Some words on simplicity and amenability of metric ultraproducts

Jakub Gismatullin (IM UWr & IMPAN) with Krzysztof Majcher (PWr) Martin Ziegler (UniFreiburg)

Instytut Matematyczny Uniwersytetu Wrocławskiego & IMPAN

Groups and their actions 2019, Gliwice, 2019

Work in progress ...

Bi-invariant norm and invariant metric on a group

Suppose G is a group.

 $d: G \times G \to \mathbb{R}_{\geqslant 0}$ is an *invariant metric* on G, when

$$d(gx,gy)=d(x,y)=d(xg,yg)$$

for all $g, x, y \in G$

Each such invariant metric comes from a bi-invariant (i.e. conjugacy invariant) norm (lenght) $\|\cdot\|: G \to \mathbb{R}_{\geqslant 0}$ (another notation $\ell: G \to \mathbb{R}_{\geqslant 0}$) satisfying

- $||gh|| \leq ||g|| + ||h||$
- $||g^{-1}|| = ||g|| = ||hgh^{-1}||$

$$\|\cdot\| \quad \rightsquigarrow \quad d(x,y) = \|xy^{-1}\|$$

$$d(\cdot,\cdot) \quad \leadsto \quad \|g\| = d(g,e)$$

Examples of norms and lengths

Examples of bounded and unbounded norms

- Discrete norm: $\|g\| := \begin{cases} 1 & : g \neq e \\ 0 & : g = e \end{cases}$
- Hamming norm S_n : $\sigma \in S_n$, $\|\sigma\|_H := \|\{i : \sigma(i) \neq i\}\|$
- Rank norm on $GL_n(F)$ (F: field) $||g||_r := rank(g-I) (= dim(Im(g-I)))$
- Conjugacy length (pseudonorm) on a finite group G:

$$\ell_c(g) := rac{\log |g^G|}{\log |G|}$$

it is a norm when $Z(G) = \{e\}$

• Invariant word norm of a group G: let $S = S^{-1} \subseteq G$ be a normal subset (that is $s \in S \to s^x = x^{-1}sx \in S$)

 $||g||_S = \min\{n : g \text{ is a product of } n \text{ conjugates of elements from } S\}.$

Metric ultraproduct

Let $\mathcal{G} = (G_m, \|\cdot\|_m)_{m\in\mathbb{N}}$ be a family of metric groups and choose a non-principal ultrafilter \mathcal{U} on \mathbb{N}

Definition

Metric ultraproduct

$$G^*_{\mathsf{met}} = \prod_{m \in \mathbb{N}}^{\mathsf{met}} G_m = G_{\mathsf{fin}}/\mathcal{N}_{\mathcal{U}}$$

where

$$G_{\mathsf{fin}} = \left\{ (g_m) \in \prod_{m \in \mathbb{N}} G_m : \sup_{m \in \mathbb{N}} \|g_m\|_m < \infty
ight\} \; \mathsf{oraz} \; extstyle N_{\mathcal{U}} = \left\{ (g_m) : \lim_{m o \mathcal{U}} \|g_m\|_m = 0
ight\}$$

 G_{met}^* is a topological group. Topology comes from a canonical invariant norm

$$\|\cdot\|\colon G^*_{\mathsf{met}} o \mathbb{R}_{\geqslant 0}$$
 defined by $\|(g_m)/N_\mathcal{U}\| = \lim_{m o \mathcal{U}} \|g_m\|_m.$

Examples of simple metric ultraproduct

 $S = \prod_{m \in \mathbb{N}}^{\text{met}}(S_m, \frac{1}{n} || \cdot ||_H)$ – ultraproduct of S_n with normalised Hamming norms (S is a universal sofic group, big open problem: is every fin. gen. group, a subgroup of S?)

Theorem (G. Elek - E. Szabó, Math. Ann. (2005))

S is a simple group

Let $\{(G_m, \ell_c)\}_{m \in \mathbb{N}}$ be a family of finite simple groups, where $\ell_c(g) = \frac{\log |g^G|}{\log |G|}$.

Theorem (Nikolov arXiv 2009, Stolz - Thom, PLMS 2014, Ivanov, arXiv 2014)

- ullet $\prod_{m\in\mathbb{N}}^{met}(G_m,\ell_c)$ is a simple group
- 2 Metric ultraproduct of centerless projective classical groups (e.g. PGL) over finite fields is a simple group

The proof is based on a deep result by M. W. Liebeck and A. Shalev: for $g \in G$, $N \in \mathbb{N}$ let $C_N(g) = \left(g^G \cup g^{-1}^G\right)^{\leqslant N}$ and $C_0(g) = \{e\}$

Theorem (M. W. Liebeck & A. Shalev, Annals of math. 2001)

There is a constant L > 0, such that for every non-abelian finite simple group G and

$$g \in G$$
, $G = C_{L/\ell_c(g)}(g) = \left(g^G \cup g^{-1}^G\right)^{\leqslant L/\ell_c(g)}$

When standard ultraproduct is simple?

In case of discrete norm, we have the following easy criterion

Fact

 $\prod_{m\in\mathbb{N}}G_m/\mathcal{U}$ is simple \Leftrightarrow there is $N\in\mathbb{N}$, such that for \mathcal{U} -almost $m\in\mathbb{N}$ group G_m is N-uniformly simple, that is $G_m=C_N(g)$ for all $g\in G_m, g\neq e$.

$$C_N(g) = \left(g^G \cup g^{-1}^G\right)^{\leqslant N}$$

Uniformly simple groups:

Theorem

- (JG, A. Muranov, 2013) Automorphism group of a bi-regular tree is 8-uniformly simple
- ② (ŚRGal, JG, 2017) simple Higman-Thompson groups, commutator subgroup [F, F] of Thompson F are 6-uniformly simple
- ③ (P. Dowerk, A. Thom 2018, 2019) Finite-dimensional projective unitary groups, as well as the projective unitary groups of Type II_1 factors are uniformly simple

When metric ultraproduct is simple? Bounded norm case

Let us define, for a bounded metric group $(G, ||\cdot||)$, big sequences of positive reals.

Definition

For r > 0, sequence $(\varepsilon_0, \dots, \varepsilon_N)$ from $\mathbb{R}_{>0}$ is r-big, if for all $g \in G$ with ||g|| > r we have

$$G = C_0(g)B_{\varepsilon_0}(e) \cup \ldots \cup C_N(g)B_{\varepsilon_N}(e),$$

where $B_{\varepsilon}(g)=\{h\in G: \left\|gh^{-1}\right\|\leqslant \varepsilon\}$ is an ε -ball around g, $C_N(g)=\left(g^G\cup g^{-1}^G\right)^{\leqslant N}$

When metric ultrapower is simple?

Theorem (JG, K. Majcher, M. Ziegler)

Let $(G, \|\cdot\|)$ be a metric group with bounded metric (i.e. $\|\cdot\| < c$ for some constant c > 0). Then metric ultrapower G_{met}^* of G is simple \Leftrightarrow for all r > 0 every infinite sequence $(\varepsilon_0, \ldots, \varepsilon_n, \ldots)$ from $\mathbb{R}_{>0}$ has some r-big finite initial segment.

Corollary

 $\prod (\mathit{IET}, \mu)^{\mathit{met}}$ is simple

Simple metric ultraproduct

$$(\varepsilon_0,\ldots,\varepsilon_N)\subset\mathbb{R}_{>0}$$
 is r -big $\Leftrightarrow g\in G, \|g\|>r, \ G=C_0(g)B_{\varepsilon_0}(e)\cup\ldots\cup C_N(g)B_{\varepsilon_N}(e)$

Theorem (JG, K. Majcher, M. Ziegler)

Let $(G_m, \|\cdot\|_m)_{m\in\mathbb{N}}$ be a family of uniformly bounded groups (i.e. $\|\cdot\|_m < c$ for some c > 0). Then $\prod_{m\in\mathbb{N}}^{met} G_m$ is simple \Leftrightarrow for every r > 0 and every infinite sequence $(\varepsilon_0, \ldots, \varepsilon_n, \ldots) \subset \mathbb{R}_{>0}$ there is $N \in \mathbb{N}$, such that for \mathcal{U} -almost all $m \in \mathbb{N}$, sequence $(\varepsilon_0, \ldots, \varepsilon_N)$ is r-big for G_m .

For permutations $\{S_n, \frac{1}{n}\|\cdot\|_H\}_{n\in\mathbb{N}}$ this number $N:=\max\left\{\frac{8}{r}, \frac{2}{\varepsilon_{\frac{8}{r}}}\right\}$, due to the following result of Brenner 1978: if $\sigma\in A_n$ is nonexceptional and fixed-point-free (i.e. $\|\sigma\|_H=n$), then $A_n=C_4(\sigma)$

For r > 0 let

$$T_r = \{r - \text{small finite sequences}\}.$$

 T_r is closed under initial subsequences, so is a *set-theoretic tree*. Then, the condition from the theorem reads as

 G_{met}^* is simple \Leftrightarrow for all r > 0, T_r has no infinite long path, that is T_r is a well founded tree.

What are possible ranks of such trees, for simple metric ultraproducts?

We say that a metric group $(G, \|\cdot\|)$ is *metrically simple*, iff G_{met}^* is simple

Metric simplicity implies topological simplicity (lack of proper normal closed subgroups).

Fact

Every simple compact metric group is metrically simple.

Because usually $G^*_{\text{met}} \cong G$.

What are trees $\{T_r\}_{r>0}$ for simple compact metric groups?

When metric ultraproduct of unbounded group is simple?

For an unbounded metric group $(G, \|\cdot\|)$, we have the following result

When metric ultrapower is simple?

Theorem (JG, K. Majcher, M. Ziegler)

Let $(G, \|\cdot\|)$ be a metric group, possibly with unbounded metric. Then metric ultrapower G_{met}^* of G is simple \Leftrightarrow for all r > 0 and t > 0, for every infinite sequence $(\varepsilon_0, \ldots, \varepsilon_n, \ldots) \subset \mathbb{R}_{>0}$, there is $N \in \mathbb{N}$ such that for all $g \in G$, $r < \|g\| < t$

$$B_t(e) \subseteq C_0(g)B_{\varepsilon_0}(e) \cup \ldots \cup C_N(g)B_{\varepsilon_N}(e).$$

Corollary

The following groups $\prod_{m\in\mathbb{N}}^{met}(A_m,\|\cdot\|_H)$ and $\prod_{m\in\mathbb{N}}^{met}(A_\infty,\|\cdot\|_H)$ are simple.

Metric ultrapower of linear groups (Chevalle groups) with ranks norm over algebraically closed fields

 K_m - field, $G_m = \mathsf{PSL}_m(K_m)$ (more generally $G_m(K_m)$ – simple centerless Chevalley group $(Z(G_m(K_m)) = \{e\}))$

When each K_m is simple,

$$\prod_{m\in\mathbb{N}}^{\mathrm{met}}(G_m,\ell_c)$$

is simple, where $\ell_c(g) := \frac{\log |g^G|}{\log |G|}$ (Stolz - Thom, '14, Nikolov '09).

How about infinite fields? One need to consider another norm, e.g. rank norm

$$\|g\|_r:=rac{1}{m} rank(g-I)=rac{1}{m} \dim(Im(g-I)).$$

We conjecture, that for all fields K_m , metric ultrapower $\prod_{m\in\mathbb{N}}^{\mathrm{met}}(G_m(K_m),\|\cdot\|_r)$ is simple.

Theorem (JG, KM, MZ)

If each field K_m is algebraically closed, then $\prod_{m\in\mathbb{N}}{}^{met}(G_m(K_m),\|\cdot\|_r)$ is simple.

Idea of the proof: ℓ_c and $||\cdot||_r$ are asymptotically equivalent, use Liebeck-Shalev result for the rank norm, which is first order expressible

Amenability

G is uniformly amenable \Leftrightarrow standard ultrapower $G^{\mathbb{N}}/\mathcal{U}$ is amenable \Leftrightarrow G satisfies the uniform Følner condition: for every $\varepsilon > 0$ and $N \in \mathbb{N}$ there is $M \in \mathbb{N}$ such that for every finite $X \subset G$, |X| < N there is finite $\emptyset \neq Y \subset G$, |Y| < M such that $|XY| < (1+\varepsilon)|Y|$ Every abelian², nilpotent and solvable group is uniformly simple

When metric ultraproduct $\prod_{m \in \mathbb{N}}^{\text{met}}(G_m, \|\cdot\|_m)$ is an amenable group as a discrete group? Uniform metric Følner condition?

Using recent ideas on topological matchings and amenability of A. Thom and F. M. Schneider³ we have

Fact (JG, KM, MZ)

suppose $(G_m, \|\cdot\|_m)_{m\in\mathbb{N}}$ is a family of metric groups with uniformly bounded groups. Then $\prod_{m\in\mathbb{N}}^{met}(G_m, \|\cdot\|_m)$ is amenable as a discrete group \Leftrightarrow for all $r>0, \Theta>0, n\in\mathbb{N}$ and every infinite $(\varepsilon_0, \ldots, \varepsilon_n, \ldots) \subset \mathbb{R}_{>0}$ there is $N \in \mathbb{N}$, such that $(\varepsilon_0, \ldots, \varepsilon_N)$ is (r, Θ, n) -good for \mathcal{U} -almost all $m \in \mathbb{N}$.

Where goodness refers to some kind of topological matchings

¹Marek Bożejko *Uniformly amenable discrete groups* Math. Ann. 251 (1980)

²J. Dronka, B. Wajnryb, P. Witowicz, K. Orzechowski *Growth functions for some uniformly amenable groups* Open Math. 15 (2017)

³F.M. Schneider, A. Thom *On Følner sets in topological groups* Compos. Math 154 (2018) ≥ → ≥ ✓ < ∼

Alternative for metric ultraproducts

Recall: G is N-uniformly simple, if $G = C_N(g)$ for all $g \in G, g \neq e$.

Theorem (ŚRGal, JG Trans. Amer. Math. B 4 (2017))

[F,F] is 6-uniformly simple, where F is a Thompson group, that is 2-adic, piecewise linear, order preserving homeomerphisms of [0,1]. More generally: suppose G acts on an infinite linear order (I,\leqslant) by authomorphisms of bounded supports. If the action is proximal (i.e. for every a < b and c < d from I, there is $g \in G$, such that g(a) < c < d < g(b), then [G,G] is 6-uniformly simple.

Theorem (JG, KM, MZ)

Suppose G has no laws, and [G, G] is uniform simple. Consider

$$\{(G,\|\cdot\|_m)\}_{m\in\mathbb{N}}$$

with possibly different uniformly bounded norms $\|\cdot\|_m$. Then metric ultraproduct $\prod_{m\in\mathbb{N}}^{met}(G_m,\|\cdot\|_m)$ is abelian or contains F_2 .

Corollary (JG, Klaudia Weigel)

Amenable metric ultrapowers of F are abelian.