
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2011

Seria: MATEMATYKA STOSOWANA z. 1 Nr kol. 1854

Edyta HETMANIOK, Mariusz PLESZCZYŃSKI
Institute of Mathematics
Silesian University of Technology
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THE FREEZING FRONT LOCATION

Summary. In this paper an analytical method of solving the selected
class of problems which can be reduced to the one-phase solidification pro-
blem of a plate with the unknown a priori, varying in time boundary of the
region in which the solution is sought.

ANALITYCZNA METODA WYZNACZANIA
POŁOŻENIA FRONTU KRZEPNIĘCIA

Streszczenie. W artykule przedstawiono analityczną metodę rozwią-
zywania wybranej klasy problemów, które można sprowadzić do jednofazo-
wego zagadnienia krzepnięcia płyty z nieznaną a priori zmienną w czasie
granicą obszaru, w którym poszukiwane jest rozwiązanie.

1. Introduction

Mathematical modeling of thermal processes combined with the reversible pha-
se transitions of type: solid phase - liquid phase leads to formulation of the parabo-
lic boundary problems with the moving boundary. Solving of such defined problem
requires, most often, to use sophisticated numerical techniques and far advanced
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mathematical tools. Excellent illustration of the complexity of considered pro-
blems, as well as of the variety of approaches used for finding their solutions, is
given in the papers [1, 3–5].
In the current paper, we present the, especially attractive from the engineer

point of view, analytical method of solving the selected class of problems which
can be reduced to the one-phase solidification problem of a plate with the unknown
a priori, varying in time boundary of the region in which the solution is sought.
Proposed method is based on the known formalism of initial expansion of the so-
ught function, describing the temperature field, into the power series. Coefficients
of this series will be determined with the aid of boundary conditions.

2. Formulation of the mathematical model

Each correctly defined mathematical model, related to the real problems, re-
quires, at its formulation level, to determine unambiguously the physical deter-
minants of the process concerned by the given model. Taking it into account we
begin with the following initial assumptions:

— temperature of the entire system at the initial moment is equal to the phase
transition temperature T ∗ which gives the possibility to assume the heat
conduction to be a dominant mechanism of heat transfer,

— phase transition happens in the strictly determined, constant temperature
T ∗ which is typical for the materials of the ideal dielectric properties,

— material parameters, it means: ρ – mass density, λ – thermal conductivity
and c – specific heat and, from this, the thermal diffusivity coefficient a as
well, are independent on temperature and equal in both phases,

— process of the heat transfer is one-dimensional and symmetric.

Taken assumptions eliminate from the consideration the liquid phase and ena-
ble to focus on the solid phase. Mathematical model of the problem, formulated
in this way (one-phase Stefan problem), is defined by the following system of
equations
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— the heat conduction equation describing the field of temperature T , varying
in time and space, in the formed solid phase

∂T (x, t)
∂t

= a
∂2T (x, t)
∂x2

, x ∈ (ϕ(t), x̄), t ∈ (0, t∗〉, (1)

where x denotes the spatial variable, t – time variable, x̄ – half of thickness
of the plate, t∗ – duration of the process and ϕ(t) is a function describing
the freezing front location (1) varying in time, it means

ϕ(t) = x̄− ξ(t), (2)

where ξ(t) denotes a function describing the thickness of solidified layer,
varying in time, and

ξ(0) = 0; (3)

0 x̄ x

liquid solid

x = ϕ(t)

ϕ(t) = x̄− ξ(t)
t∗

t

Fig. 1. Graphic illustration of the modeled process
Rys. 1. Ilustracja graficzna modelowanego procesu

— energy balance conditions in the freezing front

T (ϕ(t), t) = T ∗, t ∈ (0, t∗〉, (4)

−λ
∂T (x, t)
∂x

∣

∣

∣

∣

x=ϕ(t)

= ρκ
dϕ(t)
dt

, t ∈ (0, t∗〉, (5)

where κ denotes the latent heat;
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— one of the following boundary conditions on the heat transfer surface:
boundary condition of the first kind

T (x̄, t) = ψ(t), t ∈ (0, t∗〉, (6)

or boundary condition of the second kind

−λ
∂T (x, t)
∂x

∣

∣

∣

∣

x=x̄

= q(t), t ∈ (0, t∗〉, (7)

or boundary condition of the third kind

−λ
∂T (x, t)
∂x

∣

∣

∣

∣

x=x̄

= α(t)(T (x̄, t)− T∞), t ∈ (0, t∗〉. (8)

In the last equations, functions ψ(t), q(t) and α(t) describe, respectively, tempe-
rature of the plate surface, heat flux and the heat transfer coefficient, all varying
in time (ψ(t) ¬ T ∗, q(t) ­ 0, α(t) ­ 0), whereas T∞ denotes the ambient tempe-
rature.

3.Method of solution

As we have previously mentioned, method of solving the formulated above
problem is based, in the first step, on the proper presentation of the function,
representing the expected solution, in the form of power series. In the considered
case, the series is of the following form

T (x, t) =
∞
∑

i=0

Ai(t)
(x − x̄+ ξ(t))i

i!
, (9)

where Ai(t) denote the unknown, dependent on time, functional coefficients. We
determine those coefficients by using equation (1) and conditions (4) and (5).
Relation (9) implies that

∂T (x, t)
∂x

=
∞
∑

i=0

Ai+1(t)
(x− x̄+ ξ(t))i

i!
, (10)

∂2T (x, t)
∂x2

=
∞
∑

i=0

Ai+2(t)
(x− x̄+ ξ(t))i

i!
(11)
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and

∂T (x, t)
∂t

=
∞
∑

i=0

[

A′i(t)
(x− x̄+ ξ(t))i

i!
+ ξ′(t)Ai+1(t)

(x − x̄+ ξ(t))i

i!

]

, (12)

where A′i(t) and ξ
′(t) mean the derivative of functions Ai(t) and ξ(t), respectively,

with respect to t.
By substituting the received formulas into equation (1) we obtain

∞
∑

i=0

[

A′i(t)
(x − x̄+ ξ(t))i

i!
+ ξ′(t)Ai+1(t)

(x − x̄+ ξ(t))i

i!

]

=

= a
∞
∑

i=0

Ai+2(t)
(x − x̄+ ξ(t))i

i!
.

(13)

By comparing the terms situated by the expressions (x−x̄+ξ(t))
i

i! , i = 0, 1, 2, . . ., on
the both sides of equation (13), we get

A′i(t) + ξ
′(t)Ai+1(t) = aAi+2(t) i = 0, 1, 2, . . . . (14)

From the conditions (4), (5) and (2) it results that

A0(t) = T ∗, (15)

A1(t) = −
ρκ

λ
ξ′(t). (16)

Since we have already the coefficients A0(t) and A1(t), we can determine the other
coefficients Ai(t), i = 2, 3, . . ., because, by using formula (14), we have

Ai+2(t) =
1
a
(A′i(t) + ξ

′(t)Ai+1(t)), i = 0, 1, 2, . . . , (17)

which implies that
A2(t) = −

ρκ

aλ
(ξ′(t))2, (18)

A3(t) = −
ρκ

aλ
ξ′′(t)−

ρκ

a2λ
(ξ′(t))3, (19)

and so on.
Excluding the coefficient A0(t), all the other coefficients Ai(t), i = 1, 2, 3, . . .,

will depend on the still unknown function ξ(t), its powers and derivatives. One can
try to determine analytically this function by using one of the conditions (6)–(8).
In particular, for condition (6) we receive

∞
∑

i=0

Ai(t)
ξi(t)
i!
= ψ(t). (20)
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However, equation (20) is as much complicated that determination of the function
ξ(t) with the aid of this equation is impossible. Anyway, it is possible to calculate
the approximate solution by taking only two or three first components of the series
situated on the left side of equation (20).
By reducing the series to only two first components we get the equality

A0(t) +A1(t)ξ(t) = ψ(t). (21)

Hence, after substituting for A0(t) and A1(t) the values determined by relations
(15) and (16), we receive the differential equation

T ∗ −
ρκ

λ
ξ′(t)ξ(t) = ψ(t). (22)

Assumptions accepted at the beginning of our considerations imply that the func-
tion ξ(t) must take only the nonnegative values and satisfy equation (3). This
information is sufficient to solve the equation (22) and to determine unambigu-
ously the function ξ(t). Thus we get

ξ(t) =

√

2λ
ρκ

∫ t

0

(T ∗ − ψ(τ))dτ . (23)

Similarly, by taking only three first components in the series situated on the left
side of equation (20), we receive the relation

A0(t) +A1(t)ξ(t) +A2(t)
ξ2(t)
2
= ψ(t), (24)

and, subsequently, the differential equation

T ∗ −
ρκ

λ
ξ′(t)ξ(t) −

ρκ

aλ

(ξ′(t)ξ(t))2

2
= ψ(t). (25)

By solving differential equation (25) with condition (3) we finally obtain

ξ(t) =

√

√

√

√2a
∫ t

0

(

√

1 +
2c
κ
(T ∗ − ψ(τ)) − 1

)

dτ. (26)

Although the formulas (23) and (26) determine only the approximate thickness
of the solidified layer, they can be successfully used in practise. In particular case,
in which ψ(t) = T 0 = constans, t ∈ (0, t∗), the considered formulas take the
following, very simple form

ξ(t) =

√

2λ
ρκ
(T ∗ − T 0)t (27)
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and

ξ(t) =

√

√

√

√2a

(

√

1 +
2c
κ
(T ∗ − T 0)− 1

)

t. (28)

Proposed method of determining the function describing the thickness of so-
lidified layer indicates that the formulas (26) and (28) are more precise than the
formulas (23) and (27). This conclusion is illustrated by the example below.

Example 1

Let us assume that the material of solidified plate of the thickness 2x̄ = 0.2 [m]
is specified by the following parameters: mass density ρ = 7000 [kg/m3], thermal
conductivity λ = 100 [W/mK], specific heat c = 600 [J/kgK], latent heat κ =
60 [kJ/kg], temperature of solidification T ∗ = 800 ◦C and that the transfer of heat
with the environment is defined by the condition of the first kind (6), with the
function ψ of the following form

ψ(t) = 900− 100eat. (29)

Additionally, let us assume that we consider the solidification process until the
moment of time t∗ = 4200 s.
For the above defined data the considered problem posses the exact solution.

In particular, function T (x, t) describing the temperature field in the solidified
part of the plate is the following

T (x, t) = 900− 100ea
∗t+x−x̄, (30)

whereas the thickness of solidified layer ξ(t) is defined by the relation

ξ(t) = a∗t, (31)

where a∗ = a/m is constant of the numerical value a.
By applying the approach proposed in this paper we receive the approximate

functions T1(x, t) and T2(x, t) describing the temperature field in the solidified
part of the plate, as well as the approximate functions ξ1(t) and ξ2(t) defining the
thickness of solidified layer, in dependence on the number of components of the
series (9) being the basis of the solution.
If we reduce the series to only two first components, then we obtain

T1(x, t) = T ∗ −
ρκ

λ
ξ′1(t)(x− x̄+ ξ1(t)), x ∈ (x̄− ξ1(t), x̄), t ∈ (0, t∗〉, (32)
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where, according to the formula (23), we have

ξ1(t) =

√

2λ
ρκ

∫ t

0

(T ∗ − ψ(τ))dτ , t ∈ (0, t∗〉. (33)

Whereas, by taking three components of the series we receive

T2(x, t) = T ∗ −
ρκ

λ
ξ′2(t)(x − x̄+ ξ2(t))−

ρκ

λa
(ξ′2(t))

2 (x− x̄+ ξ2(t))
2

2
,

x ∈ (x̄ − ξ1(t), x̄), t ∈ (0, t∗〉,
(34)

where, in accordance with the formula (26), we have

ξ2(t) =

√

√

√

√2a
∫ t

0

(

√

1 +
2c
κ
(T ∗ − ψ(τ)) − 1

)

dτ , t ∈ (0, t∗〉. (35)

In Figure 2 graphs of the exact function ξ(t) together with the approximate
functions ξ1(t) and ξ2(t), describing the thickness of solidified layer, are displayed.
Whereas, Figure 3 presents distributions of absolute errors received for both of
the approximate solutions.
Analysis of the received results implies that formulas based on the greater

number of components of the proper series give, obviously, more precise results.
However, results obtained with the aid of formulas in which only two components
of the series were taken are sufficiently precise as well.
Moreover, by using the formulas

δmaxi = max
(x,t)∈∆i

|T (x, t)− Ti(x, t)|, i = 1, 2, (36)

where ∆i = (x̄ − ξi(t), x̄)× (0, t∗〉, one can calculate the maximal absolute errors
δmaxi made by applying the formulas (32) and (34) for determining the approximate
temperature field. In the considered case the errors are equal to δmax1 = 0.233 and
δmax2 = 0.501, respectively, which is 0.03% and 0.06% of the temperature field
value in points of these maximums, respectively.
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Fig. 2. Graphs of the functions describing the thickness of solidified layer
Rys. 2. Wykresy funkcji określających grubość warstwy zakrzepłej
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Fig. 3. Distributions of absolute errors of the approximate functions describing the
thickness of solidified layer

Rys. 3. Rozkłady błędów bezwzględnych przybliżeń funkcji określających grubość war-
stwy zakrzepłej
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4. Solutions of boundary conditions of the second

and third kinds

In the previous section we were focused on the boundary condition of the first
kind (6) and we developed, for this condition, the formulas enabling to determine
the approximate field of temperature in the solidified part of the plate, as well as
the formulas making possible to calculate the thickness of solidified layer. In this
section we will repeat the procedure, but for the case of boundary conditions of
the second (7) and third kinds (8).
First, let us concentrate on the boundary condition of the second kind (7).

Taking into account the relations (9) and (10), the considered boundary condition
implies the following equation

−λ

∞
∑

i=0

Ai+1(t)
i!
(ξ(t))i = q(t), (37)

where the functional coefficients Ai(t), =1,2,3,. . . , are defined by the relations
(15)–(17) and they are dependent on the unknown function ξ(t), its powers and
derivatives. Practical determination of the function ξ(t) from the equation (37) is
possible only if we take just the finite number of components in the series situated
on the left side of equation (37).
By reducing the series to only two first components we receive the equation

−λ
(

−
ρκ

λ
ξ′(t)−

ρκ

λa
(ξ′(t))2ξ(t)

)

= q(t), (38)

which, after few simple transformations, can be written in the form
ρκ

a
ξ(t)(ξ′(t))2 + ρκξ′(t)− q(t) = 0. (39)

Assumptions accepted in Section 2 imply that function ξ′(t) takes only the non-
negative values. Thus, by solving equation (39) with respect to the unknown ξ′(t)
we obtain the differential equation

ξ′(t) =
a

2ξ(t)

(

√

1 +
4q(t)ξ(t)
ρκa

− 1

)

, (40)

which, in case of q(t) being the constant function (q(t) = constans), is the separa-
ble equation possessing, after using the condition (3), analytical solution in form
of the implicit function

(

1 +
4qξ(t)
ρκa

)

(

3 + 2

√

1 +
4qξ(t)
ρκa

)

=
24q2

aρ2κ2
t+ 5. (41)



Analitycal method of determining the freezing front location 131

Now, let us verify the quality of reconstructed thickness of the solidified layer
ξ(t) for the discussed problem with boundary condition of the second kind (7).
The following example will illustrate our considerations.

Example 2

We assume that the material of solidified plate is characterized by the same
parameters as in Example 1, but the heat transfer with environment is defined by
the boundary condition of the second kind (7), where function q(t) is of the form

q(t) = 100λeat. (42)

Function T (x, t), describing the temperature field in the solidified part of the
plate, as well as the function ξ(t), describing the thickness of solidified layer, are
obviously defined, as in Example 1, by the formulas (30) and (31), respectively.
By reducing the series, situated on the left side of equality (37), to only two

components we receive, according to formula (40), the proper relation which allows
to calculate numerically the sought function ξ1(t) :

ξ′1(t) =
a

2ξ1(t)

(

√

1 +
400λeatξ1(t)

ρκa
− 1

)

. (43)
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Fig. 4. Graphs of the functions describing the thickness of solidified layer
Rys. 4. Wykresy funkcji określających grubość warstwy zakrzepłej
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In Figure 4 the graph of the exact function ξ(t) describing the thickness of
solidified layer together with its approximation ξ1(t) are displayed. Whereas, Fi-
gure 5 presents the distribution of absolute error of the approximate solution.
Obtained results show that the formula based on the only two components of the
series is sufficiently precise also for the problem with boundary condition of the
second kind and the maximal absolute error of approximate solution is equal to
just 0.00014.

1000 2000 3000 4000

0.00002

0.00004

0.00006

0.00008

Fig. 5. Distribution of errors |ξ(t)− ξ1(t)| of approximate function describing the thick-
ness of solidified layer

Rys. 5. Rozkład błędu |ξ(t) − ξ1(t)| przybliżenia funkcji określającej grubość warstwy
zakrzepłej

Let us now proceed to boundary condition of the third kind (8) from which,
by taking into account the relations (9) and (10), the following equation results

−λ

∞
∑

i=0

Ai+1(t)
i!
(ξ(t))i = α(t)

(

∞
∑

i=0

Ai(t)
i!
(ξ(t))i − T∞

)

, (44)

where the functional coefficients Ai(t), =1,2,3,. . . , are defined by the relations
(15)–(17) and they are dependent on the unknown function ξ(t), its powers and
derivatives. Practical determination of the function ξ(t) from the equation (44) is
possible only by taking just the finite number of components in the series situated
on the left side of equation (44).
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By reducing the series to only two first components we receive, from the rela-
tion (44) after transformations, the following equation

ρκ

a
(ξ′(t))2ξ(t) + ρκξ′(t) = α(t)

(

T ∗ − T∞ −
ρκ

λ
ξ′(t)ξ(t)

)

. (45)

Assumptions accepted in Section 2 imply that function ξ′(t) takes only the non-
negative values. Thus, by solving equation (45) with respect to the unknown ξ′(t)
we get

ξ′(t)=
a

2ξ(t)

(

√

(

λ+ α(t)ξ(t)
λ

)2

+
4ξ(t)α(t)(T ∗ − T∞)

aρκ
−
λ+ α(t)ξ(t)

λ

)

. (46)

By solving the above equation one can calculate ξ1(t) with the aid of condition (3).
Unfortunately, the solution is not expressed by means of the elementary function,
however equation (46) can be solved numerically by applying, for instance, the
computational software Mathematica [2].
We will consider now the problem of reconstructing the thickness of solidified

layer ξ(t) in case of boundary condition of the third kind (8), illustrated by the
following example.

Example 3

Analogically, we assume that the material of solidified plate is specified by the
same parameters as in the previous examples and that the ambient temperature
T∞ = 30 ◦C, but the heat transfer with environment is defined by the boundary
condition of the third kind (8), where function α(t) is of the following form

α(t) =
λ∗eat

8.7− eat
, (47)

where λ∗ = λ/m is constant of the numerical value λ.
Certainly, the functions T (x, t), describing the temperature field in the soli-

dified part of the plate, and ξ(t), describing the thickness of solidified layer, are
defined, as in the previous examples, by the formulas (30) and (31), respectively.
By reducing the series situated on the left side of equality (44) to only two first

components we receive, according to formula (46), the relation thanks to which
we can numerically determine the sought function ξ1(t).
Figure 6 presents the graph of the exact function ξ(t), describing the thickness

of solidified layer, together with its approximation ξ1(t). While, in Figure 7 the
distribution of absolute error of this approximate solution is displayed. So, we can
see that even for the boundary condition of the third kind the formula based on
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the only two components of the series in the relation (44) is good enough to receive
sufficiently precise approximate results, maximal absolute error of which is equal
to just 0.00016.
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Fig. 6. Graphs of the functions describing the thickness of solidified layer
Rys. 6. Wykresy funkcji określających grubość warstwy zakrzepłej
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Fig. 7. Distribution of errors |ξ(t)− ξ1(t)| of approximate function describing the thick-
ness of solidified layer

Rys. 7. Rozkład błędu |ξ(t) − ξ1(t)| przybliżenia funkcji określającej grubość warstwy
zakrzepłej
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5. Conclusions

The paper presents the analytical method of approximate solving the selected
kind of problems which can be reduced to the one-phase solidification problem of
a plate with the unknown a priori, varying in time boundary of the region in which
the solution is sought. Proposed method is based on the expansion of the sought
function, describing the temperature field, into the power series, some coefficients
of which are determined by using the boundary conditions. Proposed approach is
illustrated by the examples for the each kind of boundary conditions.
By applying the presented method we receive the appropriate function series

(in the form depending on the considered boundary condition) which, after redu-
cing to the finite number of components, give the differential equations. Solutions
of those equations represent the approximate solutions of the discussed problem.
With regard to the rapid convergence of the obtained series, few initial compo-
nents taken into consideration may assure a satisfying reconstruction of the exact
solution.
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Omówienie

W artykule przedstawiono, szczególnie atrakcyjną z inżynierskiego punktu wi-
dzenia, metodę analityczną rozwiązania wybranej klasy problemów, które można
sprowadzić do jednofazowego zagadnienia krzepnięcia płyty z nieznaną a priori
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zmienną w czasie granicą obszaru, w którym poszukiwane jest rozwiązanie. Meto-
da ta bazuje na znanym formalizmie wstępnego rozwinięcia poszukiwanej funkcji,
opisującej pole temperatury, w szereg potęgowy, którego pewne współczynniki wy-
znaczane są z warunków brzegowych. Zaprezentowane zastosowania zilustrowane
zostały przykładami.
Stosując omawianą metodę otrzymujemy odpowiedni szereg lub szeregi funk-

cyjne (w zależności od rodzaju warunku brzegowego), które po obcięciu na pewnym
skończonym miejscu wyznaczają równania różniczkowe. Rozwiązanie uzyskanych
równań jest przybliżonym rozwiązaniem zagadnienia. Ze względu na szybką zbież-
ność otrzymanych szeregów, uwzględnienie kilku początkowych wyrazów zapewnia
satysfakcjonujące przybliżenie rozwiązania dokładnego.


