| − |Uv| = |X1|+ . . .+ |Xq| − |U1|+ . . .+ |Uq| = q,

which concludes the proof. �

Let v = (v1, . . . , vn) ∈
∗

V . Number

β(v) = |Xv| − |Uv| +

n∑

i=1

ω(vi) (25)

shall be referred to as the number of the degeneration of graph Gv(Xv, Uv).

The followings properties are true:

(W1) β(v) > 0 for v ∈
∗

V ,
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(W2) β(v) = 0 if and only if, where exists a natural k that v ∈ T k.

It should be noticed that if v = (v1, . . . , vn)

n∑

i=1

ω(vi) = −k, where k ∈

N graph Gv(Xv, Uv) has minimally k connective elements, because there ex-

ists a sequence l0, l1, . . . , lk such that 1 = l0 < l1 < . . . < lk−1 < lk 6 n

and for i = 1, . . . , k W1(ω(vli−1
, . . . , vli)) = 1, W2(ω(vli1 , . . . , vli)) = 1 and

({li−1, . . . , li} × {lj−1, . . . , lj}) ∩ Uv = ∅ which follows from the definition of the

graph of expression, and, accordingly (W1) and (W2).

If v ∈
∗

V and W2(ω(v)) = 1 graph Gv(Xv, Uv) is called

1◦ the tree of term β(v) – degenerated when, β(v) > 0,

2◦ the tree of term, when β(v) = 0.

Definition 17 (by graph).

X :
∗

V → N ×N0

For any v ∈
∗

V X (v) = (α, β) where

(1”) α – is the number of the connected components of graph Gv(Xv, Uv);

(2”) β – is the number of the degeneration of graph Gv(Xv, Uv).

X is labeled as the characteristic of expression v.

Theorem 18 (decomposition graph). Let v ∈
∗

V and Gv(Xv, Uv) be the graph

of expression v. If X (v) = (α, β) then graph of expression v has α connected

components, where

1◦ α components are the trees of term, if β = 0;

2 ◦ α − 1 components are the trees of term and exactly one component is the

β(v)-degenerated tree of term, where β > 0.

Let 〈α, β〉 is a set of all expressions v ∈
∗

V of notation V(F ,A) = F ∪A, such

that X (v) = (α, β).
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Theorem 19. Let H ⊂ F and H 6= ∅. If f ∈ H and arn(f) > 2 then for any

(α, β) ∈ N ×N0:
∗

VH ∩ 〈α, β〉 6= ∅. (26)

Proof. To prove this theorem the properties of the characteristic X and operation

◦ are used. Let f ∈ H and arn(f) = 2. Then X (f) = (1, 2). Let’s create

expressions x1, . . . as follows

x1 = f ∗ v when v ∈ A,

x2 = f and for β > 2 xβ = f ∗ f ∗ . . . ∗ f
︸ ︷︷ ︸

β−1

.

It easy to notice that X (xi) = (1, i) for i = 1, 2, . . .. Let (α, β) ∈ N × N0 and

α > 1 and x = v ∗ v ∗ . . . ∗ v
︸ ︷︷ ︸

α−1

∗xβ Hence

X (x) = (1, 0) ◦ . . . ◦ (1, 0)
︸ ︷︷ ︸

α−1

◦(1, β) = (α, β)

which proves the theorem for f ∈ H and arn(f) = 2. If arn(f) = k > 2 then

y = f ∗ v ∗ . . . ∗ v
︸ ︷︷ ︸

k−2

has characteristic (1, 2) and we the same logic can be applied substituting the

expression y for f , which proves the correctness of the theorem. �

Let v ∈
∗

V :

EL(v) =
{

w ∈
∗

V | X (w ∗ v) = X (v)
}

(27)

— a set of left-sided invariants for v,

EP (v) =
{

w ∈
∗

V | X (v ∗ w) = X (v)
}

(28)

— a set of right-sided invariants for v,

ET (v) =
{

(u,w) ∈ (
∗

V )2 | X (u ∗ v ∗ w) = (1, 0)
}

(29)

— a set of the pair of expressions normalizing v in respect of the term.

It’s easy to prove for above-mentioned sets the next properties.
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Let v ∈
∗

V and X (v) = (α, β). Then

EL(v) =
⋃

16x6α

〈x, x〉, (30)

EP (v) =
⋃

16x6β

〈x, x〉, (31)

ET (v) =
⋃

α6x

(〈1, x〉 × 〈x − (α− β), 0〉). (32)
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Pamia̧tkowa Polskiego Towarzystwa Filozoficznego, Lwów 1931 (in Polish).

5. Lyndon C.R.: Notes on Logic. D. Van Nostrand Company, Princeton 1966.

6. Malitz J.: Introduction to Mathematical Logic. Springer Verlag, New York 1979.

7. Meyers W.J.: Linear Representation of Tree Structure: A Mathematical Theory

of Parenthesis-free Notation. Computer Science Department, School of Human-

ities and Science, Stanford University 1974.

8. Visser A.: On the ambiguation of Polish Notation. Theoret. Comput. Sci. 412

(2011), 3404–3411.


