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1. Introduction

It is well known that examination of existence of invariant manifolds of dy-
namic systems is related to existence of the Green’s function for the linearised
system, i.e. for a linear extension of a dynamical system (see [1,5,6]). More preci-
sely, if a linear extension has one Green’s function, i.e. the system is regular, then
the invariant manifold for a heterogeneous extension of the dynamical system can
be expressed in an explicit integral form. This makes it possible to examine the
smoothness of the invariant manifold. Deep research in this direction can be found
in [2,7–9]. Book [3] shows that regularity of a linear extension of a dynamic system
having the form of















dx

dt
= a (x) , x ∈ R

m,

dy

dt
= A (x) y, y ∈ R

n,

(1)

is equivalent to the existence of a certain non-degenerated quadratic form whose
derivative, with respect to the tested system, is positive definite. Namely, we have
the following theorem:

Theorem 1. Let there be a quadratic form

W = 〈S (x) y, y〉, y ∈ R
n, (2)

associated with symmetric matrix S (x) ∈ C1(Rm), whose derivative with respect
to the system of equations















dx

dt
= a (x) ,

dy

dt
= −AT (x) y,

(3)

is positive definite; thus

Ẇ =
〈[

Ṡ (x) − S (x)AT (x)−A (x)S (x)
]

y, y
〉

­ ‖y‖2, (4)

then system (1) will be weakly regular. If in addition we assume that

detS (x) 6= 0 ∀x ∈ R
m, (5)

then system (1) will be regular.
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If a homogeneous linear extension has many different Green’s functions, which
is a strictly weakly regular system, then examination of smoothness of the invariant
manifolds is rather difficult. Therefore, monograph [3] proposes complementing the
linear extension to the form of a triangular regular system allowing it to obtain
the Green’s function for the initial linear extension as an n–dimensional block
in a 2n–dimensional Green’s function. This result is formulated in the following
theorem:

Theorem 2. Let system (1) be weakly regular; then the extended system































dx

dt
= a (x) ,

dy

dt
= A (x) y,

dz

dt
= y −AT (x) z,

(6)

is regular. Whereby the derivative of non-degenerated quadratic form

Vp = p〈y, z〉+ 〈S(x)z, z〉,

with respect to the system (6) is positive definite for sufficiently large values of

parameter p.

It turned out that the theorem remains true even for the system






























dx

dt
= a (x) ,

dy

dt
= A (x) y,

dz

dt
= B(x)y −AT (x) z,

(7)

where matrix B(x) is any positive definite matrix (or even negative definite).
Theorem 2 can be further generalised to a wider class of systems having the form































dx

dt
= a (x) ,

dy

dt
= A (x) y +B2(x)z,

dz

dt
= B1(x)y −AT (x)z,

(8)
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where B1(x), B2(x) are positive definite matrices. Then the derivative of the qu-
adratic form V = 〈y, z〉 with respect to this system is positive definite, which
means that the system is regular.
At this point a new question arises. If we fix the quadratic form V = 〈y, z〉,

what conditions would have be met by the matrices of the system






























dx

dt
= a (x) ,

dy

dt
= A11 (x) y +A12(x)z,

dz

dt
= A21(x)y +A22(x)z,

(9)

in order for the derivative of this form with respect to this system to be positive
definite, i.e. for the system to be regular. Of course, after the previous conside-
rations, the solution to this problem seems to be trivial. It is sufficient that the
following condition be satisfied: A11 = −AT22, and the matrices A12 and A21 be
positive definite. However, the problem remains unsolved and becomes the star-
ting point for a more thorough analysis of the issue of complementation of weakly
regular linear extensions of dynamical systems to regular ones that have the only
the Green’s function (see [4]). This work aims to present the results obtained in
this direction.

2.Main results

Previous studies have focused the complementation of one weakly regular sys-
tem to a regular one. Currently, based on weak regularity of two systems, we will
construct one regular system. Consider two systems of differential equations















dx

dt
= ω(x),

dy

dt
= A1(x)y,















dx

dt
= ω(x),

dy

dt
= A2(x)y,

(10)

where y ∈ R
n, x ∈ R

m, ω(x) ∈ CLip(Rm), Ai(x) ∈ C0(Rm). The designations
come from reference work [3].
The following statement is true.
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Theorem 3. If systems (10) are weakly regular, then the system















































dx

dt
= ω(x),

dz1

dt
= [A2(x) + 12 (A1(x) +A

T
1 (x)) − In]z1 + [A

T
2 (x) +A1(x)]z2,

dz2

dt
= [−A2(x) + 12 (A1(x)−A

T
1 (x)) + In]z1 −A

T
2 (x)z2,

dz3

dt
= [A2(x) + 12 (A

T
1 (x) −A1(x)) + In]z1 − [A1(x) +A

T
2 (x)]z2 −A

T
1 (x)z3,

(11)
where zi ∈ R

n, x ∈ R
m, ω(x) ∈ CLip(Rm), Ai(x) ∈ C0(Rm), is regular, i.e. has

exactly one 3n× 3n dimensional Green function.
Also, the derivative of the quadratic form

Vp = p2{〈z1, z2〉+ 〈z1, z3〉+ 〈z2, z3〉}+ p〈S2(x)z2, z2〉+ 〈S1(x)z3, z3〉, (12)

with respect to system (11) for sufficiently large values of p >> 1 is positive
definite.

Proof. Because of the weak regularity of systems (10) there exist symmetric ma-
trices Si(x) ∈ C′(Rm, ω), i = 1, 2, satisfying the inequality

〈

[Ṡi(x) − Si(x)ATi (x)−Ai(x)Si(x)]z, z
〉

­ ‖z‖2, (13)

whereby Si(x) may be a degenerated matrix.
Let

Vp = p2{〈z1, z2〉+ 〈z1, z3〉+ 〈z2, z3〉}+ p〈S2(x)z2, z2〉+ 〈S1(x)z3, z3〉,

be a quadratic form with a parameter p > 0.
We will show that the derivative of this form with respect to system (11) for

sufficiently large values of the parameter p > 0, is positive definite.
Let us denote

v = 〈z1, z2〉+ 〈z1, z3〉+ 〈z2, z3〉. (14)

By calculating the derivative of the form v with respect to system (11) we obtain

v̇ = 2〈Iz1, z1〉.

Assuming that
w = p〈S2(x)z2, z2〉+ 〈S1(x)z3, z3〉, (15)
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the derivative of this form with respect to system (11) is equal to

ẇ = p
{

〈Ṡ2z2, z2〉 − 〈S2A
T
2 z2, z2〉 − 〈A2S2z2, z2〉

}

+

+ 2p〈S2[−A2 +
1
2
(A1 −AT1 ) + I]z1, z2〉+ 〈Ṡ1z3, z3〉 − 〈S1A

T
1 z3, z3〉−

− 〈A1S1z3, z2〉+2〈S1[A2 +
1
2
(AT1 −A1) + I]z1, z3〉− 2〈S1[A1 +A

T
2 ]z2, z3〉.

Let

K1 = ‖S2[−A2 +
1
2
(A1 −AT1 ) + I]‖0,

K2 = ‖S1[A2 +
1
2
(AT1 −A1) + I]‖0,

K3 = ‖S1[A1 +AT2 ]‖0.

Using inequality (13), we obtain

ẇ ­ p‖z2‖
2 + ‖z3‖2 − 2pK1‖z1‖‖z2‖ − 2K2‖z1‖‖z3‖ − 2K3‖z2‖‖z3‖.

Since V̇p = p2v̇ + ẇ, the estimate of the formula is true

V̇p ­ 2p2‖z1‖2 + p‖z2‖2 + ‖z3‖2 − 2pK1‖z1‖‖z2‖ −

− 2K2‖z1‖‖z3‖ − 2K3‖z2‖‖z3‖. (16)

Consider the right hand-side of inequality (16) as a quadratic form Φ of three
variables t1, t2, t3:

Φ(t1, t2, t3) = 2p2t21 + pt
2
2 + t

2
3 − 2pK1t1t2 − 2K2t1t3 − 2K3t2t3,

which corresponds to the following matrix

T =







2p2 −pK1 −K2

−pK1 p −K3

−K2 −K3 1






.

It is obvious that for sufficiently large values of the parameter p > 0 matrix T is
positive definite, and thus the derivative of the quadratic form Vp with respect to
system (11) is positive definite for sufficiently large values of parameter p > 0.
Now we will prove that quadratic form (12) is positive definite for p≫ 0. Let

us write the matrix of quadratic form (12) as follows

Sp =







0 1
2p
2In

1
2p
2In

1
2p
2In pS2(x) 1

2p
2In

1
2p
2In

1
2p
2In S1(x)






. (17)
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The matrix Sp can be expressed in the following form

Sp = p2J + pS̄2(x) + S̄1(x),

where

J =
1
2







0 In In

In 0 In

In In 0






,

S̄1(x) = diag(0, 0, S1(x)),

S̄2(x) = diag(0, S2(x), 0).

We will show that matrix S2p for sufficiently large values of parameter p is positive
definite.
Because S2p = p

4J2+p3(JS̄2(x)+S̄2(x)J)+p2(JS̄1(x)+S̄22 (x)+S̄1(x)J)+S̄
2
1 (x),

then assuming u = [u1, u2, u3], ui ∈ R
n, we obtain

〈S2pu, u〉 = p
4〈J2u, u〉+ p3〈[JS̄2(x) + S̄2(x)J ]u, u〉+

+ p2〈[JS̄1(x) + S̄22(x) + S̄1(x)J ]u, u〉+ 〈S̄
2
1(x)u, u〉.

Let us estimate each component of 〈S2pu, u〉; thus

〈J2u, u〉 ­
1
4

(

‖z1 + z2 + z3‖2 + ‖z1‖2 + ‖z2‖2 + ‖z3‖2
)

­
1
4
‖u‖2,

〈[JS̄2(x) + S̄2(x)J ]u, u〉 ­ −M2‖u‖2,

〈[JS̄1(x) + S̄22(x) + S̄1(x)J ]u, u〉 ­ −M1‖u‖
2,

〈S̄21 (x)u, u〉 ­ −M0‖u‖
2,

where Mi = const > 0. Therefore, we obtain the estimate:

〈S2pu, u〉 ­ (
1
4
p4 − p3M2 − p

2M1 −M0)‖u‖2.

It follows that for sufficiently large values of parameter p > 0 matrix S2p is positive
definite, and hence detS2p 6= 0 and, consequently, detSp 6= 0 for all x ∈ R

m.
We have proven that quadratic form (12) has a positive definite derivative with

respect to system (11) and matrix Sp associated with this form is non-degenerated
for sufficiently large values of parameter p > 0, so system (11) is regular, i.e. has
exactly one Green’s function. �

In the case of two weakly regular systems














dx

dt
= ω(x),

dy

dt
= Ai(x)y, i = 1, 2,
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where y ∈ R
n, x ∈ R

m, ω(x) ∈ CLip(Rm), Ai(x) ∈ C0(Rm) the structure of such
a matrix is obtained

P (x) =







A2 + 12 (A1 +A
T
1 )− In AT2 +A1 0

−A2 + 12 (A1 −A
T
1 ) + In −AT2 0

A2 + 12 (A
T
1 −A1) + In −[A1 +AT2 ] −A

T
1






,

that the system














dx

dt
= ω(x),

dy

dt
= P (x)z, z ∈ R

3n,

(18)

is regular. Let us illustrate this in the following example.

Example

Let us consider two weakly regular systems of equations














dx

dt
= sinx, x ∈ R,

dy

dt
= 3(cosx)y, y ∈ R,















dx

dt
= 1, x ∈ R,

dy

dt
= −(tghx)y, y ∈ R.

We will show that the system


































































dx1

dt
= sinx1,

dx2

dt
= 1,

dy1

dt
= [−1 + 3 cosx1 − tghx2]y1 + [3 cosx1 − tghx2]y2,

dy2

dt
= [1 + tghx2]y1 + [tghx2]y2,

dy3

dt
= [1− tghx2]y1 − [3 cosx1 − tghx2]y2 − [3 cosx1]y3,

(19)

is regular.
Let’s take the quadratic form

Vp = p2(y1y2 + y1y3 + y2y3) + p(tghx2)y22 − (cosx1)y
2
3 ,

and assume that
v1 = y1y2 + y1y3 + y2y3.
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Then the derivative of v1 with respect to system (19) is equal to

v̇1 = 2y21 .

Similarly, by calculating the derivative v2 = (tghx2)y22 with respect to system
(19), we obtain

v̇2 =
1

ctgh2 x2
y22 + 2(tghx2)y2{[1 + tghx2]y1 + [tghx2]y2} =

=
[

1

ctgh2 x2
+ 2(tghx2)2

]

y22 + 2 tghx2(1 + tghx2)y1y2 ­

­ y22 − 4|y1||y2|.

Finally, by calculating the derivative of the form v3 = (− cosx1)y23 with respect
to system (19), we obtain

v̇3 = y23 sin
2 x1 − 2y3{[1− tghx2]y1 − [3 cosx1 − tghx2]y2 − [3 cosx1]y3} =

= y23(sin
2 x1 + 6 cos2 x1)− 2[1− tghx2]y1y3 + 2[3 cosx1 − tghx2]y2y3 ­

­ y23 − 4|y1||y3| − 8|y2||y3|.

Eventually, the derivative of quadratic form Vp with respect to system (19) satisfies
the inequality

Vp ­ 2p2y21 + py
2
2 − 4p|y1||y2|+ y

2
3 − 4|y1||y3| − 8|y2||y3|.

Let us consider the right hand-side of the above inequality as quadratic form Φ
dependent on three variables t1, t2, t3:

Φ(t1, t2, t3) = 2p2t21 + pt
2
2 − 4pt1t2 + t

2
3 − 4t1t3 − 8t2t3.

The matrix associated with this form is the following

T =







2p2 −2p −2
−2p p −4
−2 −4 1






.

Matrix T is positive definite for p > 20; hence system (19) is regular for p > 20.

3. Generalisation of the results

Let us consider k systems of differential equations














dx

dt
= ω(x),

dy

dt
= Ai(x)y, i = 1, 2, . . . , k,

(20)
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where y ∈ R
n, x ∈ R

m, t ∈ R, ω(x) ∈ CLip(Rm), Ai(x) ∈ C0(Rm). Assume that
each of these systems is weakly regular, i.e. for each of these systems there exists
at least one Green’s function.
The problem is to find for k ­ 3 a matrix

P (x) = P̃ (A1, A2, . . . , Ak),

with dimensions (k + 1)n× (k + 1)n so that the system














dx

dt
= ω(x),

dz

dt
= P (x)z, z ∈ R

(k+1)n,

(21)

is regular, namely that it has exactly one the Green’s function.
At the beginning, consider a case where k = 3. Let us express system (21) in

the following form


































dx

dt
= ω(x),

dz1

dt
= P11(x)z1 + . . .+ P14(x)z4,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
dz4

dt
= P41(x)z1 + . . .+ P41(x)z4, zi ∈ R

n.

(22)

By calculating the derivative of a quadratic form

V (z) = 2[〈z1, z2〉+ 〈z1, z3〉+ 〈z1, z4〉+ 〈z2, z3〉+ 〈z2, z4〉+ 〈z3, z4〉], (23)

we obtain

V̇ (z) = 〈[SP (x) + PT (x)S]z, z〉,

where

S =











0 I I I
I 0 I I
I I 0 I
I I I 0











. (24)

Suppose that the quadratic form satisfies the estimate

V̇ (z) ­ ‖z1‖2. (25)

In order for this condition to be fulfilled, it suffices that

SP (x) = diag(B0, 0, 0, 0) +M(x), (26)
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where matrices M(x) and B(x) meet the conditions

MT (x) ≡ −M(x), 〈B0(x)z1, z1〉 ­ β0‖z1‖2, β0 > 0. (27)

Matrix P (x) can be expressed in the following form

P (x) = S−1[diag(B0, 0, 0, 0) +M(x)] =

=
1
3











−2I I I I

I −2I I I

I I −2I I

I I I −2I





















B0(x) M12(x) M13(x) M14(x)
−MT12(x) 0 M23(x) M24(x)
−MT13(x) −M

T
23(x) 0 M34(x)

−MT14(x) −M
T
24(x) −M

T
34(x) 0











=

= [Pij(x)]
4
i,j=1 , (28)

where

P11(x) =
1
3
(−2B0(x) −

4
∑

i=2

MT1i(x)),

P21(x) =
1
3
(B0(x) + 2MT12(x)−M

T
13(x) −M

T
14(x)),

P22(x) =
1
3
(M12(x)−MT23(x) −M

T
24(x)),

P33(x) =
1
3
(M13(x) +M23(x) −MT34(x)),

P44(x) =
1
3
(M14(x) +M24(x) +M34(x)).

(29)

Denoting
P̄ (x) = [Pij(x)]4i,j=2 , z̄ = [z2, z3, z4], (30)

let us consider the following system














dx

dt
= ω(x),

dz̄

dt
= P̄ (x)z̄,

(31)

If matrix P̄ (x) of system (31) has a special block form

P̄ (x) =







−AT1 (x) 0 0
∗ −AT2 (x) 0
∗ ∗ −AT3 (x)






, (32)

then we obtain the following equations

P22(x) = −AT1 (x), P23(x) = 0,

P33(x) = −AT2 (x), P24(x) = 0,

P44(x) = −AT3 (x), P34(x) = 0.

(33)
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based on which one can uniquely determine matrices Mij(x), i = 1, 2, 3, j =
2, 3, 4. Using (29), equations (33) take the following form

M12(x)−MT23(x) −M
T
24(x) = −3A

T
1 (x), (34)

M13(x) +M23(x) −MT34(x) = −3A
T
2 (x), (35)

M14(x) +M24(x) +M34(x) = −3AT3 (x), (36)

and

M13(x)− 2M23(x)−MT34(x) = 0, (37)

M14(x)− 2M24(x) +M34(x) = 0, (38)

M14(x) +M24(x) − 2M34(x) = 0. (39)

By subtracting equation (37) from equation (35), equation (38) from (36) and
equation (39) from equation (36), we obtain, respectively

M23(x) = −AT2 (x), M24(x) = −AT3 (x), M34(x) = −AT3 (x), (40)

and, hence, we can determine the remaining matrices Mij(x):

M12(x) = −3AT1 (x)−A2(x)−A3(x),

M13(x) = −2AT2 (x)−A3(x),

M14(x) = −AT3 (x).

(41)

If systems of equations (20) are weakly regular, then, because the conditions (33)
for matrix P̄ (x) take place, the derivative of the quadratic form

V̄ (x, z̄) = 〈S(x)z̄, z̄〉, (42)

with respect to system (31) is positive definite, i.e.

˙̄V (x, z̄) =
〈

[Ṡ(x) + S(x)P̄ (x) + P̄T (x)S(x)]z̄, z̄
〉

­ ‖z̄‖2. (43)

When conditions (25) and (43) are met, the derivative of the quadratic form

pV (z) + V̄ (x, z̄), (44)

with respect to the system (21) for sufficiently large values of parameter p > 0 is
positive definite. Since quadratic form (44) for sufficiently large values of parameter
p is non-degenerated, then system (21) is regular, wherein matrix P (x) is of the
following form
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P (x) =
1
3











−2I I I I

I −2I I I

I I −2I I

I I I −2I











×

×











B0 −3AT1 −A2 −A3 −2A
T
2 −A3 −A

T
3

3A1 +AT2 +A
T
3 0 −AT2 −AT3

2A2 +AT3 A2 0 −AT3
A3 A3 A3 0











,

(45)

where B0(x) ∈ C0(Rm) is any positive definite matrix.
In a case where k > 3 matrix P (x) is of the following form

P (x) =
1
k















−(k − 1)I I I . . . I

I −(k − 1)I I . . . I

I I −(k − 1)I . . . I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I I I . . . −(k − 1)I















×

×















B0(x) M12(x) M13(x) . . . M1,k+1(x)
−MT12(x) 0 M23(x) . . . M2,k+1(x)
−MT13(x) −MT23(x) 0 . . . M3,k+1(x)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−MT1,k+1(x) −M
T
2,k+1(x) −M

T
3,k+1(x) . . . 0















.

(46)

As before, assuming that matrix P̄ (x) = [Pij ]ki,j=2 has the following special block
form

P̄ (x) =















−AT1 (x) 0 0 . . . 0
∗ −AT2 (x) 0 . . . 0
∗ ∗ −AT3 (x) . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∗ ∗ ∗ . . . −ATk (x)















, (47)

matrices Mij can be uniquely determined

M23(x) = −AT2 (x),

M24(x) =M34(x) = −AT3 (x),

M25(x) =M35(x) =M45(x) = −AT4 (x),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M2,k+1(x) =M3,k+1(x) =M4,k+1(x) = . . . =Mk,k+1(x) = −ATk (x),

(48)
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and

M12(x) = −kAT1 (x) −
k
∑

i=2

Ai(x),

M13(x) = −(k − 1)AT2 (x)−
k
∑

i=3

Ai(x),

...

M1p(x) = −(k − p+ 2)ATp (x) −
k
∑

i=p

Ai(x),

M1,k+1(x) = −ATk (x).

(49)

Therefore, the following theorem is true.

Theorem 4. Let systems (20) be weakly regular; then the system















dx

dt
= ω(x),

dz

dt
= P (x)z, z = (z1, z2, . . . , zk),

(50)

where zi ∈ R
n, x ∈ R

m, ω(x) ∈ CLip(Rm), P (x) ∈ C0(Rm), is regular, i.e. has
exactly one (k · n)× (k · n) dimensional Green’s function, wherein matrix P (x) is
defined by formula (46).
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