Ideals in the ring $T(\infty,\mathbb{F})$

Martyna Maciaszczyk
Institute of Mathematics, Silesian University of Technology

GROUPS AND THEIR ACTIONS 2019
International Conference,
9 - 13 September 2019
Gliwice Poland

Infinite matrices: definition

 $M(\infty, K)$ - $\mathbb{N} \times \mathbb{N}$ matrices over K:

Infinite matrices: definition

 $M(\infty, K)$ - $\mathbb{N} \times \mathbb{N}$ matrices over K:

```
\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots \\ a_{21} & a_{22} & a_{23} & \cdots \\ a_{31} & a_{32} & a_{33} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}
```

• + is well defined

- + is well defined
- is not well defined

- + is well defined
- is not well defined

$$\begin{bmatrix} 1 & 1 & 1 & \cdots \\ 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & \cdots \\ 1 & 0 & 0 & \cdots \\ 1 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} = ??$$

- + is well defined
- is not well defined

$$\begin{bmatrix} 1 & 1 & 1 & \cdots \\ 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & \cdots \\ 1 & 0 & 0 & \cdots \\ 1 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} = ??$$

$$C = AB$$

- + is well defined
- is not well defined

$$\begin{bmatrix} 1 & 1 & 1 & \cdots \\ 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & \cdots \\ 1 & 0 & 0 & \cdots \\ 1 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} = ??$$

C = AB if infinite sum $\sum_{k=1}^{\infty} a_{ik}b_{kj}$ contains finite number of nonzero elements, then this sum is noted as c_{ii}

Rings of matrices

 $T(\infty, K)$ describes a ring of infinite upper triangular matrices with unity.

Notations

Let $I \subset T(\infty, K)$ and $A \in T(\infty, K)$ then:

Beginner definitions A results - left ideals A results - right ideals A results - ideals

Notations

Let $I \subset T(\infty, K)$ and $A \in T(\infty, K)$ then:

• I is left sided ideal (left ideal) if $AI \subseteq I$ for all A

Beginner definitions A results - left ideals A results - right ideals A results - ideals

Notations

Let $I \subset T(\infty, K)$ and $A \in T(\infty, K)$ then:

- I is left sided ideal (left ideal) if $AI \subseteq I$ for all A
- I is right sided ideal (right ideal) if $IA \subseteq I$ for all A

Notations

Let $I \subset T(\infty, K)$ and $A \in T(\infty, K)$ then:

- I is left sided ideal (left ideal) if $AI \subseteq I$ for all A
- I is right sided ideal (right ideal) if $IA \subseteq I$ for all A
- I is both sided ideal (ideal) if is simultaneously left and right ideal

Zero pattern

Notations

Zero pattern (in matrices) means set of matrices such that for fixed set of pairs coefficients (i,j) we have $\forall_{(i,j)}a_{ij}=0$ for all matrices A.

Zero pattern

Notations

Zero pattern (in matrices) means set of matrices such that for fixed set of pairs coefficients (i,j) we have $\forall_{(i,j)}a_{ij}=0$ for all matrices A.

 A_{i*} notes *i*-th row matrix A_{i*} and A_{*i} - *j*-th column.

Zero pattern

Notations

Zero pattern (in matrices) means set of matrices such that for fixed set of pairs coefficients (i,j) we have $\forall_{(i,j)}a_{ij}=0$ for all matrices A.

 A_{i*} notes i-th row matrix A, and A_{*i} - j-th column.

 $A_{i*} = a$ describes that every element from i-th row is equal a, the same is for columns.

Beginner definitions
A results - left ideals
A results - right ideals
A results - ideals

Left ideals

If matrices A and B generate the same left ideal then they have:

If matrices A and B generate the same left ideal then they have:

• the same zero columns

$$\forall i \in \mathbb{N} : A_{*i} = 0 \Leftrightarrow B_{*i} = 0$$

If matrices A and B generate the same left ideal then they have:

the same zero columns

$$\forall i \in \mathbb{N} : A_{*i} = 0 \Leftrightarrow B_{*i} = 0$$

 the same "belt diagonals" that means main diagonal and some upper diagonals contain only zeros

$$\exists k \in \mathbb{N} \ \forall i \in \mathbb{N} \ j \in \{i, i+1, \dots, i+k\} : A_{ij} = 0 \Leftrightarrow B_{ij} = 0$$

If matrices A and B generate the same left ideal then they have:

the same zero columns

$$\forall i \in \mathbb{N} : A_{*i} = 0 \Leftrightarrow B_{*i} = 0$$

the same "belt diagonals" that means main diagonal and some upper diagonals contain only zeros

$$\exists k \in \mathbb{N} \ \forall i \in \mathbb{N} \ j \in \{i, i+1, \dots, i+k\} : A_{ij} = 0 \Leftrightarrow B_{ij} = 0$$

• the same set of minimal sets of linear depended nonzero columns

If matrices A and B generate the same left ideal then they have:

• the same zero columns

$$\forall i \in \mathbb{N} : A_{*i} = 0 \Leftrightarrow B_{*i} = 0$$

 the same "belt diagonals" that means main diagonal and some upper diagonals contain only zeros

$$\exists k \in \mathbb{N} \ \forall i \in \mathbb{N} \ j \in \{i, i+1, \dots, i+k\} : A_{ij} = 0 \Leftrightarrow B_{ij} = 0$$

- the same set of minimal sets of linear depended nonzero columns
- the same zero elements on the main diagonal

$$\forall i \in \mathbb{N} : A_{i,i} = 0 \Leftrightarrow B_{i,i} = 0$$

If matrices A and B generate the same left ideal then they have the same zero columns

$$\forall i \in \mathbb{N} : A_{*i} = 0 \Leftrightarrow B_{*i} = 0$$

If matrices A and B generate the same left ideal then they have the same zero columns

$$\forall i \in \mathbb{N} : A_{*i} = 0 \Leftrightarrow B_{*i} = 0$$

The reverse implication is false. For counterexample consider

matrices:

the same zero columns

If matrices A and B generate the same left ideal then they have

$$\forall i \in \mathbb{N} : A_{*i} = 0 \Leftrightarrow B_{*i} = 0$$

The reverse implication is false. For counterexample consider

$$\mathsf{matrices:} \left(\begin{array}{cccc} 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & \dots \\ \vdots & \vdots & \ddots & \dots \end{array} \right) \mathsf{and} \left(\begin{array}{ccccc} * & 0 & 0 & \dots \\ 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & \dots \\ \vdots & \vdots & \ddots & \dots \end{array} \right)$$

If matrices A and B generate the same left ideal then they have the same "belt diagonals", that means main diagonal and some upper diagonals contains only zeros

$$\exists k \in \mathbb{N} \ \forall i \in \mathbb{N} \ j \in \{i, i+1, \dots, i+k\} : A_{ij} = 0 \Leftrightarrow B_{ij} = 0$$

If matrices A and B generate the same left ideal then they have the same "belt diagonals", that means main diagonal and some upper diagonals contains only zeros

$$\exists k \in \mathbb{N} \ \forall i \in \mathbb{N} \ j \in \{i, i+1, \dots, i+k\} : A_{ij} = 0 \Leftrightarrow B_{ij} = 0$$

The reverse implication is false. For counterexample consider

matrices:

If matrices A and B generate the same left ideal then they have the same "belt diagonals", that means main diagonal and some upper diagonals contains only zeros

$$\exists k \in \mathbb{N} \ \forall i \in \mathbb{N} \ j \in \{i, i+1, \dots, i+k\} : A_{ij} = 0 \Leftrightarrow B_{ij} = 0$$

The reverse implication is false. For counterexample consider

$$\mathsf{matrices:} \left(\begin{array}{cccc} 0 & 0 & * & \dots \\ 0 & 0 & * & \dots \\ 0 & 0 & 0 & \dots \\ \vdots & \vdots & \ddots & \dots \end{array} \right) \; \mathsf{and} \; \left(\begin{array}{ccccc} 0 & * & * & \dots \\ 0 & 0 & * & \dots \\ 0 & 0 & 0 & \dots \\ \vdots & \vdots & \ddots & \dots \end{array} \right)$$

If matrices A and B generate the same left ideal then they have the same set of minimal sets of linear depended nonzero columns.

If matrices A and B generate the same left ideal then they have the same set of minimal sets of linear depended nonzero columns.

The reverse implication is false. For counterexample consider

matrices:

If matrices A and B generate the same left ideal then they have the same set of minimal sets of linear depended nonzero columns.

The reverse implication is false. For counterexample consider

$$\mathsf{matrices:} \left(\begin{array}{cccc} * & 1 & 1 & \dots \\ * & 0 & 1 & \dots \\ * & 0 & 0 & \dots \\ \vdots & \vdots & \ddots & \dots \end{array} \right) \mathsf{and} \left(\begin{array}{ccccc} 0 & 1 & 1 & \dots \\ * & 0 & 1 & \dots \\ * & 0 & 0 & \dots \\ \vdots & \vdots & \ddots & \dots \end{array} \right)$$

If matrices A and B generate the same left ideal then they have the same zero elements on the main diagonal

$$\forall i \in \mathbb{N} : A_{i,i} = 0 \Leftrightarrow B_{i,i} = 0$$

If matrices A and B generate the same left ideal then they have the same zero elements on the main diagonal

$$\forall i \in \mathbb{N} : A_{i,i} = 0 \Leftrightarrow B_{i,i} = 0$$

The reverse implication is false. For counterexample consider

matrices:

If matrices A and B generate the same left ideal then they have the same zero elements on the main diagonal

$$\forall i \in \mathbb{N} : A_{i,i} = 0 \Leftrightarrow B_{i,i} = 0$$

The reverse implication is false. For counterexample consider

$$\mathsf{matrices:} \left(\begin{array}{cccc} 0 & * & * & \dots \\ 0 & 0 & * & \dots \\ 0 & 0 & * & \dots \\ \vdots & \vdots & \ddots & \dots \end{array} \right) \mathsf{and} \left(\begin{array}{ccccc} 0 & 0 & * & \dots \\ 0 & 0 & * & \dots \\ 0 & 0 & * & \dots \\ \vdots & \vdots & \ddots & \dots \end{array} \right)$$

Matrices A and B generate the same left ideal iff they simultaneously have:

Matrices A and B generate the same left ideal iff they simultaneously have:

the same zero columns

$$\forall i \in \mathbb{N} : A_{*i} = 0 \Leftrightarrow B_{*i} = 0$$

Left ideals

Matrices A and B generate the same left ideal iff they simultaneously have:

• the same zero columns

$$\forall i \in \mathbb{N} : A_{*i} = 0 \Leftrightarrow B_{*i} = 0$$

 the same "belt diagonals" that means main diagonal and some upper diagonals contain only zeros

$$\exists k \in \mathbb{N} \ \forall i \in \mathbb{N} \ j \in \{i, i+1, \dots, i+k\} : A_{ij} = 0 \Leftrightarrow B_{ij} = 0$$

Left ideals

Matrices A and B generate the same left ideal iff they simultaneously have:

• the same zero columns

$$\forall i \in \mathbb{N} : A_{*i} = 0 \Leftrightarrow B_{*i} = 0$$

 the same "belt diagonals" that means main diagonal and some upper diagonals contain only zeros

$$\exists k \in \mathbb{N} \ \forall i \in \mathbb{N} \ j \in \{i, i+1, \dots, i+k\} : A_{ij} = 0 \Leftrightarrow B_{ij} = 0$$

the same set of minimal sets of linear depended nonzero columns

Left ideals

Matrices A and B generate the same left ideal iff they simultaneously have:

• the same zero columns

$$\forall i \in \mathbb{N} : A_{*i} = 0 \Leftrightarrow B_{*i} = 0$$

 the same "belt diagonals" that means main diagonal and some upper diagonals contain only zeros

$$\exists k \in \mathbb{N} \ \forall i \in \mathbb{N} \ j \in \{i, i+1, \dots, i+k\} : A_{ij} = 0 \Leftrightarrow B_{ij} = 0$$

- the same set of minimal sets of linear depended nonzero columns
- the same zero elements on the main diagonal

$$\forall i \in \mathbb{N} : A_{i,i} = 0 \Leftrightarrow B_{i,i} = 0$$

Beginner definitions A results - left ideals A results - right ideals A results - ideals

Right ideals

Beginner definitions A results - left ideals A results - right ideals A results - ideals

Right ideals

If matrices A and B generate the same right ideal then they have:

If matrices A and B generate the same right ideal then they have:

• the same zero rows

$$\forall i \in \mathbb{N} : A_{i*} = 0 \Leftrightarrow B_{i*} = 0$$

If matrices A and B generate the same right ideal then they have:

the same zero rows

$$\forall i \in \mathbb{N} : A_{i*} = 0 \Leftrightarrow B_{i*} = 0$$

the same beginning zero columns

$$\exists k \in \mathbb{N} \ \forall i \leqslant k : A_{*i} = 0 \Leftrightarrow B_{*i} = 0$$

If matrices A and B generate the same right ideal then they have:

the same zero rows

$$\forall i \in \mathbb{N} : A_{i*} = 0 \Leftrightarrow B_{i*} = 0$$

the same beginning zero columns

$$\exists k \in \mathbb{N} \ \forall i \leqslant k : A_{*i} = 0 \Leftrightarrow B_{*i} = 0$$

the same "belt diagonals" that means main diagonal and some upper diagonals contain only zeros

$$\exists k \in \mathbb{N} \ \forall i \in \mathbb{N} \ j \in \{i, i+1, \dots, i+k\} : A_{ij} = 0 \Leftrightarrow B_{ij} = 0$$

If matrices A and B generate the same right ideal then they have:

the same zero rows

$$\forall i \in \mathbb{N} : A_{i*} = 0 \Leftrightarrow B_{i*} = 0$$

the same beginning zero columns

$$\exists k \in \mathbb{N} \ \forall i \leqslant k : A_{*i} = 0 \Leftrightarrow B_{*i} = 0$$

 the same "belt diagonals" that means main diagonal and some upper diagonals contain only zeros

$$\exists k \in \mathbb{N} \ \forall i \in \mathbb{N} \ j \in \{i, i+1, \dots, i+k\} : A_{ij} = 0 \Leftrightarrow B_{ij} = 0$$

the same set of minimal sets of linear depended nonzero rows

If matrices A and B generate the same right ideal then they have:

• the same zero rows

$$\forall i \in \mathbb{N} : A_{i*} = 0 \Leftrightarrow B_{i*} = 0$$

the same beginning zero columns

$$\exists k \in \mathbb{N} \ \forall i \leqslant k : A_{*i} = 0 \Leftrightarrow B_{*i} = 0$$

 the same "belt diagonals" that means main diagonal and some upper diagonals contain only zeros

$$\exists k \in \mathbb{N} \ \forall i \in \mathbb{N} \ j \in \{i, i+1, \dots, i+k\} : A_{ij} = 0 \Leftrightarrow B_{ij} = 0$$

- the same set of minimal sets of linear depended nonzero rows
- the same zero elements on the main diagonal

$$\forall i \in \mathbb{N} : A_{i,i} = 0 \Leftrightarrow B_{i,i} = 0$$

If matrices A and B generate the same right ideal then they have the same zero rows

$$\forall i \in \mathbb{N} : A_{i*} = 0 \Leftrightarrow B_{i*} = 0$$

If matrices A and B generate the same right ideal then they have the same zero rows

$$\forall i \in \mathbb{N} : A_{i*} = 0 \Leftrightarrow B_{i*} = 0$$

The reverse implication is false. For counterexample consider

matrices:

If matrices A and B generate the same right ideal then they have the same zero rows

$$\forall i \in \mathbb{N} : A_{i*} = 0 \Leftrightarrow B_{i*} = 0$$

The reverse implication is false. For counterexample consider

$$\mathsf{matrices:} \left(\begin{array}{cccc} * & * & * & \dots \\ 0 & 0 & 0 & \dots \\ 0 & 0 & * & \dots \\ \vdots & \vdots & \ddots & \dots \end{array} \right) \mathsf{and} \left(\begin{array}{ccccc} 0 & * & * & \dots \\ 0 & 0 & 0 & \dots \\ 0 & 0 & * & \dots \\ \vdots & \vdots & \ddots & \dots \end{array} \right)$$

If matrices A and B generate the same right ideal then they have the same beginning zero columns

$$\exists k \in \mathbb{N} \ \forall i \leqslant k : A_{*i} = 0 \Leftrightarrow B_{*i} = 0$$

If matrices A and B generate the same right ideal then they have the same beginning zero columns

$$\exists k \in \mathbb{N} \ \forall i \leqslant k : A_{*i} = 0 \Leftrightarrow B_{*i} = 0$$

The reverse implication is false. For counterexample consider

matrices:

If matrices A and B generate the same right ideal then they have the same beginning zero columns

$$\exists k \in \mathbb{N} \ \forall i \leqslant k : A_{*i} = 0 \Leftrightarrow B_{*i} = 0$$

The reverse implication is false. For counterexample consider

$$\mathsf{matrices:} \left(\begin{array}{cccc} 0 & 0 & 0 & \dots \\ 0 & 0 & * & \dots \\ 0 & 0 & * & \dots \\ \vdots & \vdots & \ddots & \dots \end{array} \right) \mathsf{and} \left(\begin{array}{ccccc} 0 & 0 & * & \dots \\ 0 & 0 & * & \dots \\ 0 & 0 & * & \dots \\ \vdots & \vdots & \ddots & \dots \end{array} \right)$$

If matrices A and B generate the same right ideal then they have the same set of minimal sets of linear depended nonzero rows

If matrices A and B generate the same right ideal then they have the same set of minimal sets of linear depended nonzero rows

The reverse implication is false. For counterexample consider

matrices:

If matrices A and B generate the same right ideal then they have the same set of minimal sets of linear depended nonzero rows

The reverse implication is false. For counterexample consider

$$\mathsf{matrices:} \left(\begin{array}{cccc} 0 & 1 & 1 & \dots \\ 0 & 1 & 1 & \dots \\ 0 & 0 & * & \dots \\ \vdots & \vdots & \ddots & \dots \end{array} \right) \; \mathsf{and} \; \left(\begin{array}{ccccc} 0 & 0 & 1 & \dots \\ 0 & 0 & 1 & \dots \\ 0 & 0 & * & \dots \\ \vdots & \vdots & \ddots & \dots \end{array} \right)$$

If matrices A and B generate the same right ideal then they have the same zero elements on the main diagonal

$$\forall i \in \mathbb{N} : A_{i,i} = 0 \Leftrightarrow B_{i,i} = 0$$

If matrices A and B generate the same right ideal then they have the same zero elements on the main diagonal

$$\forall i \in \mathbb{N} : A_{i,i} = 0 \Leftrightarrow B_{i,i} = 0$$

The reverse implication is false. For counterexample consider

matrices:

If matrices A and B generate the same right ideal then they have the same zero elements on the main diagonal

$$\forall i \in \mathbb{N} : A_{i,i} = 0 \Leftrightarrow B_{i,i} = 0$$

The reverse implication is false. For counterexample consider

$$\mathsf{matrices:} \left(\begin{array}{cccc} 0 & * & * & \dots \\ 0 & 0 & * & \dots \\ 0 & 0 & * & \dots \\ \vdots & \vdots & \ddots & \dots \end{array} \right) \mathsf{and} \left(\begin{array}{ccccc} 0 & 0 & * & \dots \\ 0 & 0 & * & \dots \\ 0 & 0 & * & \dots \\ \vdots & \vdots & \ddots & \dots \end{array} \right)$$

If matrices A and B generate the same right ideal then they have the same beginning zero columns

$$\exists k \in \mathbb{N} \ \forall i \leqslant k : A_{*i} = 0 \Leftrightarrow B_{*i} = 0$$

If matrices A and B generate the same right ideal then they have the same beginning zero columns

$$\exists k \in \mathbb{N} \ \forall i \leqslant k : A_{*i} = 0 \Leftrightarrow B_{*i} = 0$$

The reverse implication is false. For counterexample consider

matrices:

If matrices A and B generate the same right ideal then they have the same beginning zero columns

$$\exists k \in \mathbb{N} \ \forall i \leqslant k : A_{*i} = 0 \Leftrightarrow B_{*i} = 0$$

The reverse implication is false. For counterexample consider

$$\mathsf{matrices:} \left(\begin{array}{cccc} 0 & 0 & 0 & \dots \\ 0 & 0 & * & \dots \\ 0 & 0 & * & \dots \\ \vdots & \vdots & \ddots & \dots \end{array} \right) \mathsf{and} \left(\begin{array}{ccccc} 0 & 0 & * & \dots \\ 0 & 0 & * & \dots \\ 0 & 0 & * & \dots \\ \vdots & \vdots & \ddots & \dots \end{array} \right)$$

If matrices A and B generate the same right ideal then they have the same "belt diagonals" that means main diagonal and some upper diagonals contains only zeros:

$$\exists k \in \mathbb{N} \ \forall i \in \mathbb{N} \ j \in \{i, i+1, \dots, i+k\} : A_{ij} = 0 \Leftrightarrow B_{ij} = 0$$

If matrices A and B generate the same right ideal then they have the same "belt diagonals" that means main diagonal and some upper diagonals contains only zeros:

$$\exists k \in \mathbb{N} \ \forall i \in \mathbb{N} \ j \in \{i, i+1, \dots, i+k\} : A_{ij} = 0 \Leftrightarrow B_{ij} = 0$$

The reverse implication is false. For counterexample consider

matrices:

If matrices A and B generate the same right ideal then they have the same "belt diagonals" that means main diagonal and some upper diagonals contains only zeros:

$$\exists k \in \mathbb{N} \ \forall i \in \mathbb{N} \ j \in \{i, i+1, \dots, i+k\} : A_{ij} = 0 \Leftrightarrow B_{ij} = 0$$

The reverse implication is false. For counterexample consider

$$\mathsf{matrices:} \left(\begin{array}{cccc} 0 & 0 & * & \dots \\ 0 & 0 & * & \dots \\ 0 & 0 & 0 & \dots \\ \vdots & \vdots & \ddots & \dots \end{array} \right) \; \mathsf{and} \; \left(\begin{array}{ccccc} 0 & * & * & \dots \\ 0 & 0 & * & \dots \\ 0 & 0 & 0 & \dots \\ \vdots & \vdots & \ddots & \dots \end{array} \right)$$

Matrices A and B generate the same right ideal iff they simultaneously have:

Matrices A and B generate the same right ideal iff they simultaneously have:

• the same zero rows

$$\forall\,i\in\mathbb{N}:A_{i*}=0\Leftrightarrow B_{i*}=0$$

Matrices A and B generate the same right ideal iff they simultaneously have:

• the same zero rows

$$\forall i \in \mathbb{N} : A_{i*} = 0 \Leftrightarrow B_{i*} = 0$$

the same beginning zero columns

$$\exists k \in \mathbb{N} \ \forall i \leqslant k : A_{*i} = 0 \Leftrightarrow B_{*i} = 0$$

Matrices A and B generate the same right ideal iff they simultaneously have:

the same zero rows

$$\forall i \in \mathbb{N} : A_{i*} = 0 \Leftrightarrow B_{i*} = 0$$

the same beginning zero columns

$$\exists k \in \mathbb{N} \ \forall i \leqslant k : A_{*i} = 0 \Leftrightarrow B_{*i} = 0$$

 the same "belt diagonals" that means main diagonal and some upper diagonals contain only zeros

$$\exists k \in \mathbb{N} \ \forall i \in \mathbb{N} \ j \in \{i, i+1, \dots, i+k\} : A_{ij} = 0 \Leftrightarrow B_{ij} = 0$$

Matrices A and B generate the same right ideal iff they simultaneously have:

the same zero rows

$$\forall i \in \mathbb{N} : A_{i*} = 0 \Leftrightarrow B_{i*} = 0$$

the same beginning zero columns

$$\exists k \in \mathbb{N} \ \forall i \leqslant k : A_{*i} = 0 \Leftrightarrow B_{*i} = 0$$

 the same "belt diagonals" that means main diagonal and some upper diagonals contain only zeros

$$\exists k \in \mathbb{N} \ \forall i \in \mathbb{N} \ j \in \{i, i+1, \dots, i+k\} : A_{ij} = 0 \Leftrightarrow B_{ij} = 0$$

the same set of minimal sets linear depended nonzero rows

Matrices A and B generate the same right ideal iff they simultaneously have:

• the same zero rows

$$\forall i \in \mathbb{N} : A_{i*} = 0 \Leftrightarrow B_{i*} = 0$$

the same beginning zero columns

$$\exists k \in \mathbb{N} \ \forall i \leqslant k : A_{*i} = 0 \Leftrightarrow B_{*i} = 0$$

 the same "belt diagonals" that means main diagonal and some upper diagonals contain only zeros

$$\exists k \in \mathbb{N} \ \forall i \in \mathbb{N} \ j \in \{i, i+1, \dots, i+k\} : A_{ij} = 0 \Leftrightarrow B_{ij} = 0$$

- the same set of minimal sets linear depended nonzero rows
- the same zero elements on the main diagonal

$$\exists k \in \mathbb{N} \ \forall i \in \mathbb{N} \ j \in \{i, i+1, \dots, i+k\} : A_{ij} = 0 \Leftrightarrow B_{ij} = 0$$

Beginner definitions A results - left ideals A results - right ideals A results - ideals

Ideals

Beginner definitions A results - left ideals A results - right idea A results - ideals

Ideals

If matrices A and B generate the same ideal then they have:

If matrices A and B generate the same ideal then they have:

 the same "belt diagonals" that means main diagonal and some upper diagonals contain only zeros

$$\exists k \in \mathbb{N} \ \forall i \in \mathbb{N} \ j \in \{i, i+1, \dots, i+k\} : A_{ij} = 0 \Leftrightarrow B_{ij} = 0$$

If matrices A and B generate the same ideal then they have:

 the same "belt diagonals" that means main diagonal and some upper diagonals contain only zeros

$$\exists k \in \mathbb{N} \ \forall i \in \mathbb{N} \ j \in \{i, i+1, \dots, i+k\} : A_{ij} = 0 \Leftrightarrow B_{ij} = 0$$

the same zero elements on the main diagonal

$$\exists k \in \mathbb{N} \ \forall i \in \mathbb{N} \ j \in \{i, i+1, \dots, i+k\} : A_{ij} = 0 \Leftrightarrow B_{ij} = 0$$

If matrices A and B generate the same ideal then they have:

 the same "belt diagonals" that means main diagonal and some upper diagonals contain only zeros

$$\exists k \in \mathbb{N} \ \forall i \in \mathbb{N} \ j \in \{i, i+1, \dots, i+k\} : A_{ij} = 0 \Leftrightarrow B_{ij} = 0$$

the same zero elements on the main diagonal

$$\exists k \in \mathbb{N} \ \forall i \in \mathbb{N} \ j \in \{i, i+1, \dots, i+k\} : A_{ij} = 0 \Leftrightarrow B_{ij} = 0$$

the same beginning zero columns

$$\exists k \in \mathbb{N} \ \forall i \leq k : A_{*i} = 0 \Leftrightarrow B_{*i} = 0$$

If matrices A and B generate the same ideal then they have the same "belt diagonals" that means main diagonal and some upper diagonals contain only zeros:

$$\exists k \in \mathbb{N} \ \forall i \in \mathbb{N} \ j \in \{i, i+1, \dots, i+k\} : A_{ij} = 0 \Leftrightarrow B_{ij} = 0$$

If matrices A and B generate the same ideal then they have the same "belt diagonals" that means main diagonal and some upper diagonals contain only zeros:

$$\exists k \in \mathbb{N} \ \forall i \in \mathbb{N} \ j \in \{i, i+1, \dots, i+k\} : A_{ij} = 0 \Leftrightarrow B_{ij} = 0$$

The reverse implication is false. For counterexample consider

matrices:

If matrices A and B generate the same ideal then they have the same "belt diagonals" that means main diagonal and some upper diagonals contain only zeros:

$$\exists k \in \mathbb{N} \ \forall i \in \mathbb{N} \ j \in \{i, i+1, \dots, i+k\} : A_{ij} = 0 \Leftrightarrow B_{ij} = 0$$

The reverse implication is false. For counterexample consider

$$\mathsf{matrices:} \left(\begin{array}{cccc} 0 & 0 & * & \dots \\ 0 & 0 & * & \dots \\ 0 & 0 & 0 & \dots \\ \vdots & \vdots & \ddots & \dots \end{array} \right) \; \mathsf{and} \; \left(\begin{array}{ccccc} 0 & * & * & \dots \\ 0 & 0 & * & \dots \\ 0 & 0 & 0 & \dots \\ \vdots & \vdots & \ddots & \dots \end{array} \right)$$

If matrices A and B generate the same ideal then they have the same zero elements on the main diagonal

$$\exists k \in \mathbb{N} \ \forall i \in \mathbb{N} \ j \in \{i, i+1, \dots, i+k\} : A_{ij} = 0 \Leftrightarrow B_{ij} = 0$$

If matrices A and B generate the same ideal then they have the same zero elements on the main diagonal

$$\exists k \in \mathbb{N} \ \forall i \in \mathbb{N} \ j \in \{i, i+1, \dots, i+k\} : A_{ij} = 0 \Leftrightarrow B_{ij} = 0$$

The reverse implication is false. For counterexample consider

matrices:

If matrices A and B generate the same ideal then they have the same zero elements on the main diagonal

$$\exists k \in \mathbb{N} \ \forall i \in \mathbb{N} \ j \in \{i, i+1, \dots, i+k\} : A_{ij} = 0 \Leftrightarrow B_{ij} = 0$$

The reverse implication is false. For counterexample consider

$$\mathsf{matrices:} \left(\begin{array}{cccc} 0 & * & * & \dots \\ 0 & 0 & * & \dots \\ 0 & 0 & * & \dots \\ \vdots & \vdots & \ddots & \dots \end{array} \right) \mathsf{and} \left(\begin{array}{ccccc} 0 & 0 & * & \dots \\ 0 & 0 & * & \dots \\ 0 & 0 & * & \dots \\ \vdots & \vdots & \ddots & \dots \end{array} \right)$$

If matrices A and B generate the same ideal then they have the same beginning zero columns

$$\exists k \in \mathbb{N} \ \forall i \leqslant k : A_{*i} = 0 \Leftrightarrow B_{*i} = 0$$

If matrices A and B generate the same ideal then they have the same beginning zero columns

$$\exists k \in \mathbb{N} \ \forall i \leqslant k : A_{*i} = 0 \Leftrightarrow B_{*i} = 0$$

The reverse implication is false. For counterexample consider

matrices:

If matrices A and B generate the same ideal then they have the same beginning zero columns

$$\exists k \in \mathbb{N} \ \forall i \leqslant k : A_{*i} = 0 \Leftrightarrow B_{*i} = 0$$

The reverse implication is false. For counterexample consider

$$\mathsf{matrices:} \left(\begin{array}{cccc} 0 & 0 & 0 & \dots \\ 0 & 0 & * & \dots \\ 0 & 0 & * & \dots \\ \vdots & \vdots & \ddots & \dots \end{array} \right) \mathsf{and} \left(\begin{array}{ccccc} 0 & 0 & * & \dots \\ 0 & 0 & * & \dots \\ 0 & 0 & * & \dots \\ \vdots & \vdots & \ddots & \dots \end{array} \right)$$

Matrices A and B generate the same ideal iff they simultaneously have:

Matrices A and B generate the same ideal iff they simultaneously have:

 the same "belt diagonals" that means main diagonal and some upper diagonals contain only zeros

$$\exists k \in \mathbb{N} \ \forall i \in \mathbb{N} \ j \in \{i, i+1, \dots, i+k\} : A_{ij} = 0 \Leftrightarrow B_{ij} = 0$$

Matrices A and B generate the same ideal iff they simultaneously have:

 the same "belt diagonals" that means main diagonal and some upper diagonals contain only zeros

$$\exists k \in \mathbb{N} \ \forall i \in \mathbb{N} \ j \in \{i, i+1, \dots, i+k\} : A_{ij} = 0 \Leftrightarrow B_{ij} = 0$$

the same zero elements on the main diagonal

$$\exists k \in \mathbb{N} \ \forall i \in \mathbb{N} \ j \in \{i, i+1, \dots, i+k\} : A_{ij} = 0 \Leftrightarrow B_{ij} = 0$$

Matrices A and B generate the same ideal iff they simultaneously have:

 the same "belt diagonals" that means main diagonal and some upper diagonals contain only zeros

$$\exists k \in \mathbb{N} \ \forall i \in \mathbb{N} \ j \in \{i, i+1, \dots, i+k\} : A_{ij} = 0 \Leftrightarrow B_{ij} = 0$$

the same zero elements on the main diagonal

$$\exists k \in \mathbb{N} \ \forall i \in \mathbb{N} \ j \in \{i, i+1, \dots, i+k\} : A_{ij} = 0 \Leftrightarrow B_{ij} = 0$$

the same beginning zero columns

$$\exists k \in \mathbb{N} \ \forall i \leqslant k : A_{*i} = 0 \Leftrightarrow B_{*i} = 0$$

ntroduction.. Ideals

Thank you for attention.

References

- A.K. Suszkiewicz On an infinite algebra of triangular matrices. (Russian) Har'kov. Gos. Univ. Uć. Zap. 34 = Zap. Mat. Otd. Fiz.-Mat. Fak. i Har'kov. Mat. Obść. (4) 22 (1950), 77–93.
- W. Hołubowski, M. Maciaszczyk, S. Żurek Note on Suškevič's problem on zero divisors Comm. in Algebra vol. 45, no. 8 (2017), 3274–3277.