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Two “Animals”, both in their own way wild

Hawaiian
Earring (HE) Harmonic Archipelago (HA)

(See Definition 13)
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Topologist’s Product

G. Higman (1952), H. B. Griffiths (1954), B. de Smit (1992), K. Eda
(1992) and J. Cannon & G. Conner (2000) agree on the following
definition of the topologist’s product (=topological free product) ~i Gi of
a given a sequence (Gi )i≥1 of groups.

Form, for n ≥ 1, the free product Fn := ∗ni=1Gi .

Consider the inverse system pn : Fn+1 → Fn where pn has kernel the
normal closure of Gn+1.

Let Ĝ = lim←−n
Fn.

A legal word in Ĝ is a sequence (fn)n≥1 such that for any given j ≥ 1
the number of times a nontrivial element gj ∈ Gj appears in the
reduced word presentation of fn is bounded independently of n.

The set of legal words forms a subgroup of Ĝ , the topologist’s
product, denoted by ~i Gn.
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Some Properties of P := ~i Z

When Gi
∼= Z we shall write P for ~i≥1 Z.

The inverse limit Ĝ corresponds to the Čech fundamental group of
the HE.

P is not free and every finitely generated subgroup is free (P is locally
free). (G. Higman 1952)

P is the fundamental group of a shrinking wedge of circles.
(Griffiths 1954, correction of proof by Morgan & Morrison 1986, de
Smit 1992)
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Cotorsion of Abelian Groups (e.g. book of L. Fuchs 2015)

Let A be an abelian group.

The group A is cotorsion if, and only if, whenever A ≤ G and G/A is
torsion-free then A is a direct summand.

Examples: Q, p-adic numbers Zp, finite groups, (R⊕ Ẑ)N.
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Higman Completeness

Definition

The group G is Higman-complete provided for every sequence (fi )i≥1 of
nontrivial elements in G there is a solution sequence for the infinite system
of equations

hi−1 = wi (fi , hi ), i ≥ 1.

G abelian is Higman-complete if, and only if, G is cotorsion.

Higman-completeness is inherited by factor groups.

(H. & Hojka, 2017)
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Abelian Groups: Slenderness

Definition

The group A is slender provided every homomorphism h : ZN → A factors
through a finite projection.

Example: A = Z (Nunke 1961).
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n-Slenderness

Definition

The group G is n-slender provided every homomorphism h : ~i≥1 Z→ G
factors through a projection pn : ~i≥1 Z→ Fn.

Z is n-slender. (Higman 1952)

Every slender group is n-slender.
(Eda 1992, de Smit 1992)

Every word hyperbolic torsion-free group is n-slender. Graph products
of n-slender groups are n-slender.
(S. Corson 2015)
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T -Kernel of an n-Slender Group T

For a group G and an n-slender group T let the T-kernel be defined as

KerT (G ) :=
⋂
{ker(φ) : φ ∈ hom(G ,T )}.

KerZ(Fn) = F ′n, the commutator subgroup.
KerZ(Q) = Q, because Q is divisible and cannot map onto Z.
One has ~i≥1 Z/KerZ(~i≥1 Z) ∼= ZN.
(Eda 1992, Cannon & Conner 2000)
KerB(1,n)(Fn) = F ′′n , the second derived group. Here B(1, n) is a
Baumslag-Solitar group and n 6= 0± 1. (A basis theorem for the
commutator subgroup of a free metabelian group, due to W.
Tomaszewski, is used, 2003).
(Conner & Kent & H. & Pavešić 2018)
(~i≥1 Z) KerZ(Ĝ ) = Ĝ . This equation can be used to construct a
path-connected fibration with base the HE, fundamental group
KerZ(~i≥1 Z), and profinite fibers.
(Conner & Kent & H. & Pavešić 2019)
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Abelian Groups: Chase’s Lemma

Theorem

(Chase’s Lemma, 1962) Fir every every homomorphism

h :
∏
i≥1

Ai →
⊕
i≥1

Bi

there exist k ,m, n ≥ 1 such that

h(m
∏
i≥k

Ai ) ≤
⊕
i≤n

Bi + U(
⊕
i≥1

Bi ),

where U() is the Ulm subgroup.
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Chase’s Lemma: Splitting as a Free Product

Eda 2011: Any homomorphism

φ : ~i≥1Gi → A ∗ B :

either factors through a canonical projection onto ∗1≤i≤nGi or, for
some k ≥ 1, the image of ~j≥kGj under φ is, up to conjugation,
contained in a free factor.
Consequence: The only free factorization of G = ~i≥1 Gi with Gi

freely indecomposable is to split off a ∗ni=1 Gi for some n ≥ 1.

K. Eda 1998: Any homomorphism

φ : lim←−
i≥1

Gi → ~i≥1Z

either factors through a canonical projection pn : Ĝ → Gn or the
image under φ belongs, up to conjugation, to one of the free factors
Z.
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Hulanicki, Kaplansky, Balcerzyk: Structure Theorems for∏
i≥1 Gi/

⊕
i≥1 Gi

Theorem

(I. Kaplansky 1957, A. Hulanicki 1958) Let (Gn)n≥1 be a sequence of
torsion-free abelian groups. Then the factor group

∏
i≥1 Gi/

⊕
i≥1 Gi is

algebraically compact.

Theorem

(A. Hulanicki, 1958) A reduced abelian group is algebraically compact if,
and only if, it is the complete direct sum of finite cyclic groups and p-adic
groups Zp for p running through a set of primes.

Theorem

(S. Balcerzyk, 1959) The group
∏

i≥1 Z/
⊕

i≥1 Z is isomorphic to

ZN ⊕
∏

p Ap and Ap
∼= ZN

p .
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An Analogue: Archipelago Groups

The Archipelago group is defined as A(Gi ) := ~i Gi/N for N the normal
closure of

⋃
i Gi in ~i Gi . See (2).

A(Gi ) is Higman-complete, locally free, and freely indecomposable.
(H. & Hojka, 2017, 2019)

A(Gi ) contains a copy of every countable locally free group.
(W. Hojka, 2017)

The abelianization of A(Gi ) is cotorsion. (H. & Hojka, 2017)

The abelianization of A(Gi ) is isomorphic to∏
i≥1 Z/

⊕
i≥1 Z ∼= (R⊕ Ẑ)N.

(K. Eda 2000)
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Free Subgroups of the Baer-Specker Group

Theorem

Let B be the subgroup of bounded functions in ZN. Then B is a free
abelian subgroup of ZN.

(E. Specker 1950, G. Nöbelung 1968)
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Free Subgroups of HEG

Theorem

The subgroup of all sequences (fn) such all gj occur at most a fixed
number of times, is free.

(A. Zastrow, 1997, generalizations 2003, Eda 1999).

Theorem

Any Archipelago group G := A(Gi ) contains a subgroup T with

(a) T ∼= ∗cQ.

(b) TG ′/G ′ ∼=
⊕

cQ.

(H. & Hojka 2017)
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Abelianization of G := ~i≥1 Gi

We let G = ~i≥1 Gi .

If Gi
∼= Z then G/G ′ ∼= ZN ⊕ (R⊕ Ẑ)N. (Eda & Kawamura, 2000)

If Gi
∼= Z(p) for p a prime then G/G ′ ∼=

(⊕
i≥1 Z(p)

)⊕
(R⊕ Ẑ)N.

(H. & Hojka, 2017)
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Outlook / Announcements

(Conner & H. & Kent & Pavešić, 2020) Letting Fc(x , y) be the free
class c nilpotent group on two generators then

(~i≥1 Z) KerF2(x ,y)(Ĝ ) = Ĝ , (~i≥1 Z) KerF3(x ,y)(Ĝ ) < Ĝ .

(H. & Hojka, 202?) When G = ~i≥1 Gi and all Gi are torsion-free
abelian groups then

G/G ′ ∼= (
∏
i≥1

Gi )⊕ (
∏
i≥1

Z/
⊕
i≥1

Z).

(H. & Hojka, 202?) Let G be a group and (Hi )i≥1 be a decreasing
sequence of subgroups. G is generalized Higman complete if given
fi ∈ Hi and wi ∈ F (x , y) then the system hi−1 = wi (fi , hi ), i ≥ 1, has
a solution sequence with hi ∈ Hi . When G is generalized Higman
complete then for every homomorphism h : G → A ∗ B there is k ≥ 1
with h(Hk) ≤ A or h(Hk) ≤ B up to conjugation in A ∗ B. This result
implies the splitting results of K. Eda from 2011.
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Dziȩkujȩ bardzo!

Thank you for your Attention.
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