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BROUWER’S THEOREM FOR A SQUARE ON
THE BASIS OF HEX THEOREM

Abstract. This work is a continuation of author’s work [1] on fixed
points. In this work, Brouwer’s theorem is proved on the basis of the Hex
theorem. In the proof, the author uses, among other things, the lemma
about no draw. Two proofs of this lemma are derived. The second proof is
a modification of D. Gale’s proof [2] and is based on the concept of a walk
on the Hex board.

1. Introduction

The game of Hex, although it turned out to be one of the simplest, is also one

of the most interesting board games in mathematical considerations. It is carried

out on a diamond-shaped board composed of hexagonal fields. The dimensions

of the board are usually 11 by 11 fields. Each of the two players has tokens of

different colors. Players alternately place their tokens on the free spaces of the

board so that the adjacent tokens form an uninterrupted sequence connecting the

opposite sides of the board of their own color. The winner is the player who cre-

ates such a sequence first. The game of Hex was invented by the Danish poet
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and mathematician Piet Hein in 1942 while considering the problem of four col-

ors (this problem still has no solution, except for the computer-assisted proof).

Independently from Hein, the game of Hex was invented in 1948 by the Ameri-

can mathematician John Nash. The game gained popularity among students of

American universities. Nash proved in 1949 that the game cannot end in a draw

and, regardless of the board size, there is always a winning strategy for the player

making the first move. Let us add that the lack of tie is due to the fact that one

player can block the other player by completing his own sequence.

In this work, we deal with graphs, among other things. It is therefore worth

to say a few words about their educational role. Already in this work, it can be

noticed that by examining an appropriate graph, it is possible to decide whether

there is a winning strategy in certain games (e.g. in the Hex game). It is worth

to mention the following educational and engineering advantages of graphs:

• learning about the types of reasoning (including combinatorial and spatial

reasoning),

• usefulness in the description of the world around us and its phenomena,

• assistance in solving practical and theoretical problems.

Let us add that some of the proofs presented in this work constitute a good

illustration of the connections between different branches of mathematics, e.g.

combinatorics and topology.

2. The game of Hex and Brouwer’s fixed point the-
orem

Before we present the proof of the Hex theorem, we first clarify the rules of

the game. Two players Alfa and Beta alternately place black and white tokens on

empty cells of the board (Fig. 1). In each move Alfa places one black token and

Beta places one white token. We assume that Alfa starts. The winner is the player

who first creates a chain of his tokens connecting the corresponding two opposite

sides of the board – the black sides for the player Alfa and the white sides for the

player Beta. If all hexes are occupied by tokens and nobody created such a chain,

then it is a draw.

An appealing feature of this game is that it never ends in a draw. Namely,

there is a strategy in which Alfa tries to block Beta just by completing his own
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Fig. 1. Game board with dimension 4

chain. This can be compared to the situation where Alfa is trying to build a dam

by stacking black stones corresponding to the black tokens, while Beta behaves

like water breaking the dam. Thus the following question arises: can Alfa block

the water effectively? We show that the answer is positive.

The method presented in the below proof of Hex theorem is called a thief

strategy and is derived from J. Nash.

Theorem 1. (Hex theorem) Let Γ be the game of Hex with n× n cells. Then the

first player (Alfa) has a winning strategy.

Proof. Observe that exactly one of the following three cases holds: Alfa has a

winning strategy, Beta has a winning strategy or they both have a draw strategy.

Suppose that Beta has a winning strategy. Then Alfa can start the game by tag-

ging any cell (it cannot harm it) and then follow the Beta strategy with one extra

cell occupied. Thus Alfa could win, which contradicts our assumption. Therefore,

the second case is impossible, and it remains to prove that a draw is impossible.

With this aim, it is enough to prove the next lemma. �

Lemma 2. (about no draw) The Hex game cannot end in a draw.
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Below, we present two proofs of Lemma 2. The first proof is a modification of

the proof from [3] and uses the so-called Sperner’s lemma.

Lemma 3. (E. Sperner, 1928) Let the triangle A1A2A3 be divided into smaller

triangles such that any pair of edges either coincides or has at most one common

point. Assume that the vertices of the triangles from the division are numbered

1, 2, 3 according to the Sperner’s labeling, which means that the following condition

holds:

(∗) the vertex Ai (i = 1, 2, 3) has number i and every vertex lying on the side

AiAj (1 ≤ i, j ≤ 3) has number i or j. The numbering of vertices inside the

triangle A1A2A3 is arbitrary.

Then there is at least one triangle different from A1A2A3 whose vertices are num-

bered 1, 2, 3 (Fig. 2).

Fig. 2

First proof of Lemma 2. Assume contrary that the game ends in a draw. Then

all hexes on the board are occupied by black and white tokens. We say that the

cells with black tokens belong to Alfa, and the cells with white tokens belong to

Beta. Every such a board naturally defines a graph whose vertices are the cells of

the board, together with four artificial vertices w1, w2, w3 and w4, representing
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the sides of the board, where the vertices w1 and w3 represent the two opposite

black sides (we say that w1 and w3 belong to Alfa), and the vertices w2 and w4

represent the two opposite white sides (we say that w2 and w4 belong to Beta).

The graph corresponding to the exemplary 4 × 4 board with nine black tokens

and seven white tokens is depicted in Fig. 3. The assumption that the game ends

Fig. 3. Graph of the game with dimension 4

in a draw can be equivalently formulated as follows: there is no path belonging

entirely to Alfa which connects w1 and w3, and there is no path belonging entirely

to Beta which connects w2 and w4.

Let us number every vertex w with 0, 1, 2, according to the following rule:

• w has number 1 if it belongs to Alfa and there is a path connecting w1 and

w which belongs entirely to Alfa,

• w has number 0 if it belongs to Beta and there is a path connecting w2 and

w which belongs entirely to Beta,

• in all other cases w has number 2 (in Fig. 3 this is symbolized with a circle

in a circle).

By deforming our graph, we may obtain the triangle ∆ with the vertices w1,

w2 and w3 (the triangulation of ∆ defined by the graph from Fig. 3 is presented

in Fig. 4). It is easy to see that the vertices w1, w2, w3 have numbers 1, 0, 2,



38 E. Barcz

Fig. 4

respectively. We now show that the triangulation of ∆ meets the assumptions of

the Sperner’s lemma.

The left side w1w2 of ∆ contains three vertices: w1, w2 and the upper left

corner of the board. This corner is marked black or white, depending on whether

it belongs to Alfa or to Beta. In the first case, it has number 1, and in the

second case, it has number 0. Similarly, the right side w2w3 of ∆ contains three

vertices: w2, w3 and the upper right corner of the board. If this corner belongs

to Beta, then its number obviously cannot be 1, and if it belongs to Alfa, then

its number also cannot be 1, because otherwise there would be a path belonging

entirely to Alfa and connecting this corner with w1. In consequence, there would

be a path belonging entirely to Alfa and connecting w1 and w3, which contradicts

our assumption. Finally, the side w1w3 of ∆ contains five vertices: w1, w3, w4,

and the two bottom corners of the board. If w is any of these five vertices, then

w can not be numbered with 0. This is obviously true in the case w ∈ {w1, w3}.
If w = w4 or if w is one of the corners, then it is also true, because otherwise, the

vertex w would belong to Beta and there would be a path belonging entirely to

Beta and connecting w with w2. Since w4 belongs to Beta and the bottom corners

are connected with w4, this would imply that there is a path belonging to Beta

and connecting w2 and w4, contradiction.

Therefore, on the basis of the Sperner’s lemma, there is a small triangle u1,

u2, u3 with the vertices numbered 1, 0, 2, respectively. Now, if u3 belongs to Alfa,
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then, since there is a path from w1 to u1 belonging to Alfa, there is also a path

from w1 to u3 belonging to Alfa, which implies that u3 has number 1 and we have

a contradiction. Analogously, we get a contradiction when u3 belongs to Beta,

which finishes this proof.

The second proof of Lemma 2 uses walks on the extended Hex board and

constitutes a modification of D. Gale’s proof from [2].

Second proof of Lemma 2. Assume that all cells on an n × n Hex board are

occupied by black and white tokens. Let us stick to our board two new rows of

cells, each having n hexagonal cells: one row along the left side and one row along

the bottom side. To obtain an (n + 1) × (n + 1) Hex board (further called the

extended board), we also need to fill the gap between the above two new rows of

cells by one more corner cell (left-bottom corner cell). We place black tokens on

the cells sticking to the left side, as well as on the new corner cell, and on the

remaining n new cells, we place white tokens. The exemplary original 4× 4 board

and the corresponding extended 5× 5 board are depicted in Fig. 5.

Fig. 5. The original 4× 4 board and the extended 5× 5 board

For the sides of cells on the extended board, we consider the following opera-

tion: if a side is the common side of two differently occupied adjacent cells, then

we define its orientation so that the cell occupied by the black token is on the left.

We get every such a side as a vector
−→
pp′ with the beginning p and the end p′ (an

exemplary vector
−→
pp′ is depicted in Fig. 5). The set of all such vectors satisfies

the following properties:

(1) Any two different vectors cannot have the same end.

(2) There is a unique vector whose beginning belongs to the bottom side of the

extended board. We denote it further by −−→p0p1 (see Fig. 6). This vector
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belongs to the left-bottom corner cell and its end p1 is an internal point,

that is p1 belongs to three pairwise adjacent cells.

(3) The end of any vector either is an internal point, or it belongs to the upper

or to the right side of the board. Moreover, if the end of some vector is an

internal point, then it is the beginning of exactly one other vector.

(4) Let v0, . . . , vs (s ≥ 0) be any sequence of vectors such that v0 := −−→p0p1 and

the end of vi is the beginning of vi+1, that is, we can write vi = −−−−→pipi+1 for

i = 0, . . . , s− 1. Then vi 6= vj for i 6= j.

Fig. 6. The sequence of vectors −−−−→pipi+1 defining a winning chain for Beta

Observations (1)–(3) are trivial. To show (4), suppose contrary that vk = vl

for some 0 ≤ k < l ≤ s, where the value of k is possibly small. If k = 0, then

v0 = vl and the vertex p0 = pl is the end of the vector vl−1. But the vertex p0

belongs to the bottom side of the board and, by observation (3), it cannot be

the end of any vector. Thus, it must be k > 0 and, since vk = vl, the vectors

vk−1, vl−1 are different and have the same end (which is the vertex pk), but this

is impossible by observation (1).

Since the set of all vectors is finite, we obtain by observations (3)–(4) that

there is a unique sequence v0, . . . , vs0 of vectors vi = −−−−→pipi+1 (i = 0, 1, . . . , s0 − 1)
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such that the end ps0+1 of vs0 belongs to the upper side or to the right side of

the board (see Fig. 6). The sequence v0, . . . , vs0 may be interpreted as a walk

along the sides of the cells, which starts at the left-bottom corner cell and finishes

at the upper or at the right side of the board. This walk defines the winning

chain for Alpha or for Beta, depending on whether the end of vs0 belongs to the

right or to the upper side of the board, respectively. For example, if the end

of vs0 belongs to the upper side (as in Fig. 6), we get the sequence c0, . . . , cs0 ,

where ci is the unique cell with a white token directly on the right side of the

vector vi = −−−−→pipi+1. The sequence c0, . . . , cs0 contains repetitions, but two different

consecutive elements of this sequence must be adjacent cells, and hence, there is

the shortest subsequence ct0 , . . . , ctl satisfying: t0 = 0, tl = s0 and for every

0 ≤ j < l the cells ctj and ctj+1
are adjacent. Then the winning chain for Beta on

the original n× n board is ctj0+1 , ctj0+2 , . . . , ctl , where j0 ∈ {0, 1, . . . , l − 1} is the

greatest index such that the cell ctj0 touches the bottom side of the extended board.

For example, for the extended board from Fig. 5, the sequence v0, v1, . . . , v20 of

vectors vi = −−−−→pipi+1 is depicted in Fig. 6, the corresponding shortest subsequence

of the sequence c0, . . . , c20 is c0, c3, c8, c9, c10, c11, c13, c20, and the winning chain

for Beta on the original 4× 4 board is c10, c11, c13, c20.

Below, we present the proof of the Brouwer’s fixed point theorem, which uses

the lemma about no draw. The similar proof is presented in [2].

Theorem 4. (Brouwer’s fixed point theorem) Every continuous mapping from a

unit square I2 = 〈0, 1〉 × 〈0, 1〉 into itself has a fixed point (i.e. there is a point

x ∈ I2 such that f(x) = x).

Proof. For every natural number n, we consider the subset

Vn =

{
0,

1

n
,

2

n
, . . . ,

n− 1

n
, 1

}
×
{

0,
1

n
,

2

n
, . . . ,

n− 1

n
, 1

}
⊆ I2

as the vertex set of the graph Γn in which two vertices x, y ∈ Vn are connected

by an edge if and only if their distance d(x, y) belongs to the set
{

1/n,
√

2/n
}

and if d(x, y) =
√

2/n, then the line connecting x and y has positive slope. The

graph Γn may serve as the board for the Hex game (so-called dual board – see

Fig. 7). The left (right) side of this board form the vertices (0, i/n) (respectively:

(1, i/n)) for i = 0, 1, . . . , n. Similarly, the bottom (upper) side of the board form

the vertices (i/n, 0) (respectively: (i/n, 1)) for i = 0, 1, . . . , n. The players place

tokens on the vertices of Γn and one of them tries to build a path connecting the

left side with the right side, and the other wants to build a path connecting the
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Fig. 7. Dual board Γ5

bottom side with the upper side. Now, by the lemma about no draw, we see that

for any two subsets A,B ⊆ Vn the equality Vn = A ∪ B implies that A contains

a path connecting the left and right sides or B contains a path connecting the

bottom and upper sides.

Since I2 is a compact set, from any infinite sequence (xn) of points xn ∈ I2

one can choose a convergent subsequence (xni). If we denote x∗ = limi→∞ xni ,

then by the triangle inequality, we get:

d (f(x∗), x∗) 6 d (f(x∗), f(xni
)) + d (f(xni

), xni
) + d(xni

, x∗).

We obviously have limi→∞ d(xni , x
∗) = 0. Since f is continuous, we also have

limi→∞ d(f(x∗), f(xni
)) = 0. Thus, if limi→∞ d (f(xni

), xni
) = 0, then we get

d (f(x∗), x∗) = 0. In consequence, it remains to show that there exists a sequence

(xn) of points from I2 such that limn→∞ d (f(xn), xn) = 0. Then the required

fixed point of f is the limit of any convergent subsequence of (xn).

Let ε > 0 be any positive number. By the above, it is enough to prove that

there is xε ∈ I2 such that d (f(xε), xε) < ε. Since the function f is continuous

and I2 is compact, f is also uniformly continuous, so there exists 0 < δ < ε such

that for all x, y ∈ I2 the inequality d(x, y) < δ implies d(f(x), f(y)) < ε.
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For every x = (x1, x2) ∈ I2, we denote

x′ = (x′1, x
′
2) = f(x) ∈ I2.

Fix a natural number n such that

1

n
< δ(
√

2− 1) <
δ√
2
.

Let P→ ⊆ Vn be the subset (perhaps empty) of vertices x = (x1, x2) that f moves

to the right by at least ε0 := ε/
√

2, i.e.

P→ = {(x1, x2) ∈ Vn : x′1 − x1 > ε0}.

Similarly, we define the subsets P←, P ↓, P ↑ ⊆ Vn. Note that P← ∩ P→ = ∅ and

P ↓ ∩ P ↑ = ∅. Let us fix two vertices x = (x1, x2) ∈ P→ and y = (y1, y2) ∈ P←.

We have

x′1 − x1 > ε0, y1 − y′1 > ε0.

Suppose that x and y are connected by an edge in the graph Γn. Then their

horizontal coordinates x1 and y1 differ by at most 1
n . Therefore

x1 − y1 > −
1

n
.

Adding the above three inequalities, we get

x′1 − y′1 > 2ε0 −
1

n
> 2ε0 − δ(

√
2− 1) > 2ε0 − ε(

√
2− 1) = ε.

In consequence d(x′, y′) ≥ x′1 − y′1 > ε. On the other hand, since x and y are

connected by an edge, we get d(x, y) ≤
√

2/n < δ, and, since f is uniformly

continuous, we get d(x′, y′) < ε, contradiction.

Therefore, if x ∈ P→ and y ∈ P←, then x and y cannot be adjacent. Moreover,

if x = (x1, x2) ∈ P→, then x1 6 x′1 − ε0 < 1. Hence, the set P→ does not contain

vertices from the right side of the board. Similarly, the set P← does not contain

the vertices from the left side of the board. Therefore, the set A := P→ ∪ P←

cannot contain the winning path for the player wishing to join the left and right

sides of the board. Similarly, the set B := P ↑ ∪ P ↓ cannot contain the winning

path for the other player. In consequence, by the lemma about no draw, we get

A ∪ B 6= Vn, which means that the set S := Vn \ (P ↑ ∪ P ↓ ∪ P→ ∪ P←) is not

empty. Let xε = (x1, x2) ∈ S. From the definition of the sets P ↑, P ↓, P→, P←, it
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follows that the image f(xε) = (x′1, x
′
2) ∈ I2 satisfies:

−ε0 < x′1 − x1 < ε0,

−ε0 < x′2 − x2 < ε0.

Thus f(xε) is contained inside the square with the center xε and side length 2ε0.

Therefore d(f(xε), xε) < ε0

√
2 = ε. �
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