Some anti-geometric groups

Sam Corson (joint with Saharon Shelah)

Groups and their actions 9 September 2019

ヘロン 人間 とくほ とくほ とう

For example: hyperbolic groups, acylindrically hyperbolic groups.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

For example: hyperbolic groups, acylindrically hyperbolic groups.

Groups can also be interesting because of limitations of actions.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

For example: hyperbolic groups, acylindrically hyperbolic groups.

Groups can also be interesting because of limitations of actions.

For example: property FA, property FH, amenability.

ヘロン 人間 とくほ とくほ とう

э.

Goal: Create groups which are interesting because of limitations on their isometric actions.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Goal: Create groups which are interesting because of limitations on their isometric actions.

Definition

A group *G* is *strongly bounded* if every abstract action of *G* by isometries on a metric space has bounded orbits [2].

ヘロト ヘアト ヘビト ヘビト

Goal: Create groups which are interesting because of limitations on their isometric actions.

Definition

A group *G* is *strongly bounded* if every abstract action of *G* by isometries on a metric space has bounded orbits [2].

Example

Finite groups

ヘロト 人間 ト ヘヨト ヘヨト

æ

Some necessary conditions

Definition

G is not ω -cofinal if there is not a chain of proper subgroups $G_0 < G_1 < \cdots$ for which $G = \bigcup_{n \in \omega} G_n$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Some necessary conditions

Definition

G is not ω -cofinal if there is not a chain of proper subgroups $G_0 < G_1 < \cdots$ for which $G = \bigcup_{n \in \omega} G_n$.

Definition

G is *Cayley bounded* if for every generating set *X* the Cayley graph $\Gamma(G, X)$ is of bounded diameter.

イロト イポト イヨト イヨト 一臣

Some necessary conditions

Definition

G is not ω -cofinal if there is not a chain of proper subgroups $G_0 < G_1 < \cdots$ for which $G = \bigcup_{n \in \omega} G_n$.

Definition

G is *Cayley bounded* if for every generating set *X* the Cayley graph $\Gamma(G, X)$ is of bounded diameter.

The conjunction of these two properties is sufficient for a group to be strongly bounded. Strongly bounded groups cannot be countably infinite [2].

イロト イポト イヨト イヨト 三日

A few examples of such groups:

ヘロン 人間 とくほど くほとう

A few examples of such groups:

 (Shelah 1980) Weird groups arising as examples of Jónsson groups (λ⁺ = 2^λ).

ヘロン 人間 とくほ とくほ とう

ъ

A few examples of such groups:

- (Shelah 1980) Weird groups arising as examples of Jónsson groups (λ⁺ = 2^λ).
- (Bergman 2006) The full symmetric group S_X on a set X.

・ 同 ト ・ ヨ ト ・ ヨ ト …

A few examples of such groups:

- (Shelah 1980) Weird groups arising as examples of Jónsson groups ($\lambda^+ = 2^{\lambda}$).
- (Bergman 2006) The full symmetric group *S_X* on a set *X*.
- (Droste, Göbel 2005) Self homeomorphisms of the Cantor set, of Q, of R.

ヘロン 人間 とくほ とくほ とう

A few examples of such groups:

- (Shelah 1980) Weird groups arising as examples of Jónsson groups ($\lambda^+ = 2^{\lambda}$).
- (Bergman 2006) The full symmetric group S_X on a set X.
- (Droste, Göbel 2005) Self homeomorphisms of the Cantor set, of Q, of R.
- (de Cornulier 2006) $\prod_I H$ with H a finite perfect group; ω_1 -existentially closed groups.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

What cardinalities can arise?

The above groups have the following in common: they are finite or are of cardinality κ^{\aleph_0} for some cardinal κ (often $\kappa = 2$).

ヘロン 人間 とくほ とくほ とう

What cardinalities can arise?

The above groups have the following in common: they are finite or are of cardinality κ^{\aleph_0} for some cardinal κ (often $\kappa = 2$).

Particularly the infinite examples have cardinality $\geq 2^{\aleph_0}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

What cardinalities can arise?

The above groups have the following in common: they are finite or are of cardinality κ^{\aleph_0} for some cardinal κ (often $\kappa = 2$).

Particularly the infinite examples have cardinality $\geq 2^{\aleph_0}$.

Question

[2] Can a strongly bounded group have cardinality \aleph_1 (without assuming $\aleph_1 = 2^{\aleph_0}$)?

ヘロン 人間 とくほ とくほ とう

ъ

(C., Shelah 2019) Let λ be a cardinal of uncountable cofinality and K be a group such that $|K| < \lambda$. Then there exists a strongly bounded group $G \ge K$ which is of cardinality λ ,

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

(C., Shelah 2019) Let λ be a cardinal of uncountable cofinality and K be a group such that $|K| < \lambda$. Then there exists a strongly bounded group $G \ge K$ which is of cardinality λ , except possibly when $\lambda = \mu^+$ where $cof(\mu) = \omega$ and μ is a limit of weakly inaccessible cardinals.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

(C., Shelah 2019) Let λ be a cardinal of uncountable cofinality and K be a group such that $|K| < \lambda$. Then there exists a strongly bounded group $G \ge K$ which is of cardinality λ , except possibly when $\lambda = \mu^+$ where $cof(\mu) = \omega$ and μ is a limit of weakly inaccessible cardinals.

For example we can let $\kappa = \aleph_1, \aleph_2, \aleph_3, \aleph_{\omega+1}, \aleph_{\omega+2}, \aleph_{\omega_1}$, etc.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

(C., Shelah 2019) Let λ be a cardinal of uncountable cofinality and K be a group such that $|K| < \lambda$. Then there exists a strongly bounded group $G \ge K$ which is of cardinality λ , except possibly when $\lambda = \mu^+$ where $cof(\mu) = \omega$ and μ is a limit of weakly inaccessible cardinals.

For example we can let $\kappa = \aleph_1, \aleph_2, \aleph_3, \aleph_{\omega+1}, \aleph_{\omega+2}, \aleph_{\omega_1}$, etc. The uncountable cofinality condition cannot be dropped.

イロト イポト イヨト イヨト 三日

Lemma

For each $n \ge 1$ there is a group word $w(x_0, x_1, \ldots, x_{n-1}, y)$ such that the following holds: If *G* is a group and $f : (G \setminus \{1_G\})^n \to G$ then there exist group *H* and $c \in H$ such that

(a)
$$G \leq H$$
;
(b) $c \in H \setminus G$;
(c) for all $\overline{g} \in (G \setminus \{1_G\})^n$ we have $w(\overline{g}, c) = f(\overline{g})$
(d) $H = \langle G \cup \{c\} \rangle$.

イロト イポト イヨト イヨト

æ

Definition

If *X* is a set and $n \in \omega$ we let $[X]^n$ denote the set of subsets of *X* of cardinality *n*.

イロト イポト イヨト イヨト 一臣

Definition

If *X* is a set and $n \in \omega$ we let $[X]^n$ denote the set of subsets of *X* of cardinality *n*.

Conventions

An ordinal is the set of ordinals which are strictly below it $(0 = \emptyset, 1 = \{0\}, \omega + 1 = \{0, 1, \dots, \omega\})$. A cardinal is the least ordinal of its cardinality.

ヘロン 人間 とくほ とくほ とう

Definition

If X is a set and $n \in \omega$ we let $[X]^n$ denote the set of subsets of X of cardinality n.

Conventions

An ordinal is the set of ordinals which are strictly below it $(0 = \emptyset, 1 = \{0\}, \omega + 1 = \{0, 1, \dots, \omega\})$. A cardinal is the least ordinal of its cardinality.

Theorem

(Todorčević 1987) There exists a function $f : [\aleph_1]^2 \to \aleph_1$ such that if $Y \subseteq \aleph_1$ is uncountable then $f([Y]^2) = \aleph_1$.

ヘロト ヘアト ヘビト ヘビト

Sketch of proof when $\lambda = \aleph_1$

Setup

Sketch of proof when $\lambda = \aleph_1$

Setup

{β_α}_{α<ℵ1} = the set of limit ordinals less than ℵ1, ordered appropriately

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Sketch of proof when $\lambda = \aleph_1$

Setup

- {β_α}_{α<ℵ1} = the set of limit ordinals less than ℵ1, ordered appropriately
- $f: [\aleph_1]^2 \rightarrow \aleph_1$ as in Todorčević's theorem

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Sketch of proof when $\lambda = \aleph_1$

Setup

- {β_α}_{α<ℵ1} = the set of limit ordinals less than ℵ₁, ordered appropriately
- $f: [\aleph_1]^2 \rightarrow \aleph_1$ as in Todorčević's theorem
- Without loss of generality $f([\beta_{\alpha}]^2) \subseteq \beta_{\alpha}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Sketch of proof when $\lambda = \aleph_1$

Construction

Inductively endow each β_{α} with a group structure G_{α} .

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

Sketch of proof when $\lambda = \aleph_1$

Construction

Inductively endow each β_{α} with a group structure G_{α} . Let β_0 be given a group structure such that $K \leq G_0$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Construction

Inductively endow each β_{α} with a group structure G_{α} . Let β_0 be given a group structure such that $K \leq G_0$. (Successor) If β_{α} has group structure G_{α} then give $\beta_{\alpha+1}$ a group structure such that

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

Construction

Inductively endow each β_{α} with a group structure G_{α} . Let β_0 be given a group structure such that $K \leq G_0$. (Successor) If β_{α} has group structure G_{α} then give $\beta_{\alpha+1}$ a group structure such that

•
$$G_{\alpha+1} = \langle \{\beta_{\alpha}\} \cup G_{\alpha} \rangle$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

Construction

Inductively endow each β_{α} with a group structure G_{α} . Let β_0 be given a group structure such that $K \leq G_0$. (Successor) If β_{α} has group structure G_{α} then give $\beta_{\alpha+1}$ a group structure such that

•
$$G_{\alpha+1} = \langle \{\beta_{\alpha}\} \cup G_{\alpha} \rangle$$

•
$$w(\overline{g}, \beta_{\alpha}) = f(\overline{g})$$
 when $\overline{g} = (g_0, g_1)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Construction

Inductively endow each β_{α} with a group structure G_{α} . Let β_0 be given a group structure such that $K \leq G_0$. (Successor) If β_{α} has group structure G_{α} then give $\beta_{\alpha+1}$ a group structure such that

•
$$G_{\alpha+1} = \langle \{\beta_{\alpha}\} \cup G_{\alpha} \rangle$$

• $w(\overline{g}, \beta_{\alpha}) = f(\overline{g})$ when $\overline{g} = (g_0, g_1)$.

(Limit) If β_{α} has a group structure G_{α} for all $\alpha < \gamma$ then give β_{γ} the group structure $G_{\gamma} = \bigcup_{\alpha < \gamma} G_{\alpha}$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Sketch of proof when $\lambda = \aleph_1$

Does it work?

S. Corson Some anti-geometric groups

Sketch of proof when $\lambda = \aleph_1$

Does it work?

Suppose that $Y_0 \subseteq Y_1 \subseteq \cdots$ with

•
$$Y_{m+1} \supseteq Y_m \cup Y_m^{-1} \cup Y_m Y_m$$

Does it work?

Suppose that $Y_0 \subseteq Y_1 \subseteq \cdots$ with

•
$$Y_{m+1} \supseteq Y_m \cup Y_m^{-1} \cup Y_m Y_m$$

•
$$\bigcup_{m\in\omega} Y_m = G$$

Does it work?

Suppose that $Y_0 \subseteq Y_1 \subseteq \cdots$ with

•
$$Y_{m+1} \supseteq Y_m \cup Y_m^{-1} \cup Y_m Y_m$$

•
$$\bigcup_{m\in\omega} Y_m = G$$

We show $G = Y_M$ for some M.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Does it work?

Suppose that $Y_0 \subseteq Y_1 \subseteq \cdots$ with

•
$$Y_{m+1} \supseteq Y_m \cup Y_m^{-1} \cup Y_m Y_m$$

•
$$\bigcup_{m \in \omega} Y_m = G$$

We show $G = Y_M$ for some M. Certainly $Y_{M_0} \cap {\beta_{\alpha}}_{\alpha < \aleph_1}$ is uncountable for some M_0 .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Does it work?

Suppose that $Y_0 \subseteq Y_1 \subseteq \cdots$ with

•
$$Y_{m+1} \supseteq Y_m \cup Y_m^{-1} \cup Y_m Y_m$$

•
$$\bigcup_{m\in\omega} Y_m = G$$

We show $G = Y_M$ for some M. Certainly $Y_{M_0} \cap {\{\beta_{\alpha}\}}_{\alpha < \aleph_1}$ is uncountable for some M_0 . Given any $\gamma \in G$ we select $\beta_{\alpha_0}, \beta_{\alpha_1} \in Y_{M_0}$ for which $f({\{\beta_{\alpha_0}, \beta_{\alpha_1}\}}) = \gamma$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Does it work?

Suppose that $Y_0 \subseteq Y_1 \subseteq \cdots$ with

•
$$Y_{m+1} \supseteq Y_m \cup Y_m^{-1} \cup Y_m Y_m$$

•
$$\bigcup_{m\in\omega} Y_m = G$$

We show $G = Y_M$ for some M. Certainly $Y_{M_0} \cap \{\beta_\alpha\}_{\alpha < \aleph_1}$ is uncountable for some M_0 . Given any $\gamma \in G$ we select $\beta_{\alpha_0}, \beta_{\alpha_1} \in Y_{M_0}$ for which $f(\{\beta_{\alpha_0}, \beta_{\alpha_1}\}) = \gamma$.Select $\beta_{\alpha_2} \in Y_{M_0}$ for which $\beta_{\alpha_2} > \beta_{\alpha_0}, \beta_{\alpha_1}$.

<ロ> (四) (四) (三) (三) (三)

Does it work?

Suppose that $Y_0 \subseteq Y_1 \subseteq \cdots$ with

•
$$Y_{m+1} \supseteq Y_m \cup Y_m^{-1} \cup Y_m Y_m$$

•
$$\bigcup_{m\in\omega} Y_m = G$$

We show $G = Y_M$ for some M. Certainly $Y_{M_0} \cap {\{\beta_{\alpha}\}}_{\alpha < \aleph_1}$ is uncountable for some M_0 . Given any $\gamma \in G$ we select $\beta_{\alpha_0}, \beta_{\alpha_1} \in Y_{M_0}$ for which $f({\{\beta_{\alpha_0}, \beta_{\alpha_1}\}}) = \gamma$.Select $\beta_{\alpha_2} \in Y_{M_0}$ for which $\beta_{\alpha_2} > \beta_{\alpha_0}, \beta_{\alpha_1}$. Now $w(\beta_0, \beta_1, \beta_2) = \gamma$, so $\gamma \in Y_{M_0+length(w)}$.

<ロ> (四) (四) (三) (三) (三) (三)

Locally finite?

Theorem

(C., Shelah 2019) Suppose that there exists an increasing sequence $\{Y_{\alpha}\}_{\alpha < \aleph_1}$ of sets of Lebesgue measure zero such that every set of measure zero is eventually included in the sequence. Then for every nontrivial finite perfect group *H* there is a strongly bounded $G \leq \prod_{\omega} H$ of cardinality \aleph_1 .

ヘロン 人間 とくほ とくほ とう

(C., Shelah 2019) Suppose that there exists an increasing sequence $\{Y_{\alpha}\}_{\alpha < \aleph_1}$ of sets of Lebesgue measure zero such that every set of measure zero is eventually included in the sequence. Then for every nontrivial finite perfect group *H* there is a strongly bounded $G \leq \prod_{\omega} H$ of cardinality \aleph_1 .

For any cardinal κ of uncountable cofinality there exists a model of ZFC in which the hypothesis is satisfied and $\kappa = 2^{\aleph_0}$.

ヘロト ヘアト ヘビト ヘビト

Thank you.

S. Corson Some anti-geometric groups

- G. Bergman, *Generating infinite symmetric groups*, Bull. London Math. Soc. 38 (2006), 429-440.
- Y. de Cornulier, *Strongly bounded groups and infinite powers of finite groups*, Comm. Alg. 34 (2006), 2337-2345.
- M. Droste, R. Göbel, Uncountable cofinalities of permutation groups, J. London Math. Soc. 71 (2005), 335-344.
- S. Shelah, *On a problem of Kurosh, Jónsson groups, and applications*, Word Problems II. North-Holland Publ. Company (1980), 373-394.

ヘロン 人間 とくほ とくほ とう