
Zygmunt Zahorski and contemporary real
analysis

W ladys law Wilczyński

Professor Zygmunt Zahorski was an eminent specialist in real analysis. His papers,
concerning mainly different classes of real functions of a real variable, are precise
and sophisticated (in the positive meaning of the word). Numerous mathematicians
throughout the world are working on real functions theory using his ideas and results.
Among most widely known are: his first pupil professor Jan Stanis law Lipiński and
American mathematician Andrew M. Bruckner from Santa Barbara, California. Since
the number of papers inspired by the results, ideas or techniques of professor Zahorski
exceedes hundreds, in the sequel we shall concentrate on some chosen publications.
An essential part of mathematical activity of professor Lipiński was strictly connected
with the kind of problems considered by professor Zahorski. His achievements deserve
a separate presentation. Fortunately, quite recently Paul Humke has done an excellent
work (see [30]).

The most frequently quoted and the most influential paper of professor Zygmunt
Zahorski is the monumental treatise on the first derivative ([6]). A lot of very inter-
esting facts on Dini derivatives is included in the habilitation thesis, which, however,
was never published.

In the paper [6] professor Zahorski tried to characterize sets of the form {x : f(x) <
a} and {x : f(x) > a}, when f is a real function of a real variable possessing a con-
tinuous primitive function. To this end he considered two hierarchies: of sets M0 ⊃
M1 ⊃ M2 ⊃ M3 ⊃ M4 ⊃ M5 and of functions M0 ⊃ M1 ⊃ M2 ⊃ M3 ⊃ M4 ⊃ M5.

Let E ⊂ R be a non-empty Fσ set. We say that E belongs to the class

– M0 if each point of E is a point of bilateral accumulation of E,
– M1 if each point of E is a point of bilateral condensation of E,
– M2 if each one sided neighbourhood of each x ∈ E intersects E in a set of positive

measure,
– M3 if there exists a sequence {Kn}n∈N of closed sets and a sequence {ηn}n∈N of

numbers from [0, 1) such that E =
⋃

n Kn and for each x ∈ Kn and each c > 0
there exists a number ǫ(x, c) > 0 such that if h and h1 satisfy hh1 > 0, h

h1

< c,
|h + h1| < ǫ(x, c), then
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λ(E ∩ (x + h, x + h + h1))

h1
> ηn,

– M4 if E fulfills M3 and each ηn is positive,
– M5 if each point of E is a point of density of E.

Let f be an extended real valued function defined on some interval I. We say
that f ∈ Mk if {x : f(x) < a} ∈ Mk and {x : f(x) > a} ∈ Mk for each a ∈ R, k =
0, 1, . . . , 5. The above sets usually are called the associated sets of f . Professor Zahorski
has proved that all inclusions between classes of sets and of functions are strict with
one exception: M0 = M1 and this is a class of Darboux Baire one functions. Also
in [6] it is proved that M5 is the class of approximately continuous functions. It
is interesting that approximately continuous functions were considered already by
A. Denjoy around 1915 and the density topology was introduced about 40 years later
by O. Haupt and Ch. Pauc ([29]). Recall that the real function of a real variable is
approximately continuous if it is continuous when the ordinary topology is used on the
range and the density topology is used on the domain. One can find more information
in [55]. Main results of the paper [6] are connected with the conditions M2, M3 and
M4. Namely, professor Zahorski has proved that if f is a derivative (possibly infinite)
of a continuous function, then all associated sets of f belong to M2, if f is a finite
derivative, then all associated sets belong to M3 and if f is a bounded derivative, then
all associated sets are in M4. None of these necessary conditions is sufficient. More
detailed information can be found in [14] and [17], where is also an exhaustive list of
references.

Now it is time to explain why professor Zahorski in [6] has studied the charac-
terization of sets associated with the derivative and not the characterization of the
derivative in terms of associated sets. Numerous classes of functions are characterized
in that way, for example a function is continuous if and only if the associated sets are
open, a function is Baire one if and only if they are Fσ, a function is measurable if and
only if they are measurable and so on. Observe that all mentioned classes are closed
with respect to superpositions from outside with a homeomorphism, i.e. if f is in the
class and h : R −→

onto
R is a homeomorphism, then h ◦ f is in the same class. The class

of derivatives (bounded or unbounded, finite or assuming infinite values) is far from
possessing this property. This was observed by G. Choquet in [21] who proved that if
h is a nonlinear homeomorphism h : R −→

onto
R then there exists a bounded derivative

f0 such that h ◦ f0 is not a derivative. Professor Zahorski was obviously aware of
this fact. A. Bruckner in [15] deeply studied the bad behaviour of the derivative with
this respect and proved that there exists a bounded derivative f such that for each
nowhere linear (linear on no interval) homeomorphism h : R −→

onto
R and each interval

I ⊂ R there exists a point x ∈ I such that h ◦ f is not the derivative of its integral
at x.

The decisive step in characterizing the associated sets of the derivative has been
made by D. Preiss in [42]. His paper is devoted to the characterization of the triple
S,G,E of subsets of the real line for which there exists a function f : R → R differ-
entiable at each point such that E = {x : f ′(x) > 0}, G = {x : f ′(x) = +∞} and S
is the set of points of discontinuity of f . Preiss has defined the class of sets M∗ (the
definition is rather complicated and uses the condition similar to M4 of Zahorski) and



Zygmunt Zahorski and contemporary real analysis 101

has proved that M∗ is the class of associated sets for not necessarily finite derivatives
whose primitives need not be continuous and M∗

2 = M∗ ∩ M2 is the class of asso-
ciated sets for not necessarily finite derivatives whose primitives are continuous and
M∗

3 = M∗ ∩ M3 is the class of associate sets for finite derivatives. His results have
also application to the approximative derivatives. C. Neugebauer in [37] has proved
the characterization of derivatives in terms of the behaviour of interval functions. His
theorems say that a function f : I0 → R (where I0 is some interval) is Darboux Baire
one if and only if it fulfills the following condition C1: for each interval I ⊂ I0 there
exists a point xI ∈ Int I such that I → x implies f(xI) → f(x) (here I → x means
that x ∈ I and λ(I) → 0) and a function f : I0 → R is the derivative if and only if it
fulfills the condition C1 and moreover if I = I1 ∪ I2, Int I1 ∩ Int I2 = ∅, then (for xI

from C1)

f(xI) =
f(xI1) · λ(I1) + f(xI2) · λ(I2)

λ(I)
.

The last equality means that f(xI) · λ(I) is an additive interval function. The the-
orem of Neugebauer shows how much Darboux Baire one functions differ from the
derivatives.

D. Preiss and M. Tartaglia in [43] have given an interesting characterization of
derivatives in terms of the set of derivatives (a sort of circular characterization ac-
cording to Ch. Freiling ([27])). They proved that f is a derivative if and only if for
each set E ⊂ R there is a derivative g such that f−1(E) = g−1(E). Continuing this
way K. Ciesielski in [22] has proved a general theorem stating that numerous families
F of real functions (including the family ∆ of all derivatives) can be characterized
as a family of the form C(D,A) = {f ∈ R

R : f−1(A) ∈ D for every A ∈ A}, where
A is some family of subsets of R and D = {f−1(A) : f ∈ F and A ∈ A}. His main
theorem reads as follows: Let F ,R be such that card(R) ≤ ∁+, card(F) ≤ ∁, where ∁

denotes the cardinality of continuum and ∁+ is the next cardinal number, F contains
all constant functions and card(g(R)) = ∁ for any non-constant function g which is
a difference of two functions from F . Then there exists a family A ⊂ 2R of cardinality
less or equal to card(R) such that F ∩R = R∩C(D,A), where D = {f−1(A) : f ∈ F
and A ∈ A} as before. If we take F = ∆ and R – the family of Borel functions, we con-
clude that there exists a family A ⊂ 2R such that card(A) ≤ ∁ and ∆ = R∩C(D, A),
where D = {f−1(A) : f ∈ ∆ and A ∈ R}. Ciesielski also proved in [22] that there
exists a Bernstein set B ⊂ R such that ∆ = DB1∩C(D0, {B+ c : c ∈ R}) = C(D,A),
where A =

⋃
c∈R

{(−∞, c), (c,∞), B + c)}, D0 = {f−1(B + c) : f ∈ ∆ and c ∈ R}
and D = {f−1(A) : f ∈ ∆ and A ∈ A}, so the family consisting of all translations of
a single Bernstein set is sufficient.

Recall the definition of the Kurzweil-Henstock integral. Let I be a closed interval,
I1, . . . , In – a partition of I and x1, . . . , xn – a sequence of points such that xi belongs
to the interval Ii for each i. Such system of intervals and points is called a tagged
partition of I. Suppose that f is any function defined on I then each tagged partition
yields a Riemann sum given by

∑n

i=1 f(xi) ·λ(Ii). If δ is a positive function defined on
I and for each i ∈ {i, . . . , n} we have λ(Ii) < δ(xi), then the tagged partition is called
δ-fine (such positive function is usually called gauge function). A function f : R → R
is Kurzweil-Henstock integrable if and only if for each closed interval I and for each
ǫ > 0 there exists a gauge δ : I → R+ such that any two δ-fine tagged partitions
of I have Riemann sums which differ by less than ǫ · λ(I). The LH-integral is then
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defined to be the limit of the corresponding Riemann sums as ǫ → 0. It is known that
derivatives are KH-integrable. Ch. Freiling in [27] has observed that in fact a function
f is a derivative if and only if it is KH-intergrable. The paper [27] is a good source of
informations about possible characterizations of derivatives.

Let us come back for a moment to the class M3. C. Weil in [53] has introduced the
property Z and has proved that if a function has the Darboux and Denjoy property,
then the property Z implies the Zahorski property M3. Moreover, derivatives, approxi-
mate derivatives, Lp-derivatives all have the property Z. P.S. Bullen and D.N. Sarkhel
have made a step further – they have defined the property Z∗ (stronger than Z) in
the following way:

The function f on I is said to have the property Z∗ if for every c ∈ I and ǫ > 0,
η > 0 there is a neighbourhood Ic of c such that the following conditions Z+ and Z−

hold:

Z+: if f(x) ≥ f(c) − ǫ a.e. on a closed interval J ⊂ Ic, then λ(A) − λ(B) ≤
≤ η · ρ(c, J) (ρ(c, J) – a distance between c and J),

where A = {x ∈ J : f(x) ≥ f(c) + ǫ}, B = {x ∈ J : f(c) − ǫ ≤ f(x) < f(c)},

Z−: if f(x) ≤ f(c) + ǫ a.e. on a closed interval J ⊂ Ic, then λ(A) − λ(B) ≤
≤ η · ρ(c, J),

where A = {x ∈ J : f(x) ≤ f(c) − ǫ}, B = {x ∈ J : f(c) < f(x) ≤ f(c) + ǫ}.
The main result of [19] says that k-th Peano derivative, k-th approximate Peano

derivative and k-th Lp-derivative all have the property Z∗ (for k ≥ 1).
Still in the paper [6] one can find the following theorem:

Theorem. Let f be a function fulfilling on an interval I the following conditions:

(i) f is a Darboux function,
(ii) f ′ exists (finite or not) possibly except a denumerable set of points,

(iii) f ′(x) ≥ 0 a.e.

Then f is continuous and nondecreasing on I.

In 1939 G. Tolstov ([49]) has proved the theorem which is an improvement of the
theorem of Goldowski-Tonelli:

Theorem. Let f be a function fulfilling on an interval I the following condition:

i) f is approximately continuous,
ii) f ′

ap exists (finite or not) possibly except a denumerable set of points,
iii) f ′

ap(x) ≥ 0 a.e.

Then f is continuous and nondecreasing on I.

Observe that the condition (i) in Zahorski’s theorem is weaker than in Tolstov’s
while conditions (ii) and (iii) are stronger because they involve ordinary derivative
instead of the approximate derivative. Professor Zahorski asked if it is possible to prove
a theorem which implies both Tolstov’s theorem and Zahorski’s theorem. However,
there exists a non-monotone function which is Darboux and fulfills condition ii) and
iii) of Tolstov (see [17], p. 45), so simply taking the weaker condition from each pair
does not work. From the second condition of Zahorski it follows that f is Baire one
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function. T. Świa̧tkowski in [48] and A. Bruckner in [11] and [12] have proved that if
f is Darboux Baire one function on I and fulfills conditions (ii) and (iii) of Tolstov,
then f is continuous and nondecreasing on I. In fact, A. Bruckner has proved the
more general scheme:

Let P be a function-theoretic property sufficiently strong to imply

(a) any Darboux Baire one function which satisfies property P on an interval I is of
generalized bounded variation on I,

(b) any continuous function of bounded variation which satisfies property P on I is
nondecreasing on I.

Then any Darboux Baire one function which satisfies property P on I is continuous
and increasing on I.

Using this result E.  Lazarow and W. Wilczyński have proved a similar theorem for
the category analogue of the approximate derivative ([36]). For further informations
on monotonicity conditions see [23]. E.  Lazarow has proved in [35] that a finite I-
approximate derivative is Baire one.

R. Pawlak in [40] when studying Darboux and Świa̧tkowski real valued functions
of two real variables has introduced the hierarchy of Zahorski classes on arcs in R

2

and has proved, among others, that the same inclusions and equalities between these
classes, Darboux Baire one functions and approximately continuous functions of two
variables hold as in the case of functions of one variable.

The problem of characterization of the set of points of nondifferentiability of a con-
tinuous functions has been solved by professor Zahorski in [2] and [3]. He has shown
that this set is the union of a Gδ set with a Gδσ set of Lebesgue measure zero and
that any set of this form is the set of points of nondifferentiability for some continuous
function. For a continuous function of bounded variation the term Gδ can be dropped
from the statement. This theorem has been extended by A. Brudno ([18]) to arbitrary
functions. The construction of a continuous function with prescribed set of points of
differentiability has been simplified by S. Piranian ([41]). Observe that classical con-
structions of Bolzano, Weierstrass or van der Waerden are dealing with only one set
of points of nondifferentiability of a continuous function, namely, the set equal to R.
The beautiful result of professor Zahorski for a long time was not commonly recog-
nized. In the book Real and Abstract Analysis, Springer-Verlag 1969 by E. Hewitt and
K. Stromberg one can find on page 266 the following sentences: “(17.13) Question.
Suppose that λ(A) = 0, A ⊂ [a, b]. Is it possible to find a monotone function f on
[a, b] such that f ′ exists exactly on A′ ∩ (a, b)? The complete answer seems to be
unknown”.

F.M. Filipczak in [24] has studied the set of points of differentiability from slightly
another point of view. He proved that if E,F,G and H are subsets of an interval
I such that E ⊂ F ⊂ G ⊂ H ⊂ I, E is of type Fσ, H is simultaneously of type
Fσ and Gδ, λ(H \ E) = 0, H \ F is countable (so F and G are Gσ’s), then there
exists a real function defined on I such that E is the set where f ′ exists finite,
F is the set of points of continuity of f and G is the set where f ′ exists finite or
not. In [25] and [26] F.M. Filipczak has established the Borel class of symmetric
derivatives of approximately continuous functions and has proved that the set of
points of symmetric nondifferentiability is characterized exactly as in the case of
ordinary nondifferentiability. His theorem reads as follows: If E is the set of the form
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E = A ∪ B, where A ∈ Gδ, B ∈ Gδσ and λ(B) = 0, then there exist a continuous
function f such that f ′ exists and is finite for x /∈ E, a symmetric derivative Df and
unilateral derivatives do not exist for x ∈ E.

Professor Zygmunt Zahorski was interested also in the behaviour of more regular
functions, namely, functions belonging to the class C∞. If f ∈ C∞ is a real function of

a real variable and Tf(x, h) := f(x)+ h
1!f

′(x)+ h2

2! f
′′(x)+ . . . associated Taylor series,

then there are three possibilities: either the radius of convergence of T is positive and
the series is convergent to f in some neighbourhood of 0, or the radius of convergence
equals zero, or the radius of convergence is positive but the series does not converge
to f . In the first case we say that x is a regular point (or a point of analyticity), in
the second we say that x is a singular point in the sense of Pringsheim (or a point
of divergence), in the third we say that x is a singular point in the sense of Cauchy
(or a point of false convergence). The paper [4] contains an elegant and complete
characterization of three sets. The theorem of Zahorski says that if f ∈ C∞, then
the set A of regular points is open, the set D of points singular in the sense of
Pringsheim is of type Gδ, the set F of points singular in the sense of Cauchy is the
set of the first category of type Fσ and that if A,D, F are three disjoint sets such
that R = A ∪D ∪ F , A is open, D is Gδ and F is Fσ of the first category, then there
exists a function f ∈ C∞ for which A is the set of regular points, D – the set of
points singular in the sense of Pringsheim and F – the set of points singular in the
sense of Cauchy. The proof has been simplified by H. Salzmann and K. Zeller in [45].
J. Siciak in [46] using the method of these authors, has obtained an analogous result
for functions of several variables.

Professor Zahorski has obtained also interesting results in differential geometry. In
[5] he has proved among others that if K is a rectifiable curve in R

2, then there exists
a parametric representation for K each of whose coordinate functions has a bounded
derivative. Essentially the same result has been obtained by G. Choquet in [21]. More
informations on this topic one can find in [13]. The paper [7] contains an unexpected
construction of the very winding curve – the tangent line assumes all directions on
each subarc of the curve. Moreover, the tangent line does not exist on dense set
of points – it follows from the properties of the derivative. W. Wilczyński in [54]
has presented a construction of a continuous function f defined on the unit circle
K = {(x, y) : x2 + y2 ≤ 1} the graph of which is a rectifiable surface. The normal line
to this surface takes every direction (from the upper semi-sphere) on each part of the
surface. In this case also the set of non-differentiability of f must be dense of K.

Another important result concerning derivatives is contained in [1]. Professor Za-
horski has constructed an everywhere differentiable continuous function with an in-
finite derivative on an arbitrary given Gδ set of Lebesgue measure zero. Earlier it
was known that these exists a continuous function with an infinite derivative on an
arbitrary Gδ null set and with finite Dini derivatives elsewhere. V. Tzodiks in [50] has
proved the following related result: A necessary and sufficient conditions for two sets
E1 and E2 to be sets where f ′ = +∞ and f ′ = −∞, where f is a finite function, are:
E1 and E2 be Fσδ ’s of measurable zero such that there exist disjoint Fσ sets H1 and
H2 with E1 ⊂ H1 and E2 ⊂ H2.

T. Nishiura in [38] has used Zahorski classes of sets in the theory of absolute
measurable spaces and absolute null spaces. A separable metrizable space is a Zahorski
space if it is empty or it is the union of a countable sequence of topological copies
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of the Cantor set. A subset of a separable metrizable space is a Zahorski set if it
is a Zahorski subspace of this space. A Zahorski measure determined by the set E,
where E is a Zahorski set in a separable metrizable space X is a continuous, complete,
finite Borel measure µ on X such that µ(X \ E) = 0 and µ(E ∩ U) > 0 if U is an
open set such that E ∩U 6= ∅. The reader can observe immediately the analogy with
the classes M1 and M2. T. Nishiura has shown the relationship between Zahorski set
and Lusin set and has expressed the opinion ([38], p. 193): “Zahorski spaces appear
in a very prominent way in many proofs”.

According to the opinion of Professor Zygmunt Zahorski (see his biography in
Zeszyty Naukowe Politechniki Śla̧skiej Matematyka-Fizyka, z. 48, Gliwice 1986, p. 19)
among his publications there is only one “of essential good quality”. He did not say
which one he had in mind. The international mathematical community duly appre-
ciates numerous theorems of Zahorski, their influence in the development of the the-
ory of real functions and orthogonal expansions, so it is really difficult to say what
is his greatest achievement. I believe that it may be the construction of the rear-
rangement of terms of a Fourier series ([8]). In 1927 A. Kolmogorov in the paper
[33] common with D. Menshov stated the following theorem: There exists a function
f ∈ L2[0, 2π] whose Fourier series after some rearrangement of terms diverges almost
everywhere. In spite of efforts of Kolmogorov himself and of his students the proof was
still unattainable until 1960, when professor Zahorski accomplished the construction
of the series and the rearrangement. Later P.L. Ulyanov ([51]) observed that similar
construction works for the Walsh and the Haar system and A.M. Olevskǐi ([39]) and
P.L. Ulyanov ([52]) proved that for any complete, orthogonal, normal system there
exists a function f ∈ L2 whose Fourier series with respect to this system after some
rearrangement of terms diverges almost everywhere. Professor Zahorski set a high
value on his rearrangement result. He used to mention a theorem of A.M. Garsia [28]
which says that the existence of such permutation is highly improbable. Namely, let
f ∈ L2[0, 2π] and let {mk}k∈N be an increasing sequence of positive integers such that
Smk

(x, f) →
k→∞

f(x) almost everywhere. (Here Sm(x, f) denotes the m-th partial sum

of the Fourier series f). The existence of a sequence {mk}k∈N is assured by the fol-
lowing theorem (see [9], p. 178-181): if

∑
∞

k=1
1

mk

< +∞ and
∑

∞

k=n
1

mk

= O( 1
mn

) and

f ∈ L2[0, 2π], then Smk
(x, f) →

k→∞

f(x) almost everywhere. Consider the permutation

σ = {σ1, σ2, . . . } of the natural numbers related to the sequence {mk}k∈N in the fol-
lowing way: if mk−1 < i ≤ mk, then mk−1 < σi ≤ mk (we assume m0 = 0). Let Pk be
the set of all permutations of {mk−1 + 1,mk−1 + 2, . . . ,mk}. The set P of all permu-
tations σ of the natural numbers described above can be naturally identified with the
direct product of {Pk}k∈N. If µk is the measure on Pk such that µk(p) = 1

(mk−mk−1)!

for p ∈ Pk, then µ = ⊕nµn is the measure on P . The theorem of A.M. Garsia says
precisely: If f ∈ L2[0, 2π], {mk}k∈N is the above mentioned sequence and indepen-
dently for each k ∈ N we permute at random the terms of the Fourier series of f
whose indices are between mk−1 + 1 and mk, then with probability µ equal to one
the resulting rearranged series will converge almost everywhere. So professor Zahorski
have done something which was almost impossible.

To be honest it is necessary to mention the result of R. Bilyen, R. Kallman and
P. Lewis ([10]). Suppose that G is a set of all permutations of the set of natural
numbers. If we put
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d(σ, σ′) =

∞∑

n=1

2−n(dn(σ, σ′) + dn(σ−1σ
′
−1)), where

dn(σ, σ′) =
|σn − σ′

n|

1 + |σn − σ′
n|
,

then (G, d) is a Polish space. The main result in [10] says that it {fn}n∈N is a sequence
of Borel functions defined on some interval I such that

∑
∞

n=1 fn diverges almost
everywhere, then the set {σ ∈ G :

∑
∞

n=1 fσn
diverges a.e.} is residual in (G, d).

So from the point of view of Baire category it should be “easy” to find a rearrange-
ment destroying the convergence.

N.N. Lusin in 1913 conjectured that each function in L2[0, 2π] has an a.e. conver-
gent Fourier series. Professor Z. Zahorski for many years struggled with this problem
and perhaps this experience helped him in finding the rearrangement. The problem
of Lusin was finally solved by L. Carleson ([20]) and soon after appearing of his pa-
per R. Hunt ([31]) was able to extend this result to all spaces Lp[0, 2π] for p > 1.
A.N. Kolmogorov in [32] gave an example of a function in L1[0, 2π] with an a.e. diver-
gent Fourier series. This leaves only a narrow place for improving the result of Hunt.
Moreover, in the example of Kolmogorov the function is in the class L log logL. Sjölin
in [47] has proved that each function in the space L logL log logL has also an a.e.
convergent Fourier series. For more informations concerning this topic see [44].
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de derivée symetrique. Dissertationes Math. 130 (1976), 1–48.
27. Freiling Ch.: On the problem of characterizing derivatives. Real Anal. Exchange 23, no. 2 (1997-

1998), 805–812.
28. Garsia A.M.: Existence of almost everywhere convergent rearrangements for Fourier series of

L2 functions. Annals of Math. 79, no. 3 (1964), 623–629.
29. Haupt O., Pauc Ch.: La topologie de Denjoyenvisagée comme vraie topologic. C. R. Acad. Sci.

Paris 234 (1952), 390–392.
30. Humke P.D.: A modest review of a great deal of work. In: Traditional and Present-day Topics

in Real Analysis (dedicated to Professor Jan Stanis law Lipiński), M. Filipczak, E. Wagner-
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37. Neugebauer C.J.: Darboux functions of Baire class one and derivatives. Proc. Amer. Math. Soc.

13 (1962), 838–843.
38. Nishiura T.: Absolute Measurable Spaces. Encyclopedia of Mathematics and Its Applications

120, Cambridge University Press, Cambridge 2008.
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