On weak Sierpiński subsets in groups and free subgroups

Piotr Słanina

10.09.2019

- 4 回 ト - 4 三 ト

문 문

Piotr Słanina

Definition 1

E is a Sierpiński set in metric space (or group) if for any $p \in E$, $E \cong E \setminus \{p\}$.

Definition 2

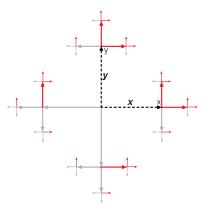
Let G - group, $E \subset G$. A weak Sierpiński subset ((σ, τ)-wS-subset) is a subset E such that for some $\sigma, \tau \in G$ and $p \neq q \in E$, we have $\sigma E = E \setminus \{p\}$ and $\tau E = E \setminus \{q\}$.

(日) (同) (三) (三)

3

Example 1

 $\mathbb{F}_2 = \langle x, y \rangle, \ E = E_x \cup E_y, \ E_x, \ E_y \text{ - words ending with } x, y. \ Then \\ xE = E \setminus \{x\}, \ yE = E \setminus \{y\}.$



メロト メポト メヨト メヨト

Ξ.

Piotr Słanina

(Sierpiński) \mathbb{R} does not include any wS-set.

Piotr Słanina

(Sierpiński) ℝ does not include any wS-set.

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ● ● ● ●

Theorem 2

(Sierpiński) $\exists E \subset \mathbb{R}^2$: E is a wS-set.

Piotr Słanina On weak Sierpiński subsets in groups and free subgroups

(Sierpiński) ℝ does not include any wS-set.

Theorem 2

(Sierpiński) $\exists E \subset \mathbb{R}^2$: E is a wS-set.

FALSE (Mycielski, Straus):

◆□ > ◆□ > ◆三 > ◆三 > 三 の < ⊙

(Sierpiński) \mathbb{R} does not include any wS-set.

Theorem 2

(Sierpiński) $\exists E \subset \mathbb{R}^2$: E is a wS-set.

FALSE (Mycielski, Straus):

Theorem 3

(Straus) \mathbb{R}^2 does not include any wS-set.

Piotr Słanina

(Sierpiński) \mathbb{R} does not include any wS-set.

Theorem 2

(Sierpiński) $\exists E \subset \mathbb{R}^2$: E is a wS-set.

FALSE (Mycielski, Straus):

Theorem 3

(Straus) \mathbb{R}^2 does not include any wS-set.

Ξ.

Theorem 4

```
\exists E \subset \mathbb{R}^3: E is a Sierpiński set.
```

Piotr Słanina

(Straus) Let \mathbb{F}_n - free group of rank $n \ge 2$, \mathfrak{m} - cardinal, $|\mathbb{F}_n^{\mathfrak{m}}| = |\mathbb{F}_n|$. Then 1) $\exists U \subset \mathbb{F}_n : |U| = |\mathbb{F}_n|$, 2) $\forall Q \subset U, |Q| \le \mathfrak{m} \exists p_Q \in \mathbb{F}_n : p_Q U = U \setminus Q$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

(Straus) Let \mathbb{F}_n - free group of rank $n \ge 2$, \mathfrak{m} - cardinal, $|\mathbb{F}_n^{\mathfrak{m}}| = |\mathbb{F}_n|$. Then 1) $\exists U \subset \mathbb{F}_n : |U| = |\mathbb{F}_n|$, 2) $\forall Q \subset U, |Q| \le \mathfrak{m} \exists p_Q \in \mathbb{F}_n : p_Q U = U \setminus Q$.

Corollary 1

(Straus) Let S be a sphere in \mathbb{R}^3 . Then $\exists U \subset S \ \forall p \in U \ \exists \text{ rotation } \rho \text{ of } S: \ \rho U = U \setminus \{p\}.$

Piotr Słanina

Definition 3

A set $E \subset \mathbb{R}^n$ is paradoxical if $\varphi, \psi : E \to E$ are injections which are piecewise isometries with finitely many pieces such that $\varphi(E) \cap \psi(E) = \emptyset$ If G is a group of isometries of \mathbb{R}^n and $\varphi, \psi \in G$ then E is called G-paradoxical.

3

Definition 3

A set $E \subset \mathbb{R}^n$ is paradoxical if $\varphi, \psi : E \to E$ are injections which are piecewise isometries with finitely many pieces such that $\varphi(E) \cap \psi(E) = \emptyset$ If G is a group of isometries of \mathbb{R}^n and $\varphi, \psi \in G$ then E is called G-paradoxical.

Definition 4

A set $E \subset \mathbb{R}^n$ is uniformly discrete if

$$\exists \epsilon > 0 \ \forall e_1, e_2 \in E, \ e_1 \neq e_2, \ d(e_1, e_2) \geqslant \epsilon.$$

(日) (同) (三) (三)

3

Piotr Słanina

Proposition 1

(Mycielski, Tomkowicz) There are not uniformly discrete paradoxical subsets in \mathbb{R}^n (Pruss) There exist discrete paradoxical subsets in \mathbb{R}^3

Ξ.

Piotr Słanina On weak Sierpiński subsets in groups and free subgroups

Proposition 1

(Mycielski, Tomkowicz) There are not uniformly discrete paradoxical subsets in \mathbb{R}^n (Pruss) There exist discrete paradoxical subsets in \mathbb{R}^3

Pruss' example:

- φ rotation around the z-axis about 1 radian,
- ψ translation [1,0,0].
- ${\it E}$ orbit with origin generated by φ and ψ without inversions.

- 4 同 6 4 日 6 4 日 6

3

|x| - the Euclidean norm of x.

Theorem 6

(Mycielski, Tomkowicz 2018) Let \mathbf{A} be a boolean algebra of subsets of \mathbb{R}^n , and \mathbf{B} be the ring of bounded sets of \mathbf{A} . Let G be any subgroup of the group of isometries of \mathbb{R}^n such that \mathbf{A} is G-invariant, and $E \in \mathbf{A}$ be a G-paradoxical set with pieces belonging to \mathbf{A} . Let m be a finitely additive and finite G-invariant measure over \mathbf{B} such that there exists a constant C and for every r > 1 and every $X \subset E$ such that $X \in \mathbf{A}$, if $|x| \leq r$ for all $x \in X$, then

 $m(X) \leq Cr^n$.

(日) (同) (三) (三)

3

Then m(X) = 0 for all $X \subset E$ such that $X \in \mathbf{B}$.

Piotr Słanina

(Mycielski, Tomkowicz 2018) Let S be a semigroup of isometries of \mathbb{R}^n and let $E \subset \mathbb{R}^n$ be an uniformly discrete set. Suppose that for some point $x \in E$, $u(x) \neq v(x)$ for all $u, v \in S$, $u \neq v$. Then E contains at most one point p such that $\sigma(E) = E \setminus \{p\}$ for some $\sigma \in S$.

(日) (同) (三) (三)

3

Lemma 1

Let $\sigma, \tau \in G(\mathbb{R}^n)$ and *E* be a discrete subset of \mathbb{R}^n with

$$\sigma(E) = E \setminus \{p\}, \ \tau(E) = E \setminus \{q\},$$

where $p, q \in E$ and $p \neq q$. Then the semigroup S generated by σ and τ has no fixed point in \mathbb{R}^{n} .

(日) (同) (三) (三)

3

Lemma 1

Let $\sigma, \tau \in G(\mathbb{R}^n)$ and *E* be a discrete subset of \mathbb{R}^n with

$$\sigma(E) = E \setminus \{p\}, \ \tau(E) = E \setminus \{q\},$$

(日) (同) (三) (三)

3

where $p, q \in E$ and $p \neq q$. Then the semigroup S generated by σ and τ has no fixed point in \mathbb{R}^n .

Let
$$u = u(\sigma, \tau)$$
: $u(c) = c$ and $y \in E$, $u(y) \notin E$.

Lemma 1

Let $\sigma, \tau \in G(\mathbb{R}^n)$ and E be a discrete subset of \mathbb{R}^n with

$$\sigma(E) = E \setminus \{p\}, \ \tau(E) = E \setminus \{q\},$$

where $p, q \in E$ and $p \neq q$. Then the semigroup S generated by σ and τ has no fixed point in \mathbb{R}^n .

3

Let
$$u = u(\sigma, \tau)$$
: $u(c) = c$ and $y \in E$, $u(y) \notin E$.

y, u(y), $u^2(y)$, \cdots - different, c, u(c), $u^2(c)$, \cdots - equal,

Piotr Słanina

Lemma 1

Let $\sigma, \tau \in G(\mathbb{R}^n)$ and E be a discrete subset of \mathbb{R}^n with

$$\sigma(E) = E \setminus \{p\}, \ \tau(E) = E \setminus \{q\},$$

where $p, q \in E$ and $p \neq q$. Then the semigroup S generated by σ and τ has no fixed point in \mathbb{R}^{n} .

<ロ> <同> <同> < 回> < 回>

3

Let
$$u = u(\sigma, \tau)$$
: $u(c) = c$ and $y \in E$, $u(y) \notin E$
y, $u(y)$, $u^2(y)$, \cdots - different,

$$c, u(c), u^2(c), \cdots$$
 - equal,

$$|u^t(c) - y|$$
 is constant for $t \in \mathbb{N}$,
 $y, u(y), u^2(y), \cdots$ is not discrete. \Box

Lemma 2

Let *E* be any set and σ and τ be injections of *E* into *E* such that

$$\sigma(E) = E \setminus \{p\}, \ \tau(E) = E \setminus \{q\},$$

where $p, q \in E$ and $p \neq q$. Let S be the cancellative semigroup generated by σ, τ and p, q are not fixed points of any element of S. Then S is free, freely generated by σ, τ .

A (1) > A (1) > A

э

Let $u = u(\sigma, \tau)$, $v = v(\sigma, \tau)$, let u = v be cancelled and the shortest relation in *S*, *u* ends with σ and *v* ends with τ .

On weak Sierpiński subsets in groups and free subgroups

Piotr Słanina

Let $u = u(\sigma, \tau)$, $v = v(\sigma, \tau)$, let u = v be cancelled and the shortest relation in S,

u ends with σ and v ends with τ .

$$u(E) = E \setminus \{p, \cdots, q, \cdots\},\\ v(E) = E \setminus \{q, \cdots, p, \cdots\},$$

Let $u = u(\sigma, \tau)$, $v = v(\sigma, \tau)$, let u = v be cancelled and the shortest relation in *S*,

u ends with σ and v ends with τ .

$$u(E) = E \setminus \{p, \cdots, q, \cdots\},\\ v(E) = E \setminus \{q, \cdots, p, \cdots\},$$

Ξ.

Piotr Słanina

End of proof: to the contrary: let E - uniformly discrete with two removable points.

э

By Lemma 1, no element of S has any fixed points in \mathbb{R}^n , by Lemma 2, S is freely generated by σ and τ .

End of proof: to the contrary: let E - uniformly discrete with two removable points.

By Lemma 1, no element of S has any fixed points in \mathbb{R}^n , by Lemma 2, S is freely generated by σ and τ .

 $\sigma S \cap \tau S = \emptyset$. Hence S is paradoxical (S acts freely on S(x)). S(x) is uniformly discrete as a subset of E, a contradiction with Theorem 6.

(日) (同) (三) (三)

э

Conjecture (Mycielski, Tomkowicz):

If a group G consists of wS-subset then has nonabelian subgroup.

・ロト ・回ト ・ヨト ・ヨト

ъ.

Piotr Słanina On weak Sierpiński subsets in groups and free subgroups

Any abelian group contains no wS-subset.

Piotr Słanina

Any abelian group contains no wS-subset.

Let *E* be a (g, h)-wS-subset. By definition:

$$(hg)E = h(E \setminus \{a\}) = E \setminus \{b, ha\},$$
$$(hg)E = (gh)E = g(E \setminus \{b\}) = E \setminus \{a, gb\}.$$

Hence:

$$a = b$$
 or $a = ha$ and $h = 1$.

Any abelian group contains no wS-subset.

Let *E* be a (g, h)-wS-subset. By definition:

$$(hg)E = h(E \setminus \{a\}) = E \setminus \{b, ha\},$$
$$(hg)E = (gh)E = g(E \setminus \{b\}) = E \setminus \{a, gb\}.$$

Hence:

$$a = b$$
 or $a = ha$ and $h = 1$.

・ロト ・回ト ・ヨト ・ヨト

E 990

Fact 2

Let E be a (g, h)-wS-subset of G. Then g, h are not torsion.

Piotr Słanina

Any abelian group contains no wS-subset.

Let *E* be a (g, h)-wS-subset. By definition:

$$(hg)E = h(E \setminus \{a\}) = E \setminus \{b, ha\},$$
$$(hg)E = (gh)E = g(E \setminus \{b\}) = E \setminus \{a, gb\}.$$

Hence:

$$a = b$$
 or $a = ha$ and $h = 1$.

э

Fact 2

Let E be a (g, h)-wS-subset of G. Then g, h are not torsion.

 $gE \subset E \Rightarrow g^nE \neq E$ and similarly, $h^nE \neq E$.

Piotr Słanina

(Bier, de Cornulier, Słanina) Let G be a group with a (g, h)-wS-subset. Then the subgroup $H = \langle g, h \rangle$ is either free over (g, h), or there exists $k \ge 2$ such that it has the presentation $H = G_k = \langle g, h | (h^{-1}g)^k \rangle$.

∃ <\>\\ \\ \\ \\ \\ \\

Piotr Słanina

Proposition 2

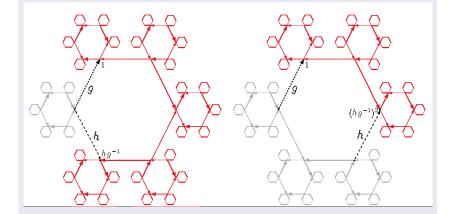
(Bier, de Cornulier, Słanina) In G_k , there are exactly k subsets E such that $gE = E \setminus \{1\}$ and hE is E minus a singleton; for k - 1of them this yields a wS-subset. More precisely, in the Schreier graph, these are the subsets E_ℓ defined by cutting along the edge $(g^{-1}, 1)$ and the edge $(g^{-1}(hg^{-1})^{\ell-1}, (hg^{-1})^{\ell})$ for some $1 \le \ell \le k$. We have $hE_\ell = E_\ell \setminus \{b_\ell\}$ with $b_\ell = (hg^{-1})^{\ell}$, which for $\ell = k$ equals 1 and otherwise is not 1 (so we have a wS-subset). In particular the right action of G_k on the set of (g, h)-wS-subsets is free and has exactly k - 1 orbits.

(日) (同) (三) (三)

3

Example 2

$$G_3 = \langle g, h | (h^{-1}g)^3 \rangle.$$



▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Piotr Słanina