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Summary. As well known, permanent of a square (0,1)-matrix A of
order n enumerates the permutations β of 1, 2, ..., n with the incidence ma-
trices B 6 A. To obtain enumerative information on even and odd permu-
tations with condition B 6 A, we should calculate two-fold vector (a1, a2)
with a1 + a2 = perA. More general, the introduced ω-permanent, where
ω = e2πi/m, we calculate as m-fold vector. For these and other matrix func-
tions we generalize the Laplace theorem of their expansion over elements of
the first row, using the defined so-called “combinatorial minors”. In particu-
lar, in this way, we calculate the cycle index of permutations with condition
B 6 A.

MINORY KOMBINATORYCZNE DLA FUNKCJI
MACIERZOWYCH I ICH ZASTOSOWANIA

Streszczenie. Jak wiadomo, permanent (0, 1)-macierzy kwadratowej
A stopnia n podaje liczbę permutacji β liczb 1, 2, ..., n, mających macierz
incydencji B 6 A. Aby otrzymać informację o liczbie parzystych i nie-
parzystych permutacji z warunkiem B 6 A, należy obliczyć dwuskłado-
wy wektor (a1, a2), gdzie a1 + a2 = perA. Ogólniej wprowadzamy po-
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jęcie ω-permanentu, gdzie ω = e2πi/m, który obliczamy jako odpowiedni
m-składowy wektor. Dla takich i innych funkcji macierzowych uogólnia-
my twierdzenie Laplace’a o ich rozwinięciu względem elementów pierwszego
wiersza, wykorzystując zdefiniowane w tym celu tak zwane minory kombi-
natoryczne. W szczególności obliczamy w ten sposób indeks cyklowy per-
mutacji spełniających warunek B 6 A.

1. Introduction

Let S(n) be symmetric group of permutations of numbers {1, ..., n}. Let A =
{aij} be square matrix of order n. Recall that the permanent of A is defined by
formula ([4]):

perA =
∑

s∈S(n)

n
∏

i=1

ai,s(i). (1)

If A is a (0, 1) matrix, then it defines a class B = B(A) of permutations with
restricted positions, such that the positions of its zeros are prohibited. Such class
could be equivalently defined by a simple inequality: a permutation π ∈ B if and
only if for its incidence matrix P we have P 6 A. One of the most important
application of perA consists of the equality |B| = perA. Thus perA enumerates
permutations with restricted positions of the class B(A).
Let γ(π) be number of independent cycles of π, including cycles of length 1.

Then the difference d(π) = n− γ(π) is called decrement of π ([3]). Permutation
π is called even (odd), if d(π) is even (odd). Note that the determinant of matrix
A could be defined by formula

detA =
∑

even s∈S(n)

n
∏

i=1

ai,s(i) −
∑

odd s∈S(n)

n
∏

i=1

ai,s(i). (2)

Since, evidently, we also have

perA =
∑

even s∈S(n)

n
∏

i=1

ai,s(i) +
∑

odd s∈S(n)

n
∏

i=1

ai,s(i), (3)

then the numbers of even and odd permutations of class B(A) are given by vector
(1
2
(perA+ detA),

1
2
(perA− detA)

)

. (4)

Note that, in contrast to permanent, there exist methods of very fast calculation
of detA. Therefore, the enumerative information given by (4) one can obtain
approximately for the same time as the number |B(A)| given by (1).
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Let m > 3 and 0 6 k < m be given integers. We say that a permutation π
belongs to class k modulo m (π ∈ S(n)k,m), if d(π) ≡ k (mod m). The first problem
under our consideration in this paper is the enumeration of permutations π ∈ B(A)
of class k modulo m. It is clear that this problem is a natural generalization of
problem of enumeration of even and odd permutation with restricted positions
which is solved by (4). In order to solve this more general problem, put ω = e

2πi
m

and introduce a new matrix function which we call ω-permanent.

Definition 1. Let A be a square matrix of order n.We call ω-permanent of matrix

A the following matrix function

perω A =
∑

s∈S
(n)
0,m

n
∏

i=1

ai,s(i) + ω
∑

s∈S
(n)
1,m

n
∏

i=1

ai,s(i) +

+ ω2
∑

s∈S
(n)
2,m

n
∏

i=1

ai,s(i) + ...+ ω
m−1

∑

s∈S
(n)
m−1,m

n
∏

i=1

ai,s(i). (5)

Note that, if m = 1, then perω A = perA, and if m = 2, then perω A = detA.
In case m > 3, every sum in (5) essentially differs from permanent. Therefore, the
known methods of evaluation of permanent ([4, ch. 7]) are not applicable. However,
using so-called “combinatorial minors”, below we find an expansion perω A over
the first row of matrix A. This allows to reduce a problem of order n to a few
problems of order n− 1.
The second problem under our consideration is another important problem

of enumeration of full cycles of length n with restricted positions. In connection
with this problem, we introduce another new matrix function which we call cyclic
permanent.

Definition 2. Let A be square matrix of order n. The number

Cycl(A) =
∑

s

n
∏

i=1

ai,s(i), (6)

where the summing is over all full cycles from S(n), we call a cycle permanent

of A.

The third problem is a problems of enumeration of permutations with restric-
ted positions with a restrictions on their cycle structure.
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Denote γ(s) the number of all cycles of permutation s (including cycles of
length 1, if they exist). Recall ([1]) that the absolute value of Stirling number
S(n, k) of the first kind equals to number of permutations s ∈ S(n) with γ(s) =
k ([1, 5]). A natural generalization of Stirling numbers of the first kind is the
following matrix function.

Definition 3. The matrix function

S(A;n, k) =
∑

s∈S(n),γ(s)=k

n
∏

i=1

ai,s(i), (7)

where n is order of square matrix A, we call Stirling function of index k.

Finally, recall ([5]) that a permutation s ∈ S(n) with k1 cycles of length 1, k2
cycles of length 2, and so on, is said to be of cycle structure k = (k1, k2, ..., kn).
Denote ν(k1, k2, ..., kn) the number of permutations of class k = (k1, k2, ..., kn).
Then the polynomial

C(t1, t2, ..., tn) =
∑

ν(k1, k2, ..., kn)t
k1
1 t
k2
2 ...t

kn
n (8)

is called the cycle index of permutations of S(n). A natural generalization of the
cycle index on permutations with restricted positions is

C(A; t1, t2, ..., tn) =
∑

ν(A; k1, k2, ..., kn)t
k1
1 t
k2
2 ...t

kn
n (9)

where ν(A; k1, k2, ..., kn) is the number of permutations of class B(A) with the
cycle structure k. In particular, if A = Jn, where Jn is n×n matrix from 1’s only,
we have C(A; t1, t2, ..., tn) = C(t1, t2, ..., tn).

2. Observations in case m = 2 of ω-permanent
(determinant)

The case of determinant (m = 2) of ω-permanent is a unique case when it
is easy to obtain a required enumerative information formally using formulas (4).
For the passage to a general case, it is important for us to understand how one can
obtain such information from the definition (2) of determinant only. Essentially,
the required information is contained in vector

detA =
(

∑

even s∈S

n
∏

i=1

ai,s(i), −
∑

odd s∈S

n
∏

i=1

ai,s(i)

)

, (10)
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and it immediately disappears, if to add its components, or formally to use an
identity of the form 1 − 1 = 0. Since ai,j = 0 or 1, then in sums of (10) we
do not use such an identity. However, none of algorithms of fast calculation of
determinant exists without using of it. On the other hand, using the Laplace
algorithm of expansion of determinant over (the first) row, it can only be used at
the last step. Therefore, if not to do the last step, we can obtain the required
enumerative information.

Example 4. By the Laplace expansion, we have

det







0 1 1
1 1 1
1 1 1






= −(1− 1) + (1 − 1) = −1 + 1 + 1− 1 = 2− 2

and, if not to do the useless (with the enumerative point of view) last step, then
we have

det







0 1 1
1 1 1
1 1 1






= (2,−2).

This means that there are two even and two odd permutations with the pro-
hibited position (1, 1).
Of course, in general, the Laplace expansion of determinant over the first row

in its classic form

detA =
n
∑

j=1

(−1)j−1a1,jM1j , (11)

where M1j is minor of element a1j , i.e., determinant of the complementary to a1j
submatrix A1j , does not work for ω-permanent.
Therefore, let us introduce for our aims a more suitable notion of so-called

“combinatorial minor” of element aij . Let the complementary to aij submatrix
Aij have the following n− 1 columns

c1, c2, ..., cj−1, cj+1, ..., cn. (12)

The first j − 1 of these columns we change in the following cyclic order: c2, c3, ...,
cj−1, c1. Then we obtain a new matrix A′ij with the columns

c2, c3, ..., cj−1, c1, cj+1, ..., cn. (13)

Determinant of matrix A′ij we call combinatorial minor (CM)ij of element aij .
It is easy to see that

(CM)i1 =Mi1; (CM)ij = (−1)j−2Mij , j = 2, ..., n. (14)
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Therefore, e.g., expansion (11) one can rewrite in the form

detA = a1,1(CM)11 −
n
∑

j=2

a1,j(CM)1j . (15)

In general, let us give a definition of combinatorial minors for arbitrary matrix
function X(A).

Definition 5. Let X be matrix function defined on all square matrices of order

n > 3. Let A = {aij} be a square matrix of order n and Aij be the complementary
to aij submatrix with columns (12). Denote A′ij a new square matrix of order
n−1 with columns (13). Then the number X(A′ij) is called a combinatorial minor
of aij .

It appears that our observation (15) has a general character. So, in Sections 4
we give a generalization of the Laplace expansion of type (15) for perω A, Cycl(A),
S(A;n, k) and Cn(A; t1, t2, ..., tn).

3.Main lemma

Lemma 6. Let π ∈ S(n) with π(j) = 1 and σ = σj(π), j > 2, such that

σ(1) = π(2), σ(2) = π(3), ..., σ(j − 2) = π(j − 1), σ(j − 1) = π(1),

σ(j) = π(j) = 1, σ(j + 1) = π(j + 1), ..., σ(n) = π(n). (16)

Let, further, π∗ ∈ S(n−1) defined by the formula

π∗(i) =







σ(i) − 1, if 1 6 i 6 j − 1,

σ(i+ 1)− 1, if j 6 i 6 n− 1.
(17)

Then permutations π and π∗ have the same number of cycles:

γ(π) = γ(π∗). (18)

Proof. From (16)–(17) we find

π∗(i) =







π(i+ 1)− 1, if i 6= j − 1,

π(1)− 1, if i = j − 1.
(19)
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Consider a cycle of π containing element j. Let it has length l > 2, such that

π(j) = 1, π(1) = k1, π(k1) = k2, ..., π(kl−3) = kl−2, π(kl−2) = j.

Beginning with the equality π(1) = k1, by (19), this means that

π∗(j − 1) = k1 − 1, π∗(k1 − 1) = k2 − 1, ...,

π∗(kl−3 − 1) = kl−2 − 1, π∗(kl−2 − 1) = j − 1.

Thus to a cycle of π of length l > 2 containing element j corresponds a cycle of
length l−1 of π∗. Quite analogously, we verify that to cycle of π of length l > 2 not
containing element j corresponds a cycle of the same length of π∗. For example,
to cycle of length l > 2 of the form

π(j − 1) = k1, π(k1) = k2, π(k2) = k3, ..., π(kl−2) = kl−1, π(kl−1) = j − 1

(beginning with π(k1) = k2), corresponds the cycle of the same length

π∗(k1 − 1) = k2 − 1, π∗(k2 − 1) = k3 − 1, ...,

π∗(kl−2 − 1) = kl−1 − 1, π∗(kl−1 − 1) = j − 2

such that π∗(j − 2) = π(j − 1)− 1 = k1 − 1. �

Note that the structure of Lemma 6 completely corresponds to the procedure
of creating the combinatorial minors.

4. Laplace expansions of type (15) of perω A,
Cycl(A), S(A;n, k) and C(A; t1, t2, ..., tn)

1) perω A. Consider all permutations π with the condition π(j) = 1. Let j
corresponds to j-th column of matrix A. Then the considered permutations cor-
respond to diagonals of matrix A having the common position (1, j). If j = 1,
then, removing the first row and column, we diminish on 1 the number of cycles
of every such permutation, but also we diminish on 1 the number of elements
of permutations. Therefore, the decrement of permutations does not change. If
j > 2, consider continuation of these diagonals to the matrix of combinatorial
minor A′1,j . Then, by Lemma 6, the number of cycles of every its diagonal does
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not change and, consequently, the decrement is diminished by 1. This means that
we have the following expansion of perω A over the first row

detωA = a1,1(CM)11 + ω
n
∑

j=2

a1,j(CM)1j , (20)

where (CM)1j , j > 1, are combinatorial minors for perω A.
Note that, as for determinant (see Section 2), in order to receive the required

enumerative information, we should prohibit to use the identities of type 1 + ω +
...+ ωm−1 = 0.

2) Cycl(A). For n > 1, here we should ignore element a11. Consider all full
cycles π with the condition π(j) = 1. Let j corresponds to j-th column of matrix
A. Then the considered full cycles correspond to diagonals of matrix A having
the common position (1, j), j > 2. Consider continuation of these diagonals to
the matrix of combinatorial minor A′1,j . Then, by Lemma 6, the number of cycles
of every its diagonal does not change, i.e., they are full cycles of of order n − 1.
Therefore, we have the following expansion of Cycle(A) over the first row of A

Cycle(A) =
n
∑

j=2

a1,j(CM)1j , (21)

where (CM)1j , j > 1, are combinatorial minors for Cycle(A).

3) S(A;n, k). From very close to 1) arguments, we have the following expansion
of S(A;n, k) over the first row of A

S(A;n, k) = a1,1(CM)
(k−1)
11 +

n
∑

j=2

a1,j(CM)
(k)
1j , (22)

where (CM)(k)1j , j > 1, are combinatorial minors of S(A;n, k).
Note that a close to (22) formula was found by the author in [7] but using

much more complicated way.

4) C(t1, t2, ..., tn). We need lemma.

Lemma 7. Let

{a1j , ak11, ak2k1 , ..., akr ,kr−1 , aj,kr} (23)

be a cycle. Then

{ak11, ak2k1 , ..., akr,kr−1 , aj,kr} (24)
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is a cycle with respect to the main diagonal of the matrix of combinatorial mi-

nor A′1,j .

Proof. According to the construction of A′1,j, the main its diagonal is

{a22, a33, ..., aj−1j−1, aj1, aj+1j+1, ..., ann}. (25)

With respect to this diagonal we have the following contour which shows that (24)
is, indeed, a cycle.

{ak11 → aj1 → ajkr → akrkr−1 → akr−1kr−2 → ...→ ak2k1(→ ak11)}. (26)

�

Quite analogously we can prove that to every another cycle of a diagonal con-
taining element a1j correspond the same cycle with respect to the main diagonal
of the matrix A′1,j.
Let A be (0, 1) square matrix of order n. Denote by C(r)(A; t1, t2, ..., tn) a par-

tial cycle index of index (9) of permutations π ∈ B(A) for which {1, π(1), π(2), ...,
π(r − 1)} is a cycle of length r. Then we have

n
∑

r=1

C(r)(A; t1, t2, ..., tn) = C(A; t1, t2, ..., tn). (27)

Therefore, it is sufficient to give an expansion of C(r)(A; t1, t2, ..., tn), r = 1, ..., n.
First of all, note that

C(1)(A; t1, t2, ..., tn) = a11t1C(A; t1, t2, ..., tn−1). (28)

Furthermore, using Lemmas 6-7, we have

C(r)(A; t1, t2, ..., tn) =
tr

tr−1

n
∑

j=2

a1,j(CM)1,j , (29)

where
(CM)1,j = C(r−1)(A′1,j ; t1, t2, ..., tn−1), j = 2, ..., n, (30)

are the combinatorial minors for cycle index of permutations with restricted po-
sitions. Note that factor tr

tr−1
in (29) corresponds to the diminution of the length

of cycle (24) with respect to length of cycle (23).
Thus formulas (27)-(30) reduce the calculation of cycle index of n-permuta-

tions to the calculation of cycle index of n− 1-permutations with a rather simple
computer realization of this procedure. Note that similar but much more compli-
cated procedure was indicated by the author in [8].
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5. An example of enumerating the permutations of
classes 0,1,2 modulo 3 with restricted positions

Let

A =















1 1 1 1 0
0 1 0 1 1
1 0 1 1 1
1 1 1 0 0
1 1 1 1 1















.

Consider class B(A) of permutations with restricted positions and find the distri-
bution of them over classes 0,1,2 modulo 3. We use ω-permanent with ω = e

2πi
3

and its expansion over elements of the first row, given by (20). Recall that, for
the receiving the required enumerative information, we should not use identities
of type 1 + ω + ω2 = 0.
We have

perω A = perω











1 0 1 1
0 1 1 1
1 1 0 0
1 1 1 1











+

+ ω
(

perω











0 0 1 1
1 1 1 1
1 1 0 0
1 1 1 1











+ perω











1 0 1 1
0 1 1 1
1 1 0 0
1 1 1 1











+ perω











1 0 0 1
0 1 1 1
1 1 1 0
1 1 1 1











)

=

= perω







1 1 1
1 0 0
1 1 1






+ ω
(

perω







1 0 1
1 1 0
1 1 1






+ perω







1 1 0
1 0 1
1 1 1







)

+

+ ω2
(

perω







1 1 1
1 1 0
1 1 1






+ perω







1 1 1
1 0 1
1 1 1







)

+ ω perω







1 1 1
1 0 0
1 1 1






+

+ ω2
(

perω







1 0 1
1 1 0
1 1 1






+ perω







1 1 0
1 0 1
1 1 1







)

+ ω perω







1 1 1
1 1 0
1 1 1






+

+ ω2 perω







1 1 0
1 1 1
1 1 1






=
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= (ω + ω2) + (ω + ω2 + 1) + (2ω2 + 1) +

+ (ω2 + 2 + ω) + (2 + 2ω) + (ω2 + 1) + (ω2 + 1 + ω) + (2 + ω) +

+ (ω + 2ω2 + 1) + (ω2 + 2 + ω) = 13 + 9ω + 10ω2.

Thus in B(A) we have 13 permutation of class 0 modulo 3; 9 permutations of class
1 modulo 3 and 10 permutations of class 2 modulo 3. �

6. On two sequences connected with Cycle(A)

In summer of 2010, the author published two sequences A179926 and A180026
in OEIS [10]. a(n) := A179926(n) is defined as the number of permutations of
all τ(n) divisors of n of the form: d1 = n, d2, d3, ..., dτ(n) such that

di+1
di
is

a prime or 1/prime for i = 1, ...τ(n). Note that a(n) is a function of exponents
of prime power factorization of n only; moreover, it is invariant with respect to
permutations of them. This sequence is equivalently defined as the number of ways,
for a given finite multiset E, to get, beginning with E, all submultisets of E, if
in every step we remove or join one element of E. Sequence b(n) := A180026(n)
differs from A179926 by an additional condition: dτ(n)d1 is a prime. In the equivalent
formulation it corresponds to the condition that in the last step E is obtained from
a submultiset by joining one element.
Note that, it is easy to prove that, knowing any permissible permutation of

divisors, say, δ1 = n, δ2, ..., δτ(n) (such that
δi+1
δi
is a prime or 1/prime), we

can calculate b(n) using the following construction. Consider square (0,1) matrix
B = {bij} of order τ(n) in which bij = 1, if δiδj is prime or 1/prime, and bij = 0,
otherwise. Then b(n) = Cycle(B). In case of A179926, the construction is a little
more complicated: a(n) = Cycle(A), where A is obtained from B by the replacing
the first its column by the column from 1’s.
Note also that A. Heinz [2] proved that, in particular, a(Πni=1pi), where pi are

distinct primes, equals to the number of Hamiltonian paths (or Gray codes) on
n-cube with a marked starting node (see A003043 in [10]), while b(Πni=1pi) equals
to the number of directed Hamiltonian cycles on n-cube (see A003042 in [10]).

7. Conclusive remarks

It is interesting that together with the algorithm (27)-(30) for the evaluation
of cycle index of permutations with restricted positions C(A; t1, t2, ..., tn) there is
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a way to find an explicit representation for it. It appears that a unique way for
that gives a so-called “method of index of arrangements” which was discovered
by the author in [6]. This method was realized for finding explicit formulas for
C(A; t1, t2, ..., tn) (with concrete examples) in [9]. Actually, in [9] we gave a wide
development of Riordan-Kaplansky theory of rook polynomials [5].
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