Amenability and Computability II

Karol Duda

September 9-13, 2019

Groups and their actions 2019

Effective amenability	Effective paradoxical decomposition	Hall's Harem Theorem	Complexity of paradoxical decomposi
0000			

Let G be a group, $D \subset \subset G$ and $n \in \mathbb{N}$. A subset $F \subset \subset G$ is an *n*-Følner set with respect to D if

$$\forall x \in D \quad \frac{|F \setminus xF|}{|F|} \leq \frac{1}{n}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Effective amenability	Effective paradoxical decomposition	Hall's Harem Theorem	Complexity of paradoxical decomposi
0000			

Let G be a group, $D \subset \subset G$ and $n \in \mathbb{N}$. A subset $F \subset \subset G$ is an *n*-Følner set with respect to D if

$$\forall x \in D \quad \frac{|F \setminus xF|}{|F|} \leq \frac{1}{n}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Let $\mathfrak{F} \mathfrak{g} \mathfrak{g}_{G,D}(n)$ be the set of all *n*-F glner sets with respect to *D*.

Effective amenability	Effective paradoxical decomposition	Hall's Harem Theorem	Complexity of paradoxical decomposi
●000			

Let G be a group, $D \subset \subset G$ and $n \in \mathbb{N}$. A subset $F \subset \subset G$ is an *n*-Følner set with respect to D if

$$\forall x \in D \quad \frac{|F \setminus xF|}{|F|} \leq \frac{1}{n}.$$

Let $\mathfrak{F} \mathfrak{g} \mathfrak{g} |_{G,D}(n)$ be the set of all *n*-F giner sets with respect to *D*.

Definition. The binary function

 $F
otin I_G(n, D) = min\{|F| : F \subseteq G \text{ such that } F \in \mathfrak{Fol}_{G,D}(n)\}$ where the variable D corresponds to finite sets, is called the **Folner** function of G.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● のへで

Effective amenability	Effective paradoxical decomposition	Hall's Harem Theorem	Complexity of paradoxical decomposi
0000			

Let $\nu : \mathbb{N} \to G$ be a numbering of a group G such that G is computably enumerable (i.e. the graphs of the equality, the multiplication and the inversion are computably enumerable).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Effective amenability	Effective paradoxical decomposition	Hall's Harem Theorem	Complexity of paradoxical decomposi
0000			

Theorem

Let G be a computably enumerable group. The following conditions are equivalent:

- G is amenable;
- the Følner function of G is subrecursive, i.e. admits a computable total upper bound;

G is Σ-amenable.

Effective amenability	Effective paradoxical decomposition	Hall's Harem Theorem	Complexity of paradoxical decomposi
0000			

Theorem

Let G be a computably enumerable group. The following conditions are equivalent:

- G is amenable;
- the Følner function of G is subrecursive, i.e. admits a computable total upper bound;
- G is Σ-amenable.

Moreover, computable amenability of G implies computability of it.

(i.e. the graphs of the equality, the multiplication and the inversion are decidable;

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

u can be taken to be 1-1)

Computable amenability

Definition. The group (G, ν) is Σ -amenable if there exists an algorithm which for all pairs (n, D), where $n \in \mathbb{N}$ and $D \subset \mathbb{N}$, finds a set $F \subset \mathbb{N}$ containing a subset F', such that $\nu(F') \in \mathfrak{Fol}_{G,\nu(D)}(n)$.

Definition. (Cavaleri¹) The group (G, ν) is **computably amenable** if there exists an algorithm which for all pairs (n, D), where $n \in \mathbb{N}$ and $D \subset \mathbb{N}$, finds a set $F \subset \mathbb{N}$ such that $\nu(F) \in \mathfrak{Fol}_{G,\nu(D)}(n)$ and $|F| = |\nu(F)|$.

¹M. Cavaleri, Følner functions and the generic Word Problem for finitely generated amenable groups, J. Algebra, 511 (2018) 388 - 40<u>4</u> → <<u></u> → <<u></u>

Paradoxical decomposition

A paradoxical decomposition of a group G is a triple $(K, (A_k)_{k \in K}, (B_k)_{k \in K})$ consisting families \mathcal{A} and \mathcal{B} of subsets of G indexed by elements of a finite set $K \subset G$ such that²:

$$G = \Big(\bigsqcup_{k \in K} kA_k\Big) \bigsqcup \Big(\bigsqcup_{k \in K} kB_k\Big) = \Big(\bigsqcup_{k \in K} A_k\Big) = \Big(\bigsqcup_{k \in K} B_k\Big).$$

²T. Ceccherini-Silberstein, M. Coornaert, Cellular automata and groups, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010, < ≥ → ≥ → ⊃ < ∼

Paradoxical decomposition

A paradoxical decomposition of a group G is a triple $(K, (A_k)_{k \in K}, (B_k)_{k \in K})$ consisting families \mathcal{A} and \mathcal{B} of subsets of G indexed by elements of a finite set $K \subset G$ such that²:

$$G = \left(\bigsqcup_{k \in K} kA_k\right) \bigsqcup \left(\bigsqcup_{k \in K} kB_k\right) = \left(\bigsqcup_{k \in K} A_k\right) = \left(\bigsqcup_{k \in K} B_k\right).$$

Definition. When (G, ν) is a computable group and the families \mathcal{A} and \mathcal{B} consist of computable sets, then such a paradoxical decomposition is called **effective**.

²T. Ceccherini-Silberstein, M. Coornaert, Cellular automata and groups, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010, (2) (2) (2) (2)

Tarski-Følner Theorem

It is known that existence of a paradoxical decomposition is a condition opposite to amenability.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Tarski-Følner Theorem

It is known that existence of a paradoxical decomposition is a condition opposite to amenability.

Theorem

Let G be a group. The following conditions are equivalent:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- G is not amenable;
- G does not satisfy Følner's condition;
- G admits a paradoxical decomposition.

Effective amenability of paradoxical decomposition Hall's Harem Theorem Complexity of paradoxical decomposition 0000

Effective version of Tarski-Følner Theorem

Theorem

Let G be a computable group. For any $K' \subset G$ that contradicts Følner condition (i.e. for some natural n there is no n-Følner set with respect to K') we can effectively find a finite subset $K \supseteq K'$ such that there is an effective paradoxical decomposition of G of the form $(K, (A_k)_{k \in K}, (B_k)_{k \in K})$.

Effective amenability Effective	e paradoxical decomposition	Hall's Harem Theorem	Complexity of	paradoxical	decomposi
0000 000		•0000000000	0000		

Notation

Let $\Gamma = (V, E)$ be a graph.

For $X \subset V$ let $N(X) = \{v \in V : \exists x \in X (x, v) \in E\}.$

Effective amenability	Effective paradoxical decomposition	Hall's Harem Theorem	Complexity of paradoxical decomposi
		00000000000	

Notation

Let $\Gamma = (V, E)$ be a graph.

For $X \subset V$ let $N(X) = \{v \in V : \exists x \in X (x, v) \in E\}.$

Definition. We say that Γ is **locally finite** if the set N(X) is finite for all finite subsets $X \subset V$.

Effective amenability	Effective paradoxical decomposition	Hall's Harem Theorem	Complexity of paradoxical decomposi
		•00000000000	

Notation

Let $\Gamma = (V, E)$ be a graph.

For $X \subset V$ let $N(X) = \{v \in V : \exists x \in X (x, v) \in E\}.$

Definition. We say that Γ is **locally finite** if the set N(X) is finite for all finite subsets $X \subset V$.

Definition. The graph Γ is called a **bipartite graph** if the set of vertices V is partitioned into sets A and B in such way, that the set of edges E is a subset of $A \times B$.

Effective amenability	Effective paradoxical decomposition	Hall's Harem Theorem	Complexity of paradoxical decomposi
		•00000000000	

Notation

Let $\Gamma = (V, E)$ be a graph.

For $X \subset V$ let $N(X) = \{v \in V : \exists x \in X (x, v) \in E\}.$

Definition. We say that Γ is **locally finite** if the set N(X) is finite for all finite subsets $X \subset V$.

Definition. The graph Γ is called a **bipartite graph** if the set of vertices V is partitioned into sets A and B in such way, that the set of edges E is a subset of $A \times B$. We denote such a bipartite graph by $\Gamma = (A, B, E)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(1, k)-matchings

Definition. A perfect (1, k)-matching from A to B is a set $M \subset E$ satisfying following conditions:

- for every $a \in A$ there exists exactly k vertices $b_1, \ldots, b_k \in B$ such that $(a, b_1), \ldots, (a, b_k) \in M$;
- If or every b ∈ B there is an unique vertex a ∈ A such that (a, b) ∈ M.

Effective amenability Effective paradoxical decomposition Hall's Harem Theorem Complexity of paradoxical decomposition 0000 0000000000 0000

The Hall's Harem Theorem

Theorem

Let $\Gamma = (A, B, E)$ be a locally finite graph and let $k \in \mathbb{N}$, $k \ge 1$. The following conditions are equivalent:

For all finite subsets X ⊂ A, Y ⊂ B following inequalities holds
 |N(X)| ≥ k|X|, |N(Y)| ≥ ¹/_L|Y|.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Γ has a perfect (1, k)-matching.

Example

Let k = 2:

Example

Let k = 2:

Computable Graphs

Definition. A graph Γ is **computable** if there exists a bijective function $\nu : \mathbb{N} \to V$ such that

$$R := \{(i,j) : (\nu(i),\nu(j)) \in E\}$$

is a computable set.

Computable Graphs

Definition. A graph Γ is **computable** if there exists a bijective function $\nu : \mathbb{N} \to V$ such that

$$R := \{(i,j) : (\nu(i),\nu(j)) \in E\}$$

is a computable set.

Definition. A bipartite graph $\Gamma = (A, B, E)$ is computably bipartite if Γ is computable and the set of ν -numbers of A is computable.

Computable graphs

Definition. A locally finite graph Γ is called **highly computable**³if it is computable and there is a computable function $f : \mathbb{N} \to \mathbb{N}$ such that $f(n) = |N(\nu(n))|$ for all $n \in \mathbb{N}$.

³H. Kierstead, An effective version of Hall's Theorem, Proc. Amer. Math. Soc. 88 (1983) 124 - 128

Computable graphs

Definition. A locally finite graph Γ is called **highly computable**³if it is computable and there is a computable function $f : \mathbb{N} \to \mathbb{N}$ such that $f(n) = |N(\nu(n))|$ for all $n \in \mathbb{N}$.

³H. Kierstead, An effective version of Hall's Theorem, Proc. Amer. Math. Soc. 88 (1983) 124 - 128

Computable (1, k)-matchings

Definition. Let $\Gamma = (A, B, E)$ be a computably bipartite graph. A perfect (1, k)-matching M from A to B is called a **computable perfect** (1, k)-matching if there is an algorithm which

• for each *i* with $\nu(i) \in A$, finds the tuple (i_1, i_2, \ldots, i_k) such that $(\nu(i), \nu(i_j)) \in M$, for all $j = 1, 2, \ldots, k$

• when $\nu(i) \notin A$ it finds i' such that $(\nu(i'), \nu(i)) \in M$.

Effective version of Hall's condition

A bipartite graph $\Gamma = (A, B, E)$ satisfies the **computable** expanding Hall's harem condition with respect to k (denoted c.e.H.h.c.(k)), if and only if there is a computable function $h : \mathbb{N} \to \mathbb{N}$ such that:

Effective amenability Effective paradoxical decomposition Hall's Harem Theorem Complexity of paradoxical decomposition 000

Effective version of Hall's condition

A bipartite graph $\Gamma = (A, B, E)$ satisfies the computable expanding Hall's harem condition with respect to k (denoted c.e.H.h.c.(k)), if and only if there is a computable function $h : \mathbb{N} \to \mathbb{N}$ such that:

•
$$h(0) = 0$$

Effective amenability Effective paradoxical decomposition Hall's Harem Theorem Complexity of paradoxical decomposition 000

Effective version of Hall's condition

A bipartite graph $\Gamma = (A, B, E)$ satisfies the **computable** expanding Hall's harem condition with respect to k (denoted c.e.H.h.c.(k)), if and only if there is a computable function $h : \mathbb{N} \to \mathbb{N}$ such that:

- h(0) = 0
- for all finite sets $X \subset A$, the inequality $h(n) \leq |X|$ implies $n \leq |N(X)| k|X|$

Effective version of Hall's condition

A bipartite graph $\Gamma = (A, B, E)$ satisfies the **computable** expanding Hall's harem condition with respect to k (denoted c.e.H.h.c.(k)), if and only if there is a computable function $h : \mathbb{N} \to \mathbb{N}$ such that:

- h(0) = 0
- for all finite sets $X \subset A$, the inequality $h(n) \leq |X|$ implies $n \leq |N(X)| k|X|$
- for all finite sets $Y \subset B$, the inequality $h(n) \leq |Y|$ implies $n \leq |N(Y)| \frac{1}{k}|Y|$.

Effective amenability	Effective paradoxical decomposition	Hall's Harem Theorem	Complexity of paradoxical decomposi
		000000000000	

Let
$$k = 2$$
, $h(1) = 2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Effective amenability	Effective paradoxical decomposition	Hall's Harem Theorem	Complexity of paradoxical decomposi
		000000000000	

Let
$$k = 2$$
, $h(1) = 2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Effective amenability Effective paradoxical decomposition Hall's Harem Theorem Complexity of paradoxical decomposition 0000 0000000000 0000

An effective version of Hall's Harem Theorem

Theorem

If $\Gamma = (A, B, E)$ is a highly computable bipartite graph satisfying the c.e.H.h.c.(k), then Γ has a computable perfect (1, k)-matching.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

Witnesses of the Banach-Tarski paradox

Definition. Let

$$\mathfrak{W}_{BT} = \left\{ K : (K \subset \subset G) \land \exists n \in \mathbb{N} \ (\forall F \subset \subset G) (\exists k \in K) \left(\frac{|F \setminus kF|}{|F|} \geq \frac{1}{n} \right) \right\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We call this family witnesses of the Banach-Tarski paradox.

Effective amenability Effective paradoxical decomposition Hall's Harem Theorem Complexity of paradoxical decomposition

Witnesses of the Banach-Tarski paradox

Definition. Let

$$\mathfrak{W}_{BT} = \left\{ K : (K \subset \subset G) \land \exists n \in \mathbb{N} \ (\forall F \subset \subset G) (\exists k \in K) \left(\frac{|F \setminus kF|}{|F|} \geq \frac{1}{n} \right) \right\}$$

We call this family witnesses of the Banach-Tarski paradox.

Lemma

Let G be a group, $x, y \in G$ and $\langle x, y \rangle$ be a non-abelian free subgroup of G. Then $\{x, y\} \in \mathfrak{M}_{BT}$.

Definition. Group G is called **fully residually free** if for any finite collection of nontrivial elements $g_1, \ldots, g_n \in G \setminus \{1\}$ there exists a homomorphism $\phi : G \to \mathbb{F}$ onto a free group \mathbb{F} such that $\phi(g_1) \neq 1, \ldots, \phi(g_n) \neq 1$,⁴.

Definition. Group G is called **fully residually free** if for any finite collection of nontrivial elements $g_1, \ldots, g_n \in G \setminus \{1\}$ there exists a homomorphism $\phi : G \to \mathbb{F}$ onto a free group \mathbb{F} such that $\phi(g_1) \neq 1, \ldots, \phi(g_n) \neq 1$,⁴.

Theorem

The family \mathfrak{W}_{BT} is computable for any computable fully residually free group.

Effective amenability	Effective paradoxical decomposition	Hall's Harem Theorem	Complexity of paradoxical decompos
			0000

K. Duda, with an appendix written by A. Ivanov, Amenability and Computability, arXiv:1904.02640.

Effective amenability	Effective paradoxical decomposition	Hall's Harem Theorem	Complexity of paradoxical decomposi
			0000

Thank you for your attention.