	Step 2: Topological reductions	

Finite 2-nilpotent groups acting on compact manifolds

Groups and Their Actions International Conference

Dávid R. Szabó szabo.david [kukac] renyi [pont] hu

Alfréd Rényi Institute of Mathematics, Budapest, Hungary

Gliwice, Poland September 9, 2019

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Motivation		Step 2: Topological reductions	
000			

Definition

A(n infinite) group G is Jordan if there exists a positive integer J_G , such that every finite subgroup K of G contains a normal abelian subgroup whose index in K is at most J_G .

- GL(ℂ, n) for every n (Camille Jordan, 1877)
- Bir(X) where X is an algebraic variety for
 - $X = \mathbb{P}^2_{\mathbb{C}}$, the rank 2 Cremona group (J.-P. Serre, 2009)
 - X rationally connected (e.g. $X = \mathbb{P}^n_{\mathbb{C}}$) with $J_{\text{Bir}(X)}$ depending only on dim X (Prokhorov, Shramov, 2014 + Birkar 2016)
- G connected algebraic group (with J_G depending only on dim G) (Meng, Zhang, 2017)
- Aut₀(X) where X is a projective variety (Meng, Zhang, 2017)

Motivation		Step 2: Topological reductions	
000			

Definition

A(n infinite) group G is Jordan if there exists a positive integer J_G , such that every finite subgroup K of G contains a normal abelian subgroup whose index in K is at most J_G .

- $GL(\mathbb{C}, n)$ for every n (Camille Jordan, 1877)
- Bir(X) where X is an algebraic variety for
 - $X = \mathbb{P}^2_{\mathbb{C}}$, the rank 2 Cremona group (J.-P. Serre, 2009)
 - X rationally connected (e.g. $X = \mathbb{P}^{n}_{\mathbb{C}}$) with $J_{\text{Bir}(X)}$ depending only on dim X (Prokhorov, Shramov, 2014 + Birkar 2016)
- G connected algebraic group (with J_G depending only on dim G) (Meng, Zhang, 2017)
- Aut₀(X) where X is a projective variety (Meng, Zhang, 2017)

Motivation		Step 2: Topological reductions	
000			

Definition

A(n infinite) group G is Jordan if there exists a positive integer J_G , such that every finite subgroup K of G contains a normal abelian subgroup whose index in K is at most J_G .

- $GL(\mathbb{C}, n)$ for every *n* (Camille Jordan, 1877)
- Bir(X) where X is an algebraic variety for
 - $X=\mathbb{P}^2_{\mathbb{C}}$, the rank 2 Cremona group (J.-P. Serre, 2009)
 - X rationally connected (e.g. $X = \mathbb{P}^{n}_{\mathbb{C}}$) with $J_{\text{Bir}(X)}$ depending only on dim X (Prokhorov, Shramov, 2014 + Birkar 2016)
- G connected algebraic group (with J_G depending only on dim G) (Meng, Zhang, 2017)
- Aut₀(X) where X is a projective variety (Meng, Zhang, 2017)

Motivation		Step 2: Topological reductions	
000			

Definition

A(n infinite) group G is Jordan if there exists a positive integer J_G , such that every finite subgroup K of G contains a normal abelian subgroup whose index in K is at most J_G .

- $GL(\mathbb{C}, n)$ for every n (Camille Jordan, 1877)
- Bir(X) where X is an algebraic variety for
 - $X = \mathbb{P}^2_{\mathbb{C}}$, the rank 2 Cremona group (J.-P. Serre, 2009)
 - X rationally connected (e.g. $X = \mathbb{P}^n_{\mathbb{C}}$) with $J_{\text{Bir}(X)}$ depending only on dim X (Prokhorov, Shramov, 2014 + Birkar 2016)
- G connected algebraic group (with J_G depending only on dim G) (Meng, Zhang, 2017)
- Aut₀(X) where X is a projective variety (Meng, Zhang, 2017)

Motivation		Step 2: Topological reductions	
000			

Definition

A(n infinite) group G is Jordan if there exists a positive integer J_G , such that every finite subgroup K of G contains a normal abelian subgroup whose index in K is at most J_G .

- $GL(\mathbb{C}, n)$ for every *n* (Camille Jordan, 1877)
- Bir(X) where X is an algebraic variety for
 - $X = \mathbb{P}^2_{\mathbb{C}}$, the rank 2 Cremona group (J.-P. Serre, 2009)
 - X rationally connected (e.g. $X = \mathbb{P}^n_{\mathbb{C}}$) with $J_{\text{Bir}(X)}$ depending only on dim X (Prokhorov, Shramov, 2014 + Birkar 2016)
- *G* connected algebraic group (with *J_G* depending only on dim *G*) (Meng, Zhang, 2017)
- Aut₀(X) where X is a projective variety (Meng, Zhang, 2017)

Motivation		Step 2: Topological reductions	
000			

Definition

A(n infinite) group G is Jordan if there exists a positive integer J_G , such that every finite subgroup K of G contains a normal abelian subgroup whose index in K is at most J_G .

- $GL(\mathbb{C}, n)$ for every n (Camille Jordan, 1877)
- Bir(X) where X is an algebraic variety for
 - $X = \mathbb{P}^2_{\mathbb{C}}$, the rank 2 Cremona group (J.-P. Serre, 2009)
 - X rationally connected (e.g. X = Pⁿ_ℂ) with J_{Bir(X)} depending only on dim X (Prokhorov, Shramov, 2014 + Birkar 2016)
- *G* connected algebraic group (with *J_G* depending only on dim *G*) (Meng, Zhang, 2017)
- $Aut_0(X)$ where X is a projective variety (Meng, Zhang, 2017)

Step 2: Topological reductions

Jordan groups, smooth

Example (Jordan groups, smooth)

Diff(M) is Jordan for manifolds M such that

- M compact, dim(M) ≤ 3 (Bruno Zimmermann, 2014)
- Mundet i Riera (2010-2018):
 - *M* is the *n*-torus
 - M is \mathbb{R}^n (acyclic manifolds)
 - *M* in the *n*-sphere (integral cohomology spheres)
 - M connected, compact with non-zero Euler characteristic

Step 2: Topological reductions

<ロト < 回 ト < 三 ト < 三 ト 三 の へ C 3/19

Jordan groups, smooth

Example (Jordan groups, smooth)

Diff(M) is Jordan for manifolds M such that

- M compact, dim(M) ≤ 3 (Bruno Zimmermann, 2014)
- Mundet i Riera (2010-2018):
 - *M* is the *n*-torus
 - M is \mathbb{R}^n (acyclic manifolds)
 - *M* in the *n*-sphere (integral cohomology spheres)
 - M connected, compact with non-zero Euler characteristic

Step 2: Topological reductions 000000

<ロト < 回 ト < 三 ト < 三 ト 三 の へ C 3/19

Jordan groups, smooth

Example (Jordan groups, smooth)

Diff(M) is Jordan for manifolds M such that

- M compact, dim(M) ≤ 3 (Bruno Zimmermann, 2014)
- Mundet i Riera (2010-2018):
 - *M* is the *n*-torus
 - M is \mathbb{R}^n (acyclic manifolds)
 - *M* in the *n*-sphere (integral cohomology spheres)
 - M connected, compact with non-zero Euler characteristic

Ghys' question

Question (Ghys, < 1997)

Is Diff(M) Jordan for every compact manifold M?

Despite the positive examples above, it turned to be false:

- Diff(T² × S²) is not Jordan (Pyber-Csikós-E. Szabó, 2014) Idea: embed the Heisenberg groups ¹ Z_n Z_n ⁰ 1 Z_n ¹ Z_n Z_n) ⊂ Diff(T² × S²) for infinitely many n
- Mundet i Riera (2014): higher dimensional counterexamples M_n . Idea: embed $H_{2n+1}(\mathbb{Z}_p) := \begin{pmatrix} 1 & \mathbb{Z}_p^n & \mathbb{Z}_p \\ 0 & I_n & (\mathbb{Z}_p^n)^\top \\ 0 & 0 & 1 \end{pmatrix} \subset \text{Diff}(M_n)$ for certain infinite list of primes p satisfying various properties

Motivation		Step 2: Topological reductions	
000			

Ghys' question

Question (Ghys, < 1997)

Is Diff(M) Jordan for every compact manifold M?

Despite the positive examples above, it turned to be false:

- Diff(T² × S²) is not Jordan (Pyber-Csikós-E. Szabó, 2014) Idea: embed the Heisenberg groups ¹ Z_n Z_n 0 1 Z_n C Diff(T² × S²) for infinitely many n
- Mundet i Riera (2014): higher dimensional counterexamples M_n.
 Idea: embed H_{2n+1}(ℤ_p) := <sup>1 ℤ_pⁿ ℤ_p ⁰ I_n (ℤ_pⁿ)[⊤] ⁰ Ω_p)[⊤]
 ¹ ⊂ Diff(M_n) for certain infinite list of primes p satisfying various properties

 </sup>

Ghys' question

Question (Ghys, < 1997)

Is Diff(M) Jordan for every compact manifold M?

Despite the positive examples above, it turned to be false:

- Diff(T² × S²) is not Jordan (Pyber-Csikós-E. Szabó, 2014) Idea: embed the Heisenberg groups ¹ Z_n Z_n ⁰ 1 Z_n ¹ C Diff(T² × S²) for infinitely many n
- Mundet i Riera (2014): higher dimensional counterexamples M_n . Idea: embed $H_{2n+1}(\mathbb{Z}_p) := \begin{pmatrix} 1 & \mathbb{Z}_p^n & \mathbb{Z}_p \\ 0 & I_n & (\mathbb{Z}_p^n)^\top \\ 0 & 0 & 1 \end{pmatrix} \subset \text{Diff}(M_n)$ for certain infinite list of primes p satisfying various properties

Main question and result	Step 2: Topological reductions	
•0		

Question (main)

For which families \mathcal{F} of finite groups does there exist a compact manifold M such that $G \subseteq \text{Diff}(M)$ for every $G \in \mathcal{F}$?

- Non-compact case is fully solved: exists a 4-manifold containing every finite(ly presented) group (Popov, 2013).
- Compact case: sup{r(G) : G ∈ F} < ∞ (Mann, Su, 1963).
 Here r(G) := max{d(H) : H ⊆ G} is the rank of G where d(H) is the cardinality of a smallest generating set of H.
- Affirmative answer for:
 - for some Heisenberg groups (Pyber-Csikós-E. Szabó, Mundet i Riera, 2014)
 - all Heisenberg groups of given dimension (DSz 2017)
 - every special p-group of order pⁿ (DSz, 2018)

Note that all of these groups G are 2-nilpotent, i.e. $[G,G] \subseteq Z(G)$.

Main question and result	Step 2: Topological reductions	
•0		

Question (main)

For which families \mathcal{F} of finite groups does there exist a compact manifold M such that $G \subseteq \text{Diff}(M)$ for every $G \in \mathcal{F}$?

- Non-compact case is fully solved: exists a 4-manifold containing every finite(ly presented) group (Popov, 2013).
- Compact case: sup{r(G) : G ∈ F} < ∞ (Mann, Su, 1963).
 Here r(G) := max{d(H) : H ⊆ G} is the rank of G where d(H) is the cardinality of a smallest generating set of H.
- Affirmative answer for:
 - for some Heisenberg groups (Pyber-Csikós-E. Szabó, Mundet i Riera, 2014)
 - all Heisenberg groups of given dimension (DSz 2017)
 - every special p-group of order pⁿ (DSz, 2018)

Note that all of these groups G are 2-nilpotent, i.e. $[G,G] \subseteq Z(G)$.

Main question and result	Step 2: Topological reductions	
•0		

Question (main)

For which families \mathcal{F} of finite groups does there exist a compact manifold M such that $G \subseteq \text{Diff}(M)$ for every $G \in \mathcal{F}$?

- Non-compact case is fully solved: exists a 4-manifold containing every finite(ly presented) group (Popov, 2013).
- Compact case: sup{r(G) : G ∈ F} < ∞ (Mann, Su, 1963).
 Here r(G) := max{d(H) : H ⊆ G} is the rank of G where d(H) is the cardinality of a smallest generating set of H.
- Affirmative answer for:
 - for some Heisenberg groups (Pyber-Csikós-E. Szabó, Mundet i Riera, 2014)
 - all Heisenberg groups of given dimension (DSz 2017)
 - every special p-group of order pⁿ (DSz, 2018)

Note that all of these groups G are 2-nilpotent, i.e. $[G,G] \subseteq Z(G)$.

Main question and result	Step 2: Topological reductions	
•0		

Question (main)

For which families \mathcal{F} of finite groups does there exist a compact manifold M such that $G \subseteq \text{Diff}(M)$ for every $G \in \mathcal{F}$?

- Non-compact case is fully solved: exists a 4-manifold containing every finite(ly presented) group (Popov, 2013).
- Compact case: sup{r(G) : G ∈ F} < ∞ (Mann, Su, 1963).
 Here r(G) := max{d(H) : H ⊆ G} is the rank of G where d(H) is the cardinality of a smallest generating set of H.
- Affirmative answer for:
 - for some Heisenberg groups (Pyber-Csikós-E. Szabó, Mundet i Riera, 2014)
 - all Heisenberg groups of given dimension (DSz 2017)
 - every special p-group of order pⁿ (DSz, 2018)

Note that all of these groups G are 2-nilpotent, i.e. $[G,G] \subseteq Z(G)$.

Main question and result	Step 2: Topological reductions	
•0		

Question (main)

For which families \mathcal{F} of finite groups does there exist a compact manifold M such that $G \subseteq \text{Diff}(M)$ for every $G \in \mathcal{F}$?

- Non-compact case is fully solved: exists a 4-manifold containing every finite(ly presented) group (Popov, 2013).
- Compact case: sup{r(G) : G ∈ F} < ∞ (Mann, Su, 1963).
 Here r(G) := max{d(H) : H ⊆ G} is the rank of G where d(H) is the cardinality of a smallest generating set of H.
- Affirmative answer for:
 - for some Heisenberg groups (Pyber-Csikós-E. Szabó, Mundet i Riera, 2014)
 - all Heisenberg groups of given dimension (DSz 2017)
 - every special p-group of order pⁿ (DSz, 2018)

Note that all of these groups G are 2-nilpotent, i.e. $[G,G] \subseteq Z(G)$.

Main question and result	Step 2: Topological reductions	
•0		

Question (main)

For which families \mathcal{F} of finite groups does there exist a compact manifold M such that $G \subseteq \text{Diff}(M)$ for every $G \in \mathcal{F}$?

- Non-compact case is fully solved: exists a 4-manifold containing every finite(ly presented) group (Popov, 2013).
- Compact case: sup{r(G) : G ∈ F} < ∞ (Mann, Su, 1963).
 Here r(G) := max{d(H) : H ⊆ G} is the rank of G where d(H) is the cardinality of a smallest generating set of H.
- Affirmative answer for:
 - for some Heisenberg groups (Pyber-Csikós-E. Szabó, Mundet i Riera, 2014)
 - all Heisenberg groups of given dimension (DSz 2017)
 - every special p-group of order pⁿ (DSz, 2018)

Note that all of these groups G are 2-nilpotent, i.e. $[G,G] \subseteq Z(G)$.

Main question and result	Step 2: Topological reductions	
00		

Question (main)

For which families \mathcal{F} of finite groups does there exist a compact manifold M such that $G \subseteq \text{Diff}(M)$ for every $G \in \mathcal{F}$?

- Non-compact case is fully solved: exists a 4-manifold containing every finite(ly presented) group (Popov, 2013).
- Compact case: sup{r(G) : G ∈ F} < ∞ (Mann, Su, 1963).
 Here r(G) := max{d(H) : H ⊆ G} is the rank of G where d(H) is the cardinality of a smallest generating set of H.
- Affirmative answer for:
 - for some Heisenberg groups (Pyber-Csikós-E. Szabó, Mundet i Riera, 2014)
 - all Heisenberg groups of given dimension (DSz 2017)
 - every special p-group of order pⁿ (DSz, 2018)

Note that all of these groups G are 2-nilpotent, i.e. $[G, G] \subseteq Z(G)$.

Step 2: Topological reductions

Main result

Theorem (DSz, 2019)

For every r, there exists a compact manifold M_r such that $G \subseteq \text{Diff}(M_r)$ for every finite 2-nilpotent group G of rank $\leq r$.

As an immediate corollary, we answer affirmatively a question of Mundet i Riera from 2018.

Corollary

For every n, there exists a compact manifold M_n on which every finite 2-nilpotent group G of order p^n acts faithfully via diffeomorphisms for every p.

Main result

Theorem (DSz, 2019)

For every r, there exists a compact manifold M_r such that $G \subseteq \text{Diff}(M_r)$ for every finite 2-nilpotent group G of rank $\leq r$.

As an immediate corollary, we answer affirmatively a question of Mundet i Riera from 2018.

Corollary

For every n, there exists a compact manifold M_n on which every finite 2-nilpotent group G of order p^n acts faithfully via diffeomorphisms for every p.

Overview of the group theoretic reductions

- We reduce the 2-nilpotent group *G* to one with cyclic centre using direct products.
- Then further to one that is generated by 2 elements using maximal central products.
- Finally we classify the 2-generated 2-nilpotent groups having cyclic centre.

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ E の Q @ 7/19

Proof of theorem

Overview of the group theoretic reductions

- We reduce the 2-nilpotent group G to one with cyclic centre using direct products.
- Then further to one that is generated by 2 elements using maximal central products.
- Finally we classify the 2-generated 2-nilpotent groups having cyclic centre.

Overview of the group theoretic reductions

- We reduce the 2-nilpotent group G to one with cyclic centre using direct products.
- Then further to one that is generated by 2 elements using maximal central products.
- Finally we classify the 2-generated 2-nilpotent groups having cyclic centre.

Overview of the group theoretic reductions

- We reduce the 2-nilpotent group G to one with cyclic centre using direct products.
- Then further to one that is generated by 2 elements using maximal central products.
- Finally we classify the 2-generated 2-nilpotent groups having cyclic centre.

Fix G a finite 2-nilpotent group of rank $\leq r$. (Wlog it is a *p*-group.) Goal: find a manifold with a G-action depending only on r.

Lemma

There exists 2-nilpotent H_i with cyclic centre such that $G \subseteq \prod_{i=1}^r H_i$ and $d(H_i) \leq r$.

- $Z(G) = \prod_{i=1}^{k} C_i$, if k > 1 consider $\prod_{i=1}^{k} G/C_i$ and use induction to embed G to $\prod_{i=1}^{K} G/N_i$.
- Wlog K ≤ r (E. Szabó): The socle of G (product of minimal normal subgroups) is Z^k_p for some k ≤ r. Every non-trivial normal subgroup intersects the socle non-trivially. We select r normal subgroups N_i ⊆ G from the list with trivial intersection.
- $H_i := G/N_i$, $d(H_i) \le d(G) \le r$.

Fix G a finite 2-nilpotent group of rank $\leq r$. (Wlog it is a *p*-group.) Goal: find a manifold with a G-action depending only on r.

Lemma

There exists 2-nilpotent H_i with cyclic centre such that $G \subseteq \prod_{i=1}^r H_i$ and $d(H_i) \leq r$.

- $Z(G) = \prod_{i=1}^{k} C_i$, if k > 1 consider $\prod_{i=1}^{k} G/C_i$ and use induction to embed G to $\prod_{i=1}^{K} G/N_i$.
- Wlog K ≤ r (E. Szabó): The socle of G (product of minimal normal subgroups) is Z^k_p for some k ≤ r. Every non-trivial normal subgroup intersects the socle non-trivially. We select r normal subgroups N_i ⊆ G from the list with trivial intersection.
- $H_i := G/N_i$, $d(H_i) \le d(G) \le r$.

Fix G a finite 2-nilpotent group of rank $\leq r$. (Wlog it is a *p*-group.) Goal: find a manifold with a G-action depending only on r.

Lemma

There exists 2-nilpotent H_i with cyclic centre such that $G \subseteq \prod_{i=1}^r H_i$ and $d(H_i) \leq r$.

- $Z(G) = \prod_{i=1}^{k} C_i$, if k > 1 consider $\prod_{i=1}^{k} G/C_i$ and use induction to embed G to $\prod_{i=1}^{K} G/N_i$.
- Wlog K ≤ r (E. Szabó): The socle of G (product of minimal normal subgroups) is Z^k_p for some k ≤ r. Every non-trivial normal subgroup intersects the socle non-trivially. We select r normal subgroups N_i ⊆ G from the list with trivial intersection.
- $H_i := G/N_i$, $d(H_i) \le d(G) \le r$.

Fix G a finite 2-nilpotent group of rank $\leq r$. (Wlog it is a *p*-group.) Goal: find a manifold with a G-action depending only on r.

Lemma

There exists 2-nilpotent H_i with cyclic centre such that $G \subseteq \prod_{i=1}^r H_i$ and $d(H_i) \leq r$.

- $Z(G) = \prod_{i=1}^{k} C_i$, if k > 1 consider $\prod_{i=1}^{k} G/C_i$ and use induction to embed G to $\prod_{i=1}^{K} G/N_i$.
- Wlog K ≤ r (E. Szabó): The socle of G (product of minimal normal subgroups) is Z^k_p for some k ≤ r. Every non-trivial normal subgroup intersects the socle non-trivially. We select r normal subgroups N_i ⊆ G from the list with trivial intersection.
- $H_i := G/N_i, \ d(H_i) \le d(G) \le r$.

Fix G a finite 2-nilpotent group of rank $\leq r$. (Wlog it is a *p*-group.) Goal: find a manifold with a G-action depending only on r.

Lemma

There exists 2-nilpotent H_i with cyclic centre such that $G \subseteq \prod_{i=1}^r H_i$ and $d(H_i) \leq r$.

- $Z(G) = \prod_{i=1}^{k} C_i$, if k > 1 consider $\prod_{i=1}^{k} G/C_i$ and use induction to embed G to $\prod_{i=1}^{K} G/N_i$.
- Wlog K ≤ r (E. Szabó): The socle of G (product of minimal normal subgroups) is Z^k_p for some k ≤ r. Every non-trivial normal subgroup intersects the socle non-trivially. We select r normal subgroups N_i ⊆ G from the list with trivial intersection.

•
$$H_i := G/N_i$$
, $d(H_i) \le d(G) \le r$.

Maximal central products

Definition (Maximal central product)

Given an isomorphism $\varphi: D_1 \to D_2$ for $D_i \subseteq Z(G_i)$, set

$$\mathsf{G}_1 imes_arphi \ \mathsf{G}_2 := \mathsf{G}_1 imes \mathsf{G}_2/\{(z, arphi(z)^{-1}): z\in D_1\},$$

the central product along φ amalgamating D_1 and D_2 .

We call φ a maximal, if φ cannot be extended further to an isomorphism between central subgroups, and in this case the call the central product is maximal and denote it by $G_1 \bar{\gamma}_{\varphi} G_2$.

_emma

 $Z(G_1 \lor_{\varphi} G_2)$ is cyclic if and only if $Z(G_1)$, $Z(G_2)$ are both cyclic and φ is a maximal central isomorphism.

Maximal central products

Definition (Maximal central product)

Given an isomorphism $\varphi: D_1 \to D_2$ for $D_i \subseteq Z(G_i)$, set

$$\mathsf{G}_1 imes _arphi \; \mathsf{G}_2 := \mathsf{G}_1 imes \mathsf{G}_2/\{(z, arphi(z)^{-1}): z\in D_1\},$$

the central product along φ amalgamating D_1 and D_2 . We call φ a maximal, if φ cannot be extended further to an isomorphism between central subgroups, and in this case the call the central product is *maximal* and denote it by $G_1 \ \overline{\gamma}_{\varphi} \ G_2$.

_emma

 $Z(G_1 \lor_{\varphi} G_2)$ is cyclic if and only if $Z(G_1)$, $Z(G_2)$ are both cyclic and φ is a maximal central isomorphism.

Maximal central products

Definition (Maximal central product)

Given an isomorphism $\varphi: D_1 \to D_2$ for $D_i \subseteq Z(G_i)$, set

$$\mathsf{G}_1 imes _arphi \; \mathsf{G}_2 := \mathsf{G}_1 imes \mathsf{G}_2/\{(z, arphi(z)^{-1}): z\in D_1\},$$

the central product along φ amalgamating D_1 and D_2 . We call φ a maximal, if φ cannot be extended further to an isomorphism between central subgroups, and in this case the call the central product is *maximal* and denote it by $G_1 \ \overline{\gamma}_{\varphi} \ G_2$.

Lemma

 $Z(G_1 \lor_{\varphi} G_2)$ is cyclic if and only if $Z(G_1)$, $Z(G_2)$ are both cyclic and φ is a maximal central isomorphism.

Let H be any factor from the previous embedding.

Lemma (2-nilpotent group with cyclic centre)

There exists 2-generated 2-nilpotent groups E_1, \ldots, E_n all with cyclic centre where $n \leq \lceil r/2 \rceil$, such that

$$H \cong (\ldots ((E_1 \operatorname{\bar{Y}}_{\varphi_1} E_2) \operatorname{\bar{Y}}_{\varphi_2} E_3) \operatorname{\bar{Y}}_{\varphi_3} \ldots) \operatorname{\bar{Y}}_{\varphi_{n-1}} E_n,$$

and the isomorphisms class of H is independent of φ_i .

- Find minimal generating set $\{\alpha_1, \alpha_2\} \cup S$ of E such that $H' = \langle [\alpha_1, \alpha_2] \rangle$, $[\alpha_i, s] = 1$ for all $s \in S$.
- For H₀ := ⟨S⟩ and E_n := ⟨α, β⟩, we have H ≅ H₀ γ_φ E_n and use induction on d.
- Independence follows from last part of the next Lemma.

Let H be any factor from the previous embedding.

Lemma (2-nilpotent group with cyclic centre)

There exists 2-generated 2-nilpotent groups E_1, \ldots, E_n all with cyclic centre where $n \leq \lceil r/2 \rceil$, such that

$$H \cong (\ldots ((E_1 \operatorname{\bar{Y}}_{\varphi_1} E_2) \operatorname{\bar{Y}}_{\varphi_2} E_3) \operatorname{\bar{Y}}_{\varphi_3} \ldots) \operatorname{\bar{Y}}_{\varphi_{n-1}} E_n,$$

and the isomorphisms class of H is independent of φ_i .

Proof.

• Find minimal generating set $\{\alpha_1, \alpha_2\} \cup S$ of E such that $H' = \langle [\alpha_1, \alpha_2] \rangle$, $[\alpha_i, s] = 1$ for all $s \in S$.

For H₀ := ⟨S⟩ and E_n := ⟨α, β⟩, we have H ≅ H₀ ȳ_φ E_n and use induction on d.

Independence follows from last part of the next Lemma.

Let H be any factor from the previous embedding.

Lemma (2-nilpotent group with cyclic centre)

There exists 2-generated 2-nilpotent groups E_1, \ldots, E_n all with cyclic centre where $n \leq \lceil r/2 \rceil$, such that

$$H \cong (\ldots ((E_1 \operatorname{\bar{Y}}_{\varphi_1} E_2) \operatorname{\bar{Y}}_{\varphi_2} E_3) \operatorname{\bar{Y}}_{\varphi_3} \ldots) \operatorname{\bar{Y}}_{\varphi_{n-1}} E_n,$$

and the isomorphisms class of H is independent of φ_i .

Proof.

- Find minimal generating set $\{\alpha_1, \alpha_2\} \cup S$ of E such that $H' = \langle [\alpha_1, \alpha_2] \rangle$, $[\alpha_i, s] = 1$ for all $s \in S$.
- For $H_0 := \langle S \rangle$ and $E_n := \langle \alpha, \beta \rangle$, we have $H \cong H_0 \bar{\gamma}_{\varphi} E_n$ and use induction on d.

Independence follows from last part of the next Lemma.

Let H be any factor from the previous embedding.

Lemma (2-nilpotent group with cyclic centre)

There exists 2-generated 2-nilpotent groups E_1, \ldots, E_n all with cyclic centre where $n \leq \lceil r/2 \rceil$, such that

$$H \cong (\ldots ((E_1 \operatorname{\bar{Y}}_{\varphi_1} E_2) \operatorname{\bar{Y}}_{\varphi_2} E_3) \operatorname{\bar{Y}}_{\varphi_3} \ldots) \operatorname{\bar{Y}}_{\varphi_{n-1}} E_n,$$

and the isomorphisms class of H is independent of φ_i .

- Find minimal generating set $\{\alpha_1, \alpha_2\} \cup S$ of E such that $H' = \langle [\alpha_1, \alpha_2] \rangle$, $[\alpha_i, s] = 1$ for all $s \in S$.
- For $H_0 := \langle S \rangle$ and $E_n := \langle \alpha, \beta \rangle$, we have $H \cong H_0 \bar{\gamma}_{\varphi} E_n$ and use induction on d.
- Independence follows from last part of the next Lemma.

2-generated groups with cyclic centre

Let E be an element of the previous decomposition.

Lemma (2-generated 2-nilpotent group with cyclic centre)

- Z(E) ⊆ E gives 1 → Z_a → E → Z_c × Z_c → 1 for some unique integers c | a,
- $\begin{array}{l} \textcircled{O} \quad E = \langle \alpha, \beta, \gamma : \gamma = [\alpha, \beta], 1 = \gamma^c = [\alpha, \gamma] = [\beta, \gamma], \alpha^a = \gamma^{c_1}, \beta^c = \\ \gamma^{c_2} \rangle \text{ for some integers } c_1, c_2 \mid c. \text{ There are two types:} \end{array}$
 - either $\langle \gamma \rangle = [E, E] = Z(E), c = a,$
 - or $\langle \gamma \rangle = [E, E] \subsetneq Z(E) = \langle \alpha^c \rangle$, c < a, $c_1 = 1$
 - Every automorphism of a central subgroup can be extended to E.

Proof.

2-generated groups with cyclic centre

Let E be an element of the previous decomposition.

Lemma (2-generated 2-nilpotent group with cyclic centre)

- Z(E) ⊆ E gives 1 → Z_a → E → Z_c × Z_c → 1 for some unique integers c | a,
- $\begin{array}{l} \textcircled{O} \quad E = \langle \alpha, \beta, \gamma : \gamma = [\alpha, \beta], 1 = \gamma^{\mathsf{c}} = [\alpha, \gamma] = [\beta, \gamma], \alpha^{\mathsf{a}} = \gamma^{\mathsf{c}_1}, \beta^{\mathsf{c}} = \gamma^{\mathsf{c}_2} \rangle \text{ for some integers } \mathsf{c}_1, \mathsf{c}_2 \mid \mathsf{c}. \text{ There are two types:} \end{array}$
 - either $\langle \gamma \rangle = [E, E] = Z(E)$, c = a,

• or
$$\langle \gamma \rangle = [E, E] \subsetneq Z(E) = \langle lpha^c \rangle$$
, $c < a$, $c_1 = 1$

Every automorphism of a central subgroup can be extended to E.

Proof.

2-generated groups with cyclic centre

Let E be an element of the previous decomposition.

Lemma (2-generated 2-nilpotent group with cyclic centre)

- Z(E) ⊆ E gives 1 → Z_a → E → Z_c × Z_c → 1 for some unique integers c | a,
- $\begin{array}{l} \textcircled{O} \quad \textit{E} = \langle \alpha, \beta, \gamma : \gamma = [\alpha, \beta], 1 = \gamma^{\mathsf{c}} = [\alpha, \gamma] = [\beta, \gamma], \alpha^{\mathsf{a}} = \gamma^{\mathsf{c}_1}, \beta^{\mathsf{c}} = \gamma^{\mathsf{c}_2} \rangle \text{ for some integers } \mathsf{c}_1, \mathsf{c}_2 \mid \mathsf{c}. \text{ There are two types:} \end{array}$
 - either $\langle \gamma \rangle = [E, E] = Z(E)$, c = a,
 - or $\langle \gamma \rangle = [E, E] \subsetneq Z(E) = \langle \alpha^c \rangle$, c < a, $c_1 = 1$
- Severy automorphism of a central subgroup can be extended to E.

Proof.

2-generated groups with cyclic centre

Let E be an element of the previous decomposition.

Lemma (2-generated 2-nilpotent group with cyclic centre)

- Z(E) ⊆ E gives 1 → Z_a → E → Z_c × Z_c → 1 for some unique integers c | a,
- $\begin{array}{l} \textcircled{O} \quad E = \langle \alpha, \beta, \gamma : \gamma = [\alpha, \beta], 1 = \gamma^{\mathsf{c}} = [\alpha, \gamma] = [\beta, \gamma], \alpha^{\mathsf{a}} = \gamma^{\mathsf{c}_1}, \beta^{\mathsf{c}} = \gamma^{\mathsf{c}_2} \rangle \text{ for some integers } c_1, c_2 \mid c. \text{ There are two types:} \end{array}$
 - either $\langle \gamma \rangle = [E, E] = Z(E)$, c = a,
 - or $\langle \gamma \rangle = [E, E] \subsetneq Z(E) = \langle \alpha^c \rangle$, c < a, $c_1 = 1$
- Severy automorphism of a central subgroup can be extended to E.

Proof.

Step 2: Topological reductions

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q @ 12/19

Proof of theorem

Overview of the topological reductions

Step 2: Topological reductions:

Reduce from Diff(M) for fixed M, to Diff(L) for a (possibly varying) L where $L \to X$ is a line bundle over a fixed X.

Details:

- We define the notion of central group action on line bundles.
- We show that two such action induce another one such a maximal central product of groups.
- We show that every central action induce a faithful action on a compact space depending only on the base space

Overview of the topological reductions

Step 2: Topological reductions:

Reduce from Diff(*M*) for fixed *M*, to Diff(*L*) for a (possibly varying) *L* where $L \rightarrow X$ is a line bundle over a fixed *X*. Details:

- We define the notion of central group action on line bundles.
- We show that two such action induce another one such a maximal central product of groups.
- We show that every central action induce a faithful action on a compact space depending only on the base space

Overview of the topological reductions

Step 2: Topological reductions:

Reduce from Diff(*M*) for fixed *M*, to Diff(*L*) for a (possibly varying) *L* where $L \rightarrow X$ is a line bundle over a fixed *X*. Details:

- We define the notion of central group action on line bundles.
- We show that two such action induce another one such a maximal central product of groups.
- We show that every central action induce a faithful action on a compact space depending only on the base space

Overview of the topological reductions

Step 2: Topological reductions:

Reduce from Diff(*M*) for fixed *M*, to Diff(*L*) for a (possibly varying) *L* where $L \rightarrow X$ is a line bundle over a fixed *X*. Details:

- We define the notion of central group action on line bundles.
- We show that two such action induce another one such a maximal central product of groups.
- We show that every central action induce a faithful action on a compact space depending only on the base space

	Step 2: Topological reductions	
	00000	

Definition

A central action of a finite group G on a line bundle $\pi: L \to X$ is a pair of group morphisms $(\varrho: G \to \text{Diff}(L), \overline{\varrho}: G \to \text{Diff}(X))$ such that

- equivariant: $\overline{\varrho}(g) \circ \pi = \pi \circ \varrho(g)$ for every $g \in G$
- linear: $\varrho(g): L_x \to L_{\overline{\varrho}(g(x))}$ is \mathbb{C} -linear for every $g \in G$
- central (non-standard notion): X is compact, connected, H²•(X, Z) torsion free; *ρ* is injective; *φ*(g) is homotopic to the identity on X for every g ∈ G; Stab_φ(x) = Z(G) for every x ∈ X.

Z(G) is necessarily cyclic.

	Step 2: Topological reductions	
	00000	

Definition

A central action of a finite group G on a line bundle $\pi: L \to X$ is a pair of group morphisms $(\varrho: G \to \text{Diff}(L), \overline{\varrho}: G \to \text{Diff}(X))$ such that

- equivariant: $\overline{\varrho}(g) \circ \pi = \pi \circ \varrho(g)$ for every $g \in G$
- linear: $\varrho(g): L_x \to L_{\overline{\varrho}(g(x))}$ is \mathbb{C} -linear for every $g \in G$
- central (non-standard notion): X is compact, connected, H²•(X, Z) torsion free; ρ is injective; p̄(g) is homotopic to the identity on X for every g ∈ G; Stab_ℓ(x) = Z(G) for every x ∈ X.

Z(G) is necessarily cyclic.

	Step 2: Topological reductions	
	00000	

Definition

A central action of a finite group G on a line bundle $\pi: L \to X$ is a pair of group morphisms $(\varrho: G \to \text{Diff}(L), \overline{\varrho}: G \to \text{Diff}(X))$ such that

- equivariant: $\overline{\varrho}(g) \circ \pi = \pi \circ \varrho(g)$ for every $g \in G$
- linear: $\varrho(g): L_x \to L_{\overline{\varrho}(g(x))}$ is \mathbb{C} -linear for every $g \in G$
- central (non-standard notion): X is compact, connected, H²•(X, Z) torsion free; *ρ* is injective; *ρ̄*(g) is homotopic to the identity on X for every g ∈ G; Stab_{*ρ̄*}(x) = Z(G) for every x ∈ X.

Z(G) is necessarily cyclic.

	Step 2: Topological reductions	
	00000	

Definition

A central action of a finite group G on a line bundle $\pi: L \to X$ is a pair of group morphisms $(\varrho: G \to \text{Diff}(L), \overline{\varrho}: G \to \text{Diff}(X))$ such that

- equivariant: $\overline{\varrho}(g) \circ \pi = \pi \circ \varrho(g)$ for every $g \in G$
- linear: $\varrho(g): L_x \to L_{\overline{\varrho}(g(x))}$ is \mathbb{C} -linear for every $g \in G$
- central (non-standard notion): X is compact, connected, H²•(X, Z) torsion free; *ρ* is injective; *ρ̄*(g) is homotopic to the identity on X for every g ∈ G; Stab_{*ρ̄*}(x) = Z(G) for every x ∈ X.

Z(G) is necessarily cyclic.

Step 2: Topological reductions

Proof of theorem

Building central actions on maximal central products

Lemma (Central product construction)

Any two central actions $\varrho_i : G_i \circ \pi_i$ induce a natural central of some $G_1 \bar{Y}_{\varphi} G_2$.

Proof.

Quotient the natural $\mathit{G}_1 imes \mathit{G}_2 ext{-} ext{action}$ on $\pi_1oxtimes\pi_2$ by its kernel.

Building central actions on maximal central products

Lemma (Central product construction)

Any two central actions ϱ_i : $G_i \circ \pi_i$ induce a natural central of some $G_1 \ \bar{Y}_{\varphi} \ G_2$.

Proof.

Quotient the natural $G_1 \times G_2$ -action on $\pi_1 \boxtimes \pi_2$ by its kernel.

Step 2: Topological reductions

Trivialising central actions

Proposition (Trivialising actions)

There exists $f : \mathbb{N}_0 \to \mathbb{N}_0$ such that whenever ϱ is a central action of G on $\pi : L \to X$, then $G \subseteq \text{Diff}(X \times \mathbb{CP}^{f(\dim X)})$.

Remark

 $X \times \mathbb{CP}^{f(\dim X)}$ is compact and is independent of *G* (which is the main goal), although typically *L* very much can depend on *G*.

- Find a direct complement π_{\perp} of fixed rank N with a compatible G-action using K-theory and by hand
- This gives a faithful action on the fixed space $X imes \mathbb{C}^{N+1}$
- Compactify it considering its projective bundle.

Step 2: Topological reductions

Trivialising central actions

Proposition (Trivialising actions)

There exists $f : \mathbb{N}_0 \to \mathbb{N}_0$ such that whenever ϱ is a central action of G on $\pi : L \to X$, then $G \subseteq \text{Diff}(X \times \mathbb{CP}^{f(\dim X)})$.

Remark

 $X \times \mathbb{CP}^{f(\dim X)}$ is compact and is independent of G (which is the main goal), although typically L very much can depend on G.

- Find a direct complement π_⊥ of fixed rank N with a compatible G-action using K-theory and by hand
- (a) This gives a faithful action on the fixed space $X imes \mathbb{C}^{N+1}$
- Compactify it considering its projective bundle.

Trivialising central actions

Proposition (Trivialising actions)

There exists $f : \mathbb{N}_0 \to \mathbb{N}_0$ such that whenever ϱ is a central action of G on $\pi : L \to X$, then $G \subseteq \text{Diff}(X \times \mathbb{CP}^{f(\dim X)})$.

Remark

 $X \times \mathbb{CP}^{f(\dim X)}$ is compact and is independent of *G* (which is the main goal), although typically *L* very much can depend on *G*.

- Find a direct complement π_⊥ of fixed rank N with a compatible G-action using K-theory and by hand
- () This gives a faithful action on the fixed space $X imes \mathbb{C}^{N+1}$
- Ompactify it considering its projective bundle.

Trivialising central actions

Proposition (Trivialising actions)

There exists $f : \mathbb{N}_0 \to \mathbb{N}_0$ such that whenever ϱ is a central action of G on $\pi : L \to X$, then $G \subseteq \text{Diff}(X \times \mathbb{CP}^{f(\dim X)})$.

Remark

 $X \times \mathbb{CP}^{f(\dim X)}$ is compact and is independent of *G* (which is the main goal), although typically *L* very much can depend on *G*.

- Find a direct complement π_⊥ of fixed rank N with a compatible G-action using K-theory and by hand
- **②** This gives a faithful action on the fixed space $X \times \mathbb{C}^{N+1}$
- Compactify it considering its projective bundle.

Step 2: Topological reductions

Trivialising central actions

Proposition (Trivialising actions)

There exists $f : \mathbb{N}_0 \to \mathbb{N}_0$ such that whenever ϱ is a central action of G on $\pi : L \to X$, then $G \subseteq \text{Diff}(X \times \mathbb{CP}^{f(\dim X)})$.

Remark

 $X \times \mathbb{CP}^{f(\dim X)}$ is compact and is independent of G (which is the main goal), although typically L very much can depend on G.

- Find a direct complement π_⊥ of fixed rank N with a compatible G-action using K-theory and by hand
- **②** This gives a faithful action on the fixed space $X \times \mathbb{C}^{N+1}$
- Ompactify it considering its projective bundle.

			Step 2: Topological reductions	
000	00	00000	000000	00

Proof.

• By assumptions and using Atiyah—Hirzebruch theorem, we have:

$$\begin{array}{ccc} \mathcal{K}^{0}(X)\otimes\mathbb{Q}\xleftarrow{p^{*}} \mathcal{K}^{0}(X/\overline{\varrho})\otimes\mathbb{Q} \\ \cong & \downarrow_{\mathsf{ch}} & \cong & \downarrow_{\mathsf{ch}} \\ \mathcal{H}^{2\bullet}(X,\mathbb{Q})\xleftarrow{p^{*}} \mathcal{H}^{2\bullet}(X/\overline{\varrho},\mathbb{Q}) \end{array}$$

where $p: X \to X/\overline{\varrho}$ is the projection. So for some $d \in \mathbb{N}_0$, ch⁻¹($d \cdot H^{2\bullet}(X, \mathbb{Z})$) carries a natural *G*-action compatible with ϱ .

• Enough to find a multiset $A \ni 1$ of integers of fixed size such that

$$\operatorname{ch}(\bigoplus_{a\in A}\pi^{\otimes a}) - |A| = \sum_{k=1}^{n}\sum_{a\in A}\frac{a^{k}}{k!}\underbrace{c_{1}(\pi)^{k}}_{\in H^{2k}(X,\mathbb{Z})} \in d \cdot H^{2\bullet}(X,\mathbb{Z}).$$

• This leads to the following Waring-type problem with $\delta = dn!$.

			Step 2: Topological reductions	
000	00	00000	000000	00

Proof.

• By assumptions and using Atiyah—Hirzebruch theorem, we have:

$$\begin{array}{ccc} \mathcal{K}^{0}(X)\otimes\mathbb{Q}\xleftarrow{p^{*}} \mathcal{K}^{0}(X/\overline{\varrho})\otimes\mathbb{Q}\\ \cong & \downarrow_{\mathsf{ch}} & \cong & \downarrow_{\mathsf{ch}}\\ \mathcal{H}^{2\bullet}(X,\mathbb{Q})\xleftarrow{p^{*}} \mathcal{H}^{2\bullet}(X/\overline{\varrho},\mathbb{Q}) \end{array}$$

where $p: X \to X/\overline{\varrho}$ is the projection. So for some $d \in \mathbb{N}_0$, $ch^{-1}(d \cdot H^{2\bullet}(X, \mathbb{Z}))$ carries a natural *G*-action compatible with ϱ .

• Enough to find a multiset $A \ni 1$ of integers of fixed size such that

$$\mathsf{ch}(\bigoplus_{a\in A}\pi^{\otimes a})-|A|=\sum_{k=1}^n\sum_{a\in A}\frac{a^k}{k!}\underbrace{c_1(\pi)^k}_{\in H^{2k}(X,\mathbb{Z})}\in d\cdot H^{2\bullet}(X,\mathbb{Z}).$$

• This leads to the following Waring-type problem with $\delta = dn!$.

			Step 2: Topological reductions	
000	00	00000	000000	00

Proof.

• By assumptions and using Atiyah—Hirzebruch theorem, we have:

$$\begin{array}{ccc} \mathcal{K}^{0}(X)\otimes\mathbb{Q}\xleftarrow{p^{*}} \mathcal{K}^{0}(X/\overline{\varrho})\otimes\mathbb{Q} \\ \cong & \downarrow_{\mathsf{ch}} & \cong & \downarrow_{\mathsf{ch}} \\ \mathcal{H}^{2\bullet}(X,\mathbb{Q})\xleftarrow{p^{*}} \mathcal{H}^{2\bullet}(X/\overline{\varrho},\mathbb{Q}) \end{array}$$

where $p: X \to X/\overline{\varrho}$ is the projection. So for some $d \in \mathbb{N}_0$, ch⁻¹($d \cdot H^{2\bullet}(X, \mathbb{Z})$) carries a natural *G*-action compatible with ϱ .

• Enough to find a multiset $A \ni 1$ of integers of fixed size such that

$$\mathsf{ch}(\bigoplus_{a\in A}\pi^{\otimes a})-|A|=\sum_{k=1}^n\sum_{a\in A}\frac{a^k}{k!}\underbrace{c_1(\pi)^k}_{\in H^{2k}(X,\mathbb{Z})}\in d\cdot H^{2\bullet}(X,\mathbb{Z}).$$

• This leads to the following Waring-type problem with $\delta = dn!$.

	Step 2: Topological reductions	
	00000	

Lemma

For arbitrary natural n, δ , every initial sequence of integers a_1, \ldots, a_m can be extended to $a_1, \ldots, a_m, a_{m+1}, \ldots, a_C$ of length C = C(n, m) such that

$$\delta \mid \sum_{i=1}^{C} a_i^k \quad \forall 1 \le k \le n.$$

The independence of G on the manifold we are looking for translates to the independence of C(n, |M|) on δ .

Proof.

• Modulo Waring problem: modulo any number, -1 can be expressed as a sum of at most W_k kth powers.

• Expand
$$(-\sum M + \sum_{a \in M} a) \prod_{k=2}^{n} (1 + a_{k,1} + \dots + a_{k,W_k}).$$

	Step 2: Topological reductions	
	000000	

Lemma

For arbitrary natural n, δ , every initial sequence of integers a_1, \ldots, a_m can be extended to $a_1, \ldots, a_m, a_{m+1}, \ldots, a_C$ of length C = C(n, m) such that

$$\delta \mid \sum_{i=1}^{C} a_i^k \quad \forall 1 \le k \le n.$$

The independence of G on the manifold we are looking for translates to the independence of C(n, |M|) on δ .

Proof.

• Modulo Waring problem: modulo any number, -1 can be expressed as a sum of at most W_k kth powers.

• Expand
$$(-\sum M + \sum_{a \in M} a) \prod_{k=2}^{n} (1 + a_{k,1} + \dots + a_{k,W_k}).$$

	Step 2: Topological reductions	
	000000	

Lemma

For arbitrary natural n, δ , every initial sequence of integers a_1, \ldots, a_m can be extended to $a_1, \ldots, a_m, a_{m+1}, \ldots, a_C$ of length C = C(n, m) such that

$$\delta \mid \sum_{i=1}^{C} a_i^k \quad \forall 1 \le k \le n.$$

The independence of G on the manifold we are looking for translates to the independence of C(n, |M|) on δ .

Proof.

• Modulo Waring problem: modulo any number, -1 can be expressed as a sum of at most W_k kth powers.

• Expand $(-\sum M + \sum_{a \in M} a) \prod_{k=2}^{n} (1 + a_{k,1} + \dots + a_{k,W_k})$.

	Step 2: Topological reductions	
	000000	

Lemma

For arbitrary natural n, δ , every initial sequence of integers a_1, \ldots, a_m can be extended to $a_1, \ldots, a_m, a_{m+1}, \ldots, a_C$ of length C = C(n, m) such that

$$\delta \mid \sum_{i=1}^{C} a_i^k \quad \forall 1 \le k \le n.$$

The independence of G on the manifold we are looking for translates to the independence of C(n, |M|) on δ .

Proof.

• Modulo Waring problem: modulo any number, -1 can be expressed as a sum of at most W_k kth powers.

• Expand
$$(-\sum M + \sum_{a \in M} a) \prod_{k=2}^{n} (1 + a_{k,1} + \dots + a_{k,W_k}).$$

Step 2: Topological reductions

Proof of main theorem

- Let G be a 2-nilpotent group of rank $\leq r$.
- By step 1: $G \subseteq \prod_{i=1}^{r} H_i$ and $H_i \cong E_{i,1} \bar{Y} E_{i,2} \bar{Y} \cdots \bar{Y} E_{i,\lceil r/2 \rceil}$ and each $E_{i,j}$ is given by a concrete presentation.
- One can construct a central action of each E_{i,j} over the fixed T².
 (Idea: the Appell–Humbert theorem describes fully the holomorphic vector bundles over T² and we lift the action of Z²_c on T².)
- Apply the Central Product Construction [r/2] − 1 times to get a central action of each H_i (over T^{2[r/2]}).
- The Trivialising Proposition gives a compact manifold X_r independent of H_i such that each H_i ⊆ Diff(X_r).
- Then $G \subseteq \text{Diff}(M_r)$ where $M_r = (X_r)^r$ is a manifold as required.

Step 2: Topological reductions

Proof of main theorem

- Let G be a 2-nilpotent group of rank $\leq r$.
- By step 1: G ⊆ ∏^r_{i=1} H_i and H_i ≅ E_{i,1} ∀ E_{i,2} ∀ ··· ∀ E_{i,[r/2]} and each E_{i,j} is given by a concrete presentation.
- One can construct a central action of each E_{i,j} over the fixed T².
 (Idea: the Appell–Humbert theorem describes fully the holomorphic vector bundles over T² and we lift the action of Z²_c on T².)
- Apply the Central Product Construction [r/2] − 1 times to get a central action of each H_i (over T^{2[r/2]}).
- The Trivialising Proposition gives a compact manifold X_r independent of H_i such that each H_i ⊆ Diff(X_r).
- Then $G \subseteq \text{Diff}(M_r)$ where $M_r = (X_r)^r$ is a manifold as required.

Proof of main theorem

- Let G be a 2-nilpotent group of rank $\leq r$.
- By step 1: $G \subseteq \prod_{i=1}^{r} H_i$ and $H_i \cong E_{i,1} \bar{Y} E_{i,2} \bar{Y} \cdots \bar{Y} E_{i,\lceil r/2 \rceil}$ and each $E_{i,j}$ is given by a concrete presentation.
- One can construct a central action of each *E_{i,j}* over the fixed T².
 (Idea: the Appell–Humbert theorem describes fully the holomorphic vector bundles over T² and we lift the action of Z²_c on T².)
- Apply the Central Product Construction [r/2] − 1 times to get a central action of each H_i (over T^{2[r/2]}).
- The Trivialising Proposition gives a compact manifold X_r independent of H_i such that each H_i ⊆ Diff(X_r).
- Then $G \subseteq \text{Diff}(M_r)$ where $M_r = (X_r)^r$ is a manifold as required.

Proof of main theorem

- Let G be a 2-nilpotent group of rank $\leq r$.
- By step 1: $G \subseteq \prod_{i=1}^{r} H_i$ and $H_i \cong E_{i,1} \bar{Y} E_{i,2} \bar{Y} \cdots \bar{Y} E_{i,\lceil r/2 \rceil}$ and each $E_{i,j}$ is given by a concrete presentation.
- One can construct a central action of each *E_{i,j}* over the fixed T².
 (Idea: the Appell–Humbert theorem describes fully the holomorphic vector bundles over T² and we lift the action of Z²_c on T².)
- Apply the Central Product Construction [r/2] − 1 times to get a central action of each H_i (over T^{2[r/2]}).
- The Trivialising Proposition gives a compact manifold X_r independent of H_i such that each H_i ⊆ Diff(X_r).
- Then $G \subseteq \text{Diff}(M_r)$ where $M_r = (X_r)^r$ is a manifold as required.

Proof of main theorem

Proof.

- Let G be a 2-nilpotent group of rank $\leq r$.
- By step 1: $G \subseteq \prod_{i=1}^{r} H_i$ and $H_i \cong E_{i,1} \bar{Y} E_{i,2} \bar{Y} \cdots \bar{Y} E_{i,\lceil r/2 \rceil}$ and each $E_{i,j}$ is given by a concrete presentation.
- One can construct a central action of each *E_{i,j}* over the fixed T².
 (Idea: the Appell–Humbert theorem describes fully the holomorphic vector bundles over T² and we lift the action of Z²_c on T².)
- Apply the Central Product Construction [r/2] − 1 times to get a central action of each H_i (over T^{2[r/2]}).
- The Trivialising Proposition gives a compact manifold X_r independent of H_i such that each H_i ⊆ Diff(X_r).

• Then $G \subseteq \text{Diff}(M_r)$ where $M_r = (X_r)^r$ is a manifold as required.

Step 2: Topological reductions

Proof of main theorem

- Let G be a 2-nilpotent group of rank $\leq r$.
- By step 1: $G \subseteq \prod_{i=1}^{r} H_i$ and $H_i \cong E_{i,1} \bar{Y} E_{i,2} \bar{Y} \cdots \bar{Y} E_{i,\lceil r/2 \rceil}$ and each $E_{i,j}$ is given by a concrete presentation.
- One can construct a central action of each *E_{i,j}* over the fixed T².
 (Idea: the Appell–Humbert theorem describes fully the holomorphic vector bundles over T² and we lift the action of Z²_c on T².)
- Apply the Central Product Construction [r/2] − 1 times to get a central action of each H_i (over T^{2[r/2]}).
- The Trivialising Proposition gives a compact manifold X_r independent of H_i such that each H_i ⊆ Diff(X_r).
- Then $G \subseteq \text{Diff}(M_r)$ where $M_r = (X_r)^r$ is a manifold as required.

Motivation	Main question and result	Step 2: Topological reductions	Proof of theorem
			00

Thank you for your attention!

