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1. Introduction
Recall that a finite p-group is powerful if

[G,G] ≤ Gp (p odd), [G,G] ≤ G4 (p = 2)

Close to abelian:
(1) Gn = {gn : g ∈ G}, (2) H ≤ G⇒ rank(H) ≤ rank(G).

Far from abelian:
(1) No common law, (2) If G is a finite p-group and subgroups of rank
at most r, then there is a powerful subgroup of r bounded index.

Definition. Let G be a finite p-group. An ascending chain of subgroups

{1} = H0 ≤ H1 ≤ · · · ≤ Hn = G

Is powerfully central if [Hi,G] ≤ Hp
i−1 for i = 1, . . . , n. Here n is the

length of the chain.

Definition. A powerful p-group is powerfully nilpotent if it has a
powerfully central ascending chain of subgroups. The smallest length
of such a chain is the powerful class of G.
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The upper powerfully central series. Defined recursively by
Ẑ0(G) = {1}, Ẑn+1(G) = {a ∈ G : [a, x] ∈ Ẑn(G)p for all x ∈ G}. (Notice
that Ẑ1(G) = Z(G)).

Definition. A finite p-group is strongly powerful if [G,G] ≤ Gp2
.

Lemma 1.1. A strongly powerful p-group of exponent pe is powerfully
nilpotent. The powerful class is at most e− 1 if e ≥ 2.

Remark. In particular all powerful 2-groups are powerfully nilpotent.

Proposition 1.2. Let G be a finite p-group of exponent pe where e ≥ 2.
If G/Gp2

is powerfully nilpotent of powerful class m, then G is
powerfully nilpotent of powerful class at most (e− 1)m.

Theorem 1.3 (Williams). Suppose G is a powerful p-group and N ≤ Gp

where N E G. Then N is powerfully nilpotent.
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2. Presentations and growth
Let G be any powerfully nilpotent p-group of rank r, exponent pe and
order pn.

Theorem 2.1(T, Williams 2019). We can choose the generators
a1, . . . , ar such that |G| = o(a1) · · · o(ar) and such that

〈a1, . . . , ar〉 ≥ 〈ap
1, a2, . . . , ar〉 ≥ · · · ≥ 〈ap

1, . . . , a
p
r 〉

〈ap2

1 , a
p
2, . . . , a

p
r 〉 ≥ · · · ≥ 〈ape

1 , . . . , a
pe

r 〉 = {1}

is powerfully central.

Powerfully nilpotent presentations . With the generators chosen as
above we get relations of the form

[ai, aj] = am1(i,j)
1 · · · amr(i,j)

r , 1 ≤ j < i ≤ r

ani
i = 1, 1 ≤ i ≤ r

where ni = o(ai) and where p|mk(i, j). Also p2|mk(i, j) when k ≤ i.
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These relations determine the structure of the group. We call such a
presentation a powerfully nilpotent presentation. Conversely any
powerfully nilpotent presentation gives us a powerfully nilpotent group
G. We say that the presentation is consistent if |G| = pn1+···+nr .

Theorem 2.2 (T, Williams 2019) Let p be an odd prime. The number
of powerfully nilpotent groups of epxonenent p2 and order pn is
pαn3+o(n3), where α = 9+4

√
2

394

Remark. The number of all powerful p-groups of exponent p2 and
order pn is on the other hand p

2
27 n3+o(n3).
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3. Powerful coclass and the ancestry tree
Let p be a fixed prime.

Defininition. Let G be a powerful p-group of powerful class c and order
pn. We define the powerful coclass of G to be the number d = n− c.

The ancestry tree. The vertices are the powerfully nilpotent groups.
The groups G and H are joined by a directed edge, H → G, iff
H ∼= G/Z(G)p and G is not abelian.

Remark. Suppose H is powerfully nilpotent p-group of order pn(H) and
powerful class c(H) and that H → G where G has order pn(G) and
powerful class c(G). If |Z(G)p| = pk, then
d(G) = n(G)− c(G) = n(H) + k − (c(H) + 1) = d(H) + k − 1. Thus

H → G⇒ d(H) ≤ d(G)

with equality iff |Z(G)p| = p.
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Let p be a fixed prime. For any powerful p-group G we let r = r(G) be
the rank of G, c = c(G) be the powerful class and pn(G), pe(G) be the
order and exponent of G. As before the coclass is d(G) = n(G)− c(G).

Theorem 3.1 (T, Williams 2019) For each prime p and non-negative
integer d, there are finitely many powerfully nilpotent p-groups of
powerful coclass d. Furthermore r ≤ d + 1 and e ≤ d + 1.

Remark. As n ≤ re ≤ (d + 1)2, the two inequalities imply that there are
only finitely many G with powerful coclass d.
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4. Groups of maximal powerful class

Definition. Let G be a powerfully nilpotent p-group and let t be the
largest non-negative integer such that

p = |Ẑ1(G)p| = | Ẑ2(G)p

Ẑ1(G)p
| = · · · = | Ẑt(G)p

Ẑt−1(G)p
|.

We refer to T = Ẑt(G)p as the tail of G and t as the length of the tail.

Definition. A powerful p-group has maximal tail if the tail is Gp.

Theorem 4.1 (T, Williams 2019) Let G be a powerfully nilpotent group
with maximal tail of rank r ≥ 2. Then
(a) c− 1 ≤ t ≤ c and n− c ≤ r ≤ n− c + 1.
(b) t, c ≤ 1 + r(r − 1)/2.
(c) We have rank(G) > rank(Gp) > · · · > rank(Gpe−2

).

Remark. If G has maximal tail then so does G/Z(G)p.
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Ẑt−1(G)p
|.
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Definition. A powerful p-group of rank r with maximal tail has maximal
powerful class if the powerful class is 1 + r(r − 1)/2.

Theorem 4.2 (T, Williams 2019). Let r be a positive integer and p > r
a prime. There exists a powerfully nilpotent p-group of rank r that is of
maximal powerful class.

Theorem 4.3 (T, Williams 2019). Let G be a powerfully nilpotent
p-group of rank r where p > r that has maximal powerful class
1 + r(r − 1)/2. There exists generators b1, . . . , br−1, y such that

G = 〈y〉 · 〈b1〉 · · · 〈br−1〉,
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