
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014

Seria: MATEMATYKA STOSOWANA z. 4 Nr kol. 1920

Zbigniew MARSZAŁEK, Dawid POŁAP, Marcin WOŹNIAK

Institute of Mathematics
Silesian University of Technology

ON CLASSIC BUBBLE SORT PERFORMANCE

FOR LARGE DATA SETS

Summary. In the paper we discuss performance of classic bubble sort
algorithm for large data sets. Research results discussed and described in
this article help to evaluate computer methods used in NoSQL database
systems for large amounts of the input data. Therefore we try to analyze
one of the most common sorting algorithms and its properties for large data
sets.

O WYDAJNOŚCI KLASYCZNEJ WERSJI
SORTOWANIA BĄBELKOWEGO DLA DUŻYCH
ZBIORÓW DANYCH

Streszczenie. Artykuł ma na celu przedstawienie analizy wydajności
algorytmu sortowania bąbelkowego w postaci klasycznej dla dużych zbiorów
danych. Podjęty temat ma duże znaczenie dla rozwoju współczesnej infor-
matyki ze względu na to, że komputery muszą pracować na coraz większych
ilościach danych.

2010 Mathematics Subject Classification: 68W40, 68Q25, 68P01, 68P10.
Keywords: computer algorithm, large data sets, NoSQL database systems.
Corresponding author: Z. Marszałek (Zbigniew.Marszalek@polsl.pl).
Received: 30.06.2014.
This project has been financed from the funds of Institute of Mathematics, Silesian University
of Technology.

104 Z. Marszałek, D. Połap, M. Woźniak

1. Introduction

Performance of sorting algorithms is discussed in many publications devoted
to computing systems, NoSQL databases and computer simulations. In [22] is
presented analysis of some dedicated versions of sorting algorithms for large data
sets. While in [21] is discussed possible extension and improvements of sorting
methods for large data sets and NoSQL database systems. There are many research
on the performance of sorting methods for large data sets (please see [16,17,24]).
Here we discuss some aspects of classic bubble sort performance for large data
sets.
While implementing software we often encounter the problem of lack of or-

der in the information. Natural solution is to use a sorting algorithm to sort the
information we have. Algorithms and data sorting problem is an important mat-
ter discussed in [1, 2, 11, 12, 19]. In the papers [3, 4, 7, 8] authors described various
modifications and changes to sorting algorithms, which allow more efficient opera-
ting. Moreover, the authors of [5, 6, 9, 10] present new sorting methods with some
interesting properties. The solutions and examinations presented in the following
sections will help to analyze classic bubble sort algorithm.

2. Classic bubble sort

Classic bubble sort is one of sorting algorithms. Modifications of the method
and the references to it’s interesting derivatives are also described in [1, 2, 11, 12,
16, 19]. Authors of [5, 8, 13–15, 27] show also possibility of constructing adaptive
or parallel algorithms to improve sorting and data mining. At the same time
in [3, 6, 7, 18] are presented interesting solutions for special data structures.
Classic bubble sort algorithm is converting elements in pairs. The procedure

swaps compared elements. The biggest one is moved to the end of sequence in
following iterations, for more details on this method please see [21]. Therefore, in
subsequent iterations, each time we consider decreased sequence. Described classic
procedure is also presented in [1,2,11,12,19]. Many interesting implementations of
his method and its derivatives are presented by the authors of [1, 2, 11, 12, 16, 19].
However by now there are no research made on it’s performance for large data sets.
Let us now present the examined classic bubble sort algorithm. Implementation
of the algorithm was done using CLR standard for MS Visual Studio 2012. For

On classic bubble sort performance for large data sets 105

more interesting examples of implementations of similar sorting methods see [1,2,
11, 12, 19]. In Figure 1 is presented block diagram of implemented version.

Start
Load data
Set starting index i

1 if element with index i is the last one then

Return to 4

else

Return to 2
end if

2 Start sorting
Take next element with index j to compare
if element with index j is not the last one then

if next element is bigger then

Swap elements
Return to 3

else

Return to 3
end if

3 Increase index j ++
Return to 2

else

Increase index i++
Return to 1

end if

4 Write sorted sequence
Stop

To determine theoretical time complexity of the classic bubble sort algorithm,
one should note that to sort n-element sequence we need to make n−1 comparisons
in pairs. After all operations, the largest element is placed at the end of the
sequence. Let us now consider the theoretical time complexity of the presented
method.

106 Z. Marszałek, D. Połap, M. Woźniak

Fig. 1. The block diagram of implemented classic bubble sort algorithm
Rys. 1. Schemat blokowy zaimplementowango algrytmu sortowania bąbelkowego w po-

staci klasycznej

Theorem 1. Classic bubble sort algorithm has theoretical time complexity ϑ(n2).

Proof. In subsequent steps, the number of necessary comparisons is reduced. Re-
cording the number of comparisons, and therefore the complexity, we have the
formula

On classic bubble sort performance for large data sets 107

ϑ(n2) = (n− 1) + (n− 2) + . . .+ 2 + 1 = n ·
n− 1
2
, (1)

where n means number of elements in the sequence. We can limit formula (1)

n2

4
¬ n ·

n− 1
2
¬
n2

4
, n 2 (2)

We have estimated time of sorting by polynomials of equal degree. Thus theoretical
time complexity is ϑ(n2). �

3. Experimantal results

Time complexity of this algorithm is similar to insertion sort algorithm, ple-
ase see [23]. However, these two algorithms differ in the way of sorting and have
a different sort time constant. Thus, it is important to test their performance in
practice and verify theoretical assumptions. Methods for validity tests and ana-
lysis of algorithms that were used in this article are described by the authors
of [3, 4, 10]. Some other methods are also presented in [16, 21, 22]. Bubble sort
algorithm in classical form, as well as insertion sort, were tested to the level of
1000000 elements (see [23]). Above this number of elements using classic bubble
sort takes considerable amount of time. Let us first analyze values of CPU clock
cycles measured during the tests. The research results are plotted in Figures 2–3.
Chart of average CPU clock cycles in Figure 2 shows that it increases practical-

ly linear with the number of sorted elements. Thus, classic bubble sort algorithm
in many situations may behave similarly to insertion sort described in [21, 23].
Shown in Figure 3 standard deviation and average deviation of CPU clock

cycles estimate possible changes in the examined values. Analysis of charts shows
that for large data sets, the algorithm can slow down process of sorting. We conc-
lude that for sequences of over 1000000 elements one should use other algorithms.
Presented statistical study of CPU clock cycles is not sufficient description of clas-
sic bubble sort algorithm. Therefore for a broader description of studied algorithm
authors of [3, 4, 10, 16, 21, 22] propose some other factors. One of them is sorting
time. Measured results were plotted in Figures 4–5.
Standard deviation and average deviation shown in Figure 5 confirm that the

bubble sort algorithm for large data sets can behave with potential variability
of execution time. Moreover the algorithm behaves unstable for sets of size close
to 10000. Coefficients of variation of classic bubble sort algorithm, as described
in [3,4,10], are shown in Figure 6. The values of the coefficients of variation shown

108 Z. Marszałek, D. Połap, M. Woźniak

in Figure 6 were approximated by polynomials. Characteristic curves derived from
the variation of classic bubble sort algorithm are shown in Figure 6. The lowest
volatility is characterized by the time, while the largest changes may in CPU
clock cycles. Such properties are related to the possibility of more efficient use
of the processor or code optimization. The result curves of variation indicate the
possibility of efficient use of this algorithm in the range of 100 to 10000 elements.

Fig. 2. The average number of CPU clock cycles during classic bubble sort

Rys. 2. Średnia liczba cykli zegarowych procesora w trakcie sortowania bąbelkowego
w postaci klasycznej

Fig. 3. Chart of the standard deviation and the average deviation of the results
Rys. 3. Wykres odchylenia standardowego oraz odchylenia średniego wyników przepro-

wadzonych badań

On classic bubble sort performance for large data sets 109

Fig. 4. The average time of classic bubble sort

Rys. 4. Średnia liczba cykli zegarowych procesora w trakcie sortowania bąbelkowego
w postaci klasycznej

Fig. 5. Charts of the standard deviation and the average deviation of results
Rys. 5. Wykres odchylenia standardowego oraz odchylenia średniego wyników badań

4. Conclusions

In conclusion, we see that the presented in [20, 21] version of the algorithm
with logic control of order can be more efficient for large data sets and allows
acceleration of the sorting. This was verified in tests and comparisons. There are
also some dedicated methods designed for large data sets and NoSQL database
systems. In [24] is discussed special version of modified merge sort. While in [16] is
presented fast merging for NoSQL systems. moreover in [25] and [26] are presented
dedicated quick sort and heap sort respectively. Further research will concentrate

110 Z. Marszałek, D. Połap, M. Woźniak

on extensions of sorting methods, similar to these presented in [22] and perfor-
mance improvements like these discussed in [16, 17].

Fig. 6. Polynomial approximation of coefficient of variation for classic bubble sort
Rys. 6. Aproksymacja wielomianowa współczynnika zmienności dla sortowania bąbelko-

wego w postaci klasycznej

References

1. Aho I.A., Hopcroft J., Ullman J.: The Design and Analysis of Computer Al-
gorithms. Addison-Wesley, Indianapolis 1974.

2. Banachowski L., Diks K., Rytter W.: Algorithms and Data Structures. WNT,
Warszawa 1996 (in Polish).

3. Bentley J.L., Stanat D.F., Steele J.M.: Analysis of a randomized data structure
for representing ordered sets. In: Proceedings of the 19th Annual Allerton
Conference on Communication, Control and Computing, University of Illinois,
364–372.

4. Brown M.R., Tarjan R.E.: Design and analysis of data structures for repre-
senting sorted lists. SIAM J. Comput. 9 (1980), 594–614.

5. Carlsson S., Chen J.: An optimal parallel adaptive sorting algorithm. Inform.
Process. Lett. 39 (1991), 195–200.

6. Cook C.R., Kim. D.J.: Best sorting algorithms for nearly sorted lists. Comm.
ACM 23 (1980), 620–624.

On classic bubble sort performance for large data sets 111

7. Dinsmore R.J.: Longer strings for sorting. Comm. ACM 8 (1965), 48–65.

8. Dlekmann R., Gehring J., Luling R., Monien B., Nubel M., Wanka R.: Sorting
large data sets on a massively parallel system. In: Proceedings of the 6th IEEE
Symposium on Parallel and Distributed Processing, Dallas 1994, 29–38.

9. Estivill-Castro E., Wood D.: A genetic adaptive sorting algorithms. Comput. J
35 (1992), 505–512.

10. Islam T., Lakshman K.B.: On the error sensitivity of sort algorithms. In: Pro-
ceedings of International Conference on Computing and Information, Toronto
1990, 81–85.

11. Knuth D.: The Art of Computer Programming, vol. 1–3. Addison-Wesley Pro-
fessional, Indianapolis 2006.

12. Knuth D.E., Greene D.H.: Mathematics for the Analysis of Algorithms,
Birkhäuser, Boston 2007.

13. Levcopolos C., Petersson O.: A note on adaptive parallel sorting. Inform. Pro-
cess. Lett. 33 (1985), 187–191.

14. Levcopolos C., Petersson O.: An optimal parallel algorithm for sorting presor-
ted files. Lecture Notes in Comput. Sci. 338 (1988), 154–160.

15. Levcopolos C., Petersson O.: Splitsort an adaptive sorting algorithm. Inform.
Process. Lett. 39 (1991), 205–211.

16. Marszałek Z., Połap D., Woźniak M.: On preprocessing large data sets by the
use of triple merge sort algorithm. Proceedings of the International Conferen-
ce on Advances in Information Processing and Communication Technologies
(IPCT 2014), The IRED – Digital Seek Library, Santa Barbara 2014, 65–72.

17. Marszałek Z., Woźniak M.: On possible organizing Nosql database systems.
Int. J. Information Science and Intelligent System 2, no. 2 (2013), 51–59.

18. Sinha R., Zobe J.: Cache-conscious sorting of large sets of strings with dyna-
mic tries. J. Exp. Algorithmics 9 (2004), article no. 1.5.

19. Weiss M.A.: Data Structures and Algorithm Analysis in C++. Prentice Hall,
Indianapolis 2013.

20. Woźniak M., Marszałek Z.: On some properties of bubble sort with logic control
of order for large scale data sets. Zesz. Nauk. PŚl., Mat. Stosow. 3 (2013), 47–
58.

21. Woźniak M., Marszałek Z.: Selected Algorithms for Sorting Large Data Sets.
Wyd. Pol. Śl. (Silesian University of Technology Press), Gliwice 2013.

22. Woźniak M., Marszałek Z.: Extended Algorithms for Sorting Large Data Sets.
Wyd. Pol. Śl. (Silesian University of Technology Press), Gliwice 2014.

112 Z. Marszałek, D. Połap, M. Woźniak

23. Woźniak M., Marszałek Z., Gabryel M.: The analysis of properties of insertion
sort algorithm for large data sets. Zesz. Nauk. PŚl., Mat. Stosow. 2 (2012),
45–55.

24. Woźniak M., Marszałek Z., Gabryel M., Nowicki R.K.: Modified merge sort
algorithm for large scale data sets. Lecture Notes in Artificial Intelligence
7895 (2013), 612–622.

25. Woźniak M., Marszałek Z., Gabryel M., Nowicki R.K.: On quick sort algorithm
performance for large data sets. In: Looking into the Future of Creativity and
Decision Support Systems, Skulimowski A.M.J. (ed.), Progress & Business
Publishers, Cracow 2013, 647–656.

26. Woźniak M., Marszałek Z., Gabryel M., Nowicki R.K.: Triple heap sort algori-
thm for large data sets. In: Looking into the Future of Creativity and Decision
Support Systems, Skulimowski A.M.J. (ed.), Progress & Business Publishers,
Cracow 2013, 657–665.

27. Zheng S.Q., Calidas B., Zhang Y.: An efficient general in-place parallel sorting
scheme. J. Supercomput. 14 (1999), 5–17.

