APPLICATION OF THE HOMOTOPY PERTURBATION METHOD FOR THE SYSTEMS OF VOLterra INTEGRAL EQUATIONS

Summary. In this paper the convergence of homotopy perturbation method for the systems of Volterra integral equations of the second kind is proved. Estimation of errors of approximate solutions obtained by taking the partial sum of the series is also elaborated in the paper.
1. Introduction

The current paper is a continuation of our previous work [9] in which we investigated the systems of Fredholm integral equations. At present we propose to apply the homotopy perturbation method for solving the systems of Volterra integral equations. We prove in the paper the convergence of homotopy perturbation method for systems of Volterra integral equations of the second kind. Moreover, the formulas for estimating the error of approximate solution are elaborated.

Methods using the ideas of homotopy were already applied for solving some type of integral equations (see for example [1, 2, 4–8, 10–12]). Application of homotopy perturbation method for solving the systems of Volterra integral equations is described also in paper [3]. However convergence of the method or estimation of the error of approximate solution were not discussed in this paper.

2. Systems of Volterra integral equations

We consider the system of equations of the form

\[
 u_i(x) - \lambda \sum_{j=1}^{n} \int_{a}^{x} K_{ij}(x, t) u_j(t) \, dt = f_i(x),
\]

for \(i = 1, 2, \ldots, n \), where \(x \in [a, b] \), \(\lambda \in \mathbb{C} \), functions \(K_{ij} \in C([a, b] \times [a, b]) \) and \(f_i \in C[a, b] \) are known, whereas the functions \(u_i \) are sought. The above system of equations can be written in the matrix form

\[
 U(x) - \lambda \int_{a}^{x} K(x, y) U(t) \, dt = F(x),
\]

where

\[
 K(x, t) = \begin{bmatrix}
 K_{11}(x, t) & K_{12}(x, t) & \cdots & K_{1n}(x, t) \\
 K_{21}(x, t) & K_{22}(x, t) & \cdots & K_{2n}(x, t) \\
 \vdots & \vdots & \ddots & \vdots \\
 K_{n1}(x, t) & K_{n2}(x, t) & \cdots & K_{nn}(x, t)
 \end{bmatrix}
\]

and

\[
 U(x) = \begin{bmatrix}
 u_1(x) \\
 u_2(x) \\
 \vdots \\
 u_n(x)
 \end{bmatrix}, \quad F(x) = \begin{bmatrix}
 f_1(x) \\
 f_2(x) \\
 \vdots \\
 f_n(x)
 \end{bmatrix}.
\]
According to the homotopy perturbation method (for details see, for example, [8]) we define operators L and N in the following way

\[L(V) = V, \quad N(V) = -\lambda \int_a^x K(x, t) V(t) \, dt. \]

(3)

By using the above operators we obtain the homotopy operator for the system of Volterra integral equations of the second kind

\[H(V, p) = V(x) - U_0(x) + p \left(U_0(x) - F(x) - \lambda \int_a^x K(x, t) V(t) \, dt \right). \]

(4)

According to the method, in the next step we search for the solution of operator equation $H(V, p) = 0$ in the form of power series

\[V(x) = \sum_{k=0}^{\infty} p^k V_k(x), \]

(5)

where $V_k(x) = [v_{1,k}(x), v_{2,k}(x), \ldots, v_{n,k}(x)]^T$. In order to determine the functions V_j we substitute relation (5) into equation $H(V, p) = 0$ and we get (under assumption that the series is convergent which will be discussed later):

\[\sum_{k=0}^{\infty} p^k V_k(x) = U_0(x) + p \left(F(x) - U_0(x) \right) + \sum_{k=1}^{\infty} p^k \lambda \int_a^x K(x, t) V_{k-1}(t) \, dt. \]

(6)

By comparing the expressions with the same powers of parameter p, we receive the relations

\[V_0(x) = U_0(x), \]

(7)

\[V_1(x) = F(x) - U_0(x) + \lambda \int_a^x K(x, t) V_0(t) \, dt, \]

(8)

\[V_k(x) = \lambda \int_a^x K(x, t) V_{k-1}(t) \, dt, \quad k \geq 2. \]

(9)

Now we proceed to discussing the convergence of series (5).

Theorem 1. Let the functions $K_{i,j}(x, t)$ and $f_i(x)$ for $i,j \in \{1, 2, \ldots, n\}$, appearing in system (1), be continuous in regions $\Omega_1 = [a,b] \times [a,b]$ and $\Omega = [a,b]$, respectively. Furthermore, as the initial approximation U_0 let us choose a vector of functions continuous in interval $[a,b]$. Then series (5), in which the functions V_k are determined by means of relations (7)–(9), is uniformly convergent in interval $[a,b]$ for each $p \in [0,1]$ to the uniquely determined solution $V(x)$, which is a vector of functions continuous in $[a,b]$.

Application of the homotopy perturbation method...

73
Proof. Proof of this theorem runs analogically as the proof of Theorem 1 from paper [9].

Remark 2. We note that for the discussed systems of Volterra integral equations Remarks 2–4 from paper [9] remain true.

Theorem 3. Error of the \(n \)-order approximate solution can be estimated in the following way

\[
E_n \leq B \left(e^{\|\lambda\| M(b-a)} - \sum_{k=0}^{n-1} \frac{(\|\lambda\| M(b-a))^k}{k!} \right) \leq \sum_{k=0}^{n} \frac{(\|\lambda\| M(b-a))^{k}}{(n+1)!} (n + \exp(\|\lambda\| M(b-a))),
\]

where \(E_n := \sup_{x \in [a,b]} \|U(x) - \hat{U}_n(x)\|, \) \(B := N_0 + N_1 + |\lambda| M N_0 (b - a) \) and the constants \(M, N_1 \) and \(N_0 \) are such that

\[
\|K(x,t)\| \leq M \quad \& \quad \|F(x)\| \leq N_1 \quad \& \quad \|U_0(x)\| \leq N_0 \quad \forall x, t \in [a,b].
\]

Proof. Proof of this theorem runs analogically as the proof of Theorem 5 from paper [9].

3. Example

Now, in the example we use the investigated method for solving the following system of Volterra integral equations of the second kind

\[
u_1(x) = e^x \cosh(2x) - \int_0^x e^{x-t} u_1(t) \, dt - \int_0^x e^{x+t} u_2(t) \, dt,
\]
\[
u_2(x) = (x + 1) e^x + \sinh x - \int_0^x e^{x+t} u_1(t) \, dt - \int_0^x e^{x-t} u_2(t) \, dt,
\]

where \(x \in [0, \frac{1}{2}] \). Solution of the above system is given by the functions

\(u_{d1}(x) = e^{-x}, \quad u_{d2}(x) = e^x \).
By taking the zero initial approximation $\mathbf{U}_0(x) = (0, 0)^T$ and next by using relations (7)–(9) we get successively

$\mathbf{V}_0(x) = \mathbf{U}_0(x) = (0, 0)^T$,

$\mathbf{V}_1(x) = (e^x \cosh(2x), (x + 1)e^x + \sinh x)^T$,

$\mathbf{V}_2(x) = (-e^x(e^x(1 + x) + \cosh x)\sinh x, -\frac{1}{8}e^{5x} - (x + \frac{3}{8})e^x + \frac{1}{2}(x + 1)e^{-x})^T$,

\[\vdots\]

Obtained approximate solution $\mathbf{\hat{U}}_n = (\hat{u}_{1,n}, \hat{u}_{2,n})^T$ can be compared with the exact solution by taking the difference of these functions and expanding it into the series. Thus, for $n = 5$ we obtain

$\hat{u}_{1,5}(x) - e^{-x} = 3.05311 \times 10^{-16}x^3 + 5.89806 \times 10^{-16}x^4 - 0.266667x^5 - 0.8x^6 - 1.50317x^7 + O(x^8)$,

$\hat{u}_{2,5}(x) - e^{-x} = 1.11022 \times 10^{-16} + 2.22045 \times 10^{-16}x + 3.88578 \times 10^{-16}x^2 - 5.82867 \times 10^{-16}x^3 - 1.11022 \times 10^{-16}x^4 - 0.266667x^5 - 0.755556x^6 - 1.46825x^7 + O(x^8)$,

whereas for $n = 15$ we receive

$\hat{u}_{1,15}(x) - e^{-x} = 1.70974 \times 10^{-14}x + 5.32907 \times 10^{-14}x^2 + 9.97813 \times 10^{-14}x^3 + 1.28487 \times 10^{-13}x^4 + 1.39859 \times 10^{-13}x^5 + 1.19243 \times 10^{-13}x^6 + 9.53675 \times 10^{-14}x^7 + \ldots - 7.20038 \times 10^{-6}x^{19} - 0.0000155848x^{20} + O(x^{21})$,

$\hat{u}_{2,15}(x) - e^{-x} = 1.11022 \times 10^{-16} + 3.33067 \times 10^{-16}x - 7.77156 \times 10^{-16}x^2 - 5.30131 \times 10^{-15}x^3 - 8.76382 \times 10^{-15}x^4 - 1.86032 \times 10^{-14}x^5 - 1.21337 \times 10^{-14}x^6 - 9.88313 \times 10^{-15}x^7 + \ldots - 7.127 \times 10^{-6}x^{19} - 0.0000154338x^{20} + O(x^{21})$.

As it can be seen, with the increasing number of calculated terms the approximate solution is more and more close to the exact solution.

In Table 1 there are presented the errors ($\|u_{di} - \hat{u}_{i,n}\| = \sup_{x \in [0,1]}|u_{di}(x) - \hat{u}_{i,n}(x)|$) which occur in approximating the exact solution by the successive approximate solutions. Distributions of error in the entire interval $[0,1]$ for $n = 5$ and $n = 10$ are displayed in Figures 1 and 2. Obtained results confirm that the method is fast convergent. Thus, computing just a few (a dozen or so) first terms of the series ensures a very good approximation of the exact solution.
Errors of the exact solution approximation

<table>
<thead>
<tr>
<th>n</th>
<th>$|u_{d1} - \hat{u}_{1,n}|$</th>
<th>$|u_{d2} - \hat{u}_{2,n}|$</th>
<th>n</th>
<th>$|u_{d1} - \hat{u}_{1,n}|$</th>
<th>$|u_{d2} - \hat{u}_{2,n}|$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.9376</td>
<td>1.3455</td>
<td>6</td>
<td>1.1622 10^{-2}</td>
<td>1.1379 10^{-2}</td>
</tr>
<tr>
<td>2</td>
<td>1.1559</td>
<td>1.1651</td>
<td>7</td>
<td>2.2639 10^{-3}</td>
<td>2.2223 10^{-3}</td>
</tr>
<tr>
<td>3</td>
<td>0.5507</td>
<td>0.5205</td>
<td>8</td>
<td>3.8554 10^{-4}</td>
<td>3.7933 10^{-4}</td>
</tr>
<tr>
<td>4</td>
<td>0.1867</td>
<td>0.1817</td>
<td>9</td>
<td>5.8339 10^{-5}</td>
<td>5.7498 10^{-5}</td>
</tr>
<tr>
<td>5</td>
<td>5.1138 10^{-2}</td>
<td>4.9804 10^{-2}</td>
<td>10</td>
<td>7.9421 10^{-6}</td>
<td>7.8388 10^{-6}</td>
</tr>
</tbody>
</table>

Fig. 1. Distribution of error of the exact solution approximation for $n = 5$
Rys. 1. Rozkład błędu rozwiązania przybliżonego dla $n = 5$

Fig. 2. Distribution of error of the exact solution approximation for $n = 10$
Rys. 2. Rozkład błędu rozwiązania przybliżonego dla $n = 10$
References

