Powerfully nilpotent groups

Gunnar Traustason

Department of Mathematical Sciences University of Bath

Gliwice 2019

Gunnar Traustason Powerfully nilpotent groups

Powerfully nilpotent groups

- 1. Introduction.
- 2. Presentations and growth.
- 3. Powerful coclass and the ancestry tree.
- 4. Groups of maximal powerful class.

(Joint with James Williams)

Recall that a finite *p*-group is powerful if

 $[G,G] \leq G^p \ (p \text{ odd}), \ [G,G] \leq G^4 \ (p=2)$

Recall that a finite *p*-group is powerful if

 $[G,G] \leq G^p \ (p \text{ odd}), \ [G,G] \leq G^4 \ (p=2)$

Close to abelian:

(1) $G^n = \{g^n : g \in G\}, \ (2) H \le G \Rightarrow \operatorname{rank}(H) \le \operatorname{rank}(G).$

Recall that a finite *p*-group is powerful if

 $[G,G] \leq G^p \ (p \text{ odd}), \ [G,G] \leq G^4 \ (p=2)$

Close to abelian:

(1) $G^n = \{g^n : g \in G\}$, (2) $H \le G \Rightarrow \operatorname{rank}(H) \le \operatorname{rank}(G)$.

Far from abelian:

(1) No common law, (2) If G is a finite p-group and subgroups of rank at most r, then there is a powerful subgroup of r bounded index.

Recall that a finite *p*-group is powerful if

 $[G,G] \leq G^p \ (p \text{ odd}), \ [G,G] \leq G^4 \ (p=2)$

Close to abelian:

(1) $G^n = \{g^n : g \in G\}$, (2) $H \le G \Rightarrow \operatorname{rank}(H) \le \operatorname{rank}(G)$.

Far from abelian:

(1) No common law, (2) If G is a finite p-group and subgroups of rank at most r, then there is a powerful subgroup of r bounded index.

Definition. Let *G* be a finite *p*-group. An ascending chain of subgroups

 $\{1\} = H_0 \le H_1 \le \cdots \le H_n = G$

Is powerfully central if $[H_i, G] \le H_{i-1}^p$ for i = 1, ..., n. Here *n* is the length of the chain.

Recall that a finite *p*-group is powerful if

 $[G,G] \leq G^p \ (p \text{ odd}), \ [G,G] \leq G^4 \ (p=2)$

Close to abelian:

(1) $G^n = \{g^n : g \in G\}$, (2) $H \le G \Rightarrow \operatorname{rank}(H) \le \operatorname{rank}(G)$.

Far from abelian:

(1) No common law, (2) If G is a finite p-group and subgroups of rank at most r, then there is a powerful subgroup of r bounded index.

Definition. Let G be a finite p-group. An ascending chain of subgroups

 $\{1\} = H_0 \le H_1 \le \cdots \le H_n = G$

Is powerfully central if $[H_i, G] \le H_{i-1}^p$ for i = 1, ..., n. Here *n* is the length of the chain.

Definition. A powerful p-group is powerfully nilpotent if it has a powerfully central ascending chain of subgroups. The smallest length of such a chain is the powerful class of G.

Definition. A finite *p*-group is strongly powerful if $[G, G] \leq G^{p^2}$.

Definition. A finite *p*-group is strongly powerful if $[G, G] \leq G^{p^2}$.

Lemma 1.1. A strongly powerful *p*-group of exponent p^e is powerfully nilpotent. The powerful class is at most e - 1 if $e \ge 2$.

Definition. A finite *p*-group is strongly powerful if $[G, G] \leq G^{p^2}$.

Lemma 1.1. A strongly powerful *p*-group of exponent p^e is powerfully nilpotent. The powerful class is at most e - 1 if $e \ge 2$.

Remark. In particular all powerful 2-groups are powerfully nilpotent.

Definition. A finite *p*-group is strongly powerful if $[G, G] \leq G^{p^2}$.

Lemma 1.1. A strongly powerful *p*-group of exponent p^e is powerfully nilpotent. The powerful class is at most e - 1 if $e \ge 2$.

Remark. In particular all powerful 2-groups are powerfully nilpotent.

Proposition 1.2. Let *G* be a finite *p*-group of exponent p^e where $e \ge 2$. If G/G^{p^2} is powerfully nilpotent of powerful class *m*, then *G* is powerfully nilpotent of powerful class at most (e - 1)m.

Definition. A finite *p*-group is strongly powerful if $[G, G] \leq G^{p^2}$.

Lemma 1.1. A strongly powerful *p*-group of exponent p^e is powerfully nilpotent. The powerful class is at most e - 1 if $e \ge 2$.

Remark. In particular all powerful 2-groups are powerfully nilpotent.

Proposition 1.2. Let *G* be a finite *p*-group of exponent p^e where $e \ge 2$. If G/G^{p^2} is powerfully nilpotent of powerful class *m*, then *G* is powerfully nilpotent of powerful class at most (e - 1)m.

Theorem 1.3 (Williams). Suppose *G* is a powerful *p*-group and $N \leq G^p$ where $N \leq G$. Then *N* is powerfully nilpotent.

2. Presentations and growth

Let *G* be any powerfully nilpotent *p*-group of rank *r*, exponent p^e and order p^n .

2. Presentations and growth

Let *G* be any powerfully nilpotent *p*-group of rank *r*, exponent p^e and order p^n .

Theorem 2.1(T, Williams 2019). We can choose the generators a_1, \ldots, a_r such that $|G| = o(a_1) \cdots o(a_r)$ and such that

is powerfully central.

2. Presentations and growth

Let *G* be any powerfully nilpotent *p*-group of rank *r*, exponent p^e and order p^n .

Theorem 2.1(T, Williams 2019). We can choose the generators a_1, \ldots, a_r such that $|G| = o(a_1) \cdots o(a_r)$ and such that

is powerfully central.

Powerfully nilpotent presentations . With the generators chosen as above we get relations of the form

$$\begin{bmatrix} a_i, a_j \end{bmatrix} = a_1^{m_1(i,j)} \cdots a_r^{m_r(i,j)}, \quad 1 \le j < i \le r \\ a_i^{n_i} = 1, \quad 1 \le i \le r$$

where $n_i = o(a_i)$ and where $p|m_k(i,j)$. Also $p^2|m_k(i,j)$ when $k \leq i$.

These relations determine the structure of the group. We call such a presentation a powerfully nilpotent presentation. Conversely any powerfully nilpotent presentation gives us a powerfully nilpotent group *G*. We say that the presentation is consistent if $|G| = p^{n_1 + \dots + n_r}$.

These relations determine the structure of the group. We call such a presentation a powerfully nilpotent presentation. Conversely any powerfully nilpotent presentation gives us a powerfully nilpotent group *G*. We say that the presentation is consistent if $|G| = p^{n_1 + \dots + n_r}$.

Theorem 2.2 (T, Williams 2019) Let *p* be an odd prime. The number of powerfully nilpotent groups of epxonenent p^2 and order p^n is $p^{\alpha n^3 + o(n^3)}$, where $\alpha = \frac{9+4\sqrt{2}}{394}$

These relations determine the structure of the group. We call such a presentation a powerfully nilpotent presentation. Conversely any powerfully nilpotent presentation gives us a powerfully nilpotent group *G*. We say that the presentation is consistent if $|G| = p^{n_1 + \dots + n_r}$.

Theorem 2.2 (T, Williams 2019) Let *p* be an odd prime. The number of powerfully nilpotent groups of epxonenent p^2 and order p^n is $p^{\alpha n^3 + o(n^3)}$, where $\alpha = \frac{9+4\sqrt{2}}{394}$

Remark. The number of all powerful *p*-groups of exponent p^2 and order p^n is on the other hand $p^{\frac{2}{27}n^3+o(n^3)}$.

Let p be a fixed prime.

Let p be a fixed prime.

Defininition. Let *G* be a powerful *p*-group of powerful class *c* and order p^n . We define the powerful coclass of *G* to be the number d = n - c.

Let p be a fixed prime.

Defininition. Let *G* be a powerful *p*-group of powerful class *c* and order p^n . We define the powerful coclass of *G* to be the number d = n - c.

The ancestry tree. The vertices are the powerfully nilpotent groups. The groups *G* and *H* are joined by a directed edge, $H \rightarrow G$, iff $H \cong G/Z(G)^p$ and *G* is not abelian.

Let p be a fixed prime.

Defininition. Let *G* be a powerful *p*-group of powerful class *c* and order p^n . We define the powerful coclass of *G* to be the number d = n - c.

The ancestry tree. The vertices are the powerfully nilpotent groups. The groups *G* and *H* are joined by a directed edge, $H \rightarrow G$, iff $H \cong G/Z(G)^p$ and *G* is not abelian.

Remark. Suppose *H* is powerfully nilpotent *p*-group of order $p^{n(H)}$ and powerful class c(H) and that $H \to G$ where *G* has order $p^{n(G)}$ and powerful class c(G). If $|Z(G)^p| = p^k$, then d(G) = n(G) - c(G) = n(H) + k - (c(H) + 1) = d(H) + k - 1. Thus

 $H \to G \Rightarrow d(H) \leq d(G)$

with equality iff $|Z(G)^p| = p$.

Let *p* be a fixed prime. For any powerful *p*-group *G* we let r = r(G) be the rank of *G*, c = c(G) be the powerful class and $p^{n(G)}$, $p^{e(G)}$ be the order and exponent of *G*. As before the coclass is d(G) = n(G) - c(G).

Let *p* be a fixed prime. For any powerful *p*-group *G* we let r = r(G) be the rank of *G*, c = c(G) be the powerful class and $p^{n(G)}$, $p^{e(G)}$ be the order and exponent of *G*. As before the coclass is d(G) = n(G) - c(G).

Theorem 3.1 (T, Williams 2019) For each prime p and non-negative integer d, there are finitely many powerfully nilpotent p-groups of powerful coclass d. Furthermore $r \le d + 1$ and $e \le d + 1$.

Let *p* be a fixed prime. For any powerful *p*-group *G* we let r = r(G) be the rank of *G*, c = c(G) be the powerful class and $p^{n(G)}$, $p^{e(G)}$ be the order and exponent of *G*. As before the coclass is d(G) = n(G) - c(G).

Theorem 3.1 (T, Williams 2019) For each prime p and non-negative integer d, there are finitely many powerfully nilpotent p-groups of powerful coclass d. Furthermore $r \le d + 1$ and $e \le d + 1$.

Remark. As $n \le re \le (d+1)^2$, the two inequalities imply that there are only finitely many *G* with powerful coclass *d*.

Definition. Let G be a powerfully nilpotent p-group and let t be the largest non-negative integer such that

$$p = |\hat{Z}_1(G)^p| = |\frac{\hat{Z}_2(G)^p}{\hat{Z}_1(G)^p}| = \dots = |\frac{\hat{Z}_t(G)^p}{\hat{Z}_{t-1}(G)^p}|.$$

Definition. Let G be a powerfully nilpotent p-group and let t be the largest non-negative integer such that

$$p = |\hat{Z}_1(G)^p| = |\frac{\hat{Z}_2(G)^p}{\hat{Z}_1(G)^p}| = \dots = |\frac{\hat{Z}_t(G)^p}{\hat{Z}_{t-1}(G)^p}|.$$

We refer to $T = \hat{Z}_t(G)^p$ as the tail of *G* and *t* as the length of the tail.

Definition. Let G be a powerfully nilpotent p-group and let t be the largest non-negative integer such that

$$p = |\hat{Z}_1(G)^p| = |\frac{\hat{Z}_2(G)^p}{\hat{Z}_1(G)^p}| = \dots = |\frac{\hat{Z}_t(G)^p}{\hat{Z}_{t-1}(G)^p}|.$$

We refer to $T = \hat{Z}_t(G)^p$ as the tail of *G* and *t* as the length of the tail.

Definition. A powerful p-group has maximal tail if the tail is G^p .

Definition. Let G be a powerfully nilpotent p-group and let t be the largest non-negative integer such that

$$p = |\hat{Z}_1(G)^p| = |\frac{\hat{Z}_2(G)^p}{\hat{Z}_1(G)^p}| = \dots = |\frac{\hat{Z}_t(G)^p}{\hat{Z}_{t-1}(G)^p}|.$$

We refer to $T = \hat{Z}_t(G)^p$ as the tail of *G* and *t* as the length of the tail.

Definition. A powerful p-group has maximal tail if the tail is G^p .

Theorem 4.1 (T, Williams 2019) Let *G* be a powerfully nilpotent group with maximal tail of rank $r \ge 2$. Then

(a)
$$c - 1 \le t \le c$$
 and $n - c \le r \le n - c + 1$.
(b) $t, c \le 1 + r(r - 1)/2$.
(c) We have $\operatorname{rank}(G) > \operatorname{rank}(G^p) > \cdots > \operatorname{rank}(G^{p^{e-2}})$.

Definition. Let G be a powerfully nilpotent p-group and let t be the largest non-negative integer such that

$$p = |\hat{Z}_1(G)^p| = |\frac{\hat{Z}_2(G)^p}{\hat{Z}_1(G)^p}| = \dots = |\frac{\hat{Z}_t(G)^p}{\hat{Z}_{t-1}(G)^p}|.$$

We refer to $T = \hat{Z}_t(G)^p$ as the tail of *G* and *t* as the length of the tail.

Definition. A powerful p-group has maximal tail if the tail is G^p .

Theorem 4.1 (T, Williams 2019) Let *G* be a powerfully nilpotent group with maximal tail of rank $r \ge 2$. Then

(a)
$$c - 1 \le t \le c$$
 and $n - c \le r \le n - c + 1$.
(b) $t, c \le 1 + r(r - 1)/2$.
(c) We have $\operatorname{rank}(G) > \operatorname{rank}(G^p) > \cdots > \operatorname{rank}(G^{p^{e-2}})$

Remark. If *G* has maximal tail then so does $G/Z(G)^p$.

Theorem 4.2 (T, Williams 2019). Let *r* be a positive integer and p > r a prime. There exists a powerfully nilpotent *p*-group of rank *r* that is of maximal powerful class.

Theorem 4.2 (T, Williams 2019). Let *r* be a positive integer and p > r a prime. There exists a powerfully nilpotent *p*-group of rank *r* that is of maximal powerful class.

Theorem 4.3 (T, Williams 2019). Let *G* be a powerfully nilpotent *p*-group of rank *r* where p > r that has maximal powerful class 1 + r(r-1)/2. There exists generators b_1, \ldots, b_{r-1}, y such that

 $G = \langle y \rangle \cdot \langle b_1 \rangle \cdots \langle b_{r-1} \rangle,$

with $|G| = o(y)o(b_1) \cdots o(b_{r-1}), o(b_i) = p^i, o(y) = p^{r+1}$

Theorem 4.2 (T, Williams 2019). Let *r* be a positive integer and p > r a prime. There exists a powerfully nilpotent *p*-group of rank *r* that is of maximal powerful class.

Theorem 4.3 (T, Williams 2019). Let *G* be a powerfully nilpotent *p*-group of rank *r* where p > r that has maximal powerful class 1 + r(r-1)/2. There exists generators b_1, \ldots, b_{r-1}, y such that

 $G = \langle y \rangle \cdot \langle b_1 \rangle \cdots \langle b_{r-1} \rangle,$

with $|G| = o(y)o(b_1) \cdots o(b_{r-1})$, $o(b_i) = p^i$, $o(y) = p^{r+1}$ and where,

is powerfully central.

Theorem 4.2 (T, Williams 2019). Let *r* be a positive integer and p > r a prime. There exists a powerfully nilpotent *p*-group of rank *r* that is of maximal powerful class.

Theorem 4.3 (T, Williams 2019). Let *G* be a powerfully nilpotent *p*-group of rank *r* where p > r that has maximal powerful class 1 + r(r-1)/2. There exists generators b_1, \ldots, b_{r-1}, y such that

 $G = \langle y \rangle \cdot \langle b_1 \rangle \cdots \langle b_{r-1} \rangle,$

with $|G| = o(y)o(b_1) \cdots o(b_{r-1})$, $o(b_i) = p^i$, $o(y) = p^{r+1}$ and where,

is powerfully central. Furthermore

(a) $[b_1, y] = b_2^p$, $[b_2, y] = b_3^p$, ..., $[b_{r-2}, y] = b_{r-1}^p$, $[b_{r-1}, y] = y^{p^2}$. (b) $H = \Omega_r(G) = \langle y^p \rangle \langle b_1 \rangle \cdots \langle b_{r-1} \rangle$ p.e. *G* and strongly powerful. (c) $G^{p^{r-1}} \leq Z(G)$.