On the generic family of Cayley graphs of a finite group

Czesław Bagiński, Piotr Grzeszczuk

Groups & Their Actions
Gliwice

9.09.2019

The Content

- 1. The definition of $\mathcal{G}_m(G)$
- 2. The motivation
- 3. Some pictures
- 4. The group of automorphisms $\mathscr{G}_m(G)$
- 5. Combinatorial properties of $\mathcal{G}_m(G)$ vs algebraic properties of G.

CB, Piotr Grzeszczuk

On the generic family of Cayley graphs of a finite group

Cayley graph

Definition

Let G be a group, e - its unity. A subset $S \subset G \setminus \{e\}$ is *symmetric*, if

$$S = S^{-1}$$
,

where $S^{-1} = \{s^{-1} | s \in S\}.$

The Cayley graph of G with respect to S,

is a graph, whose set of vertices is G and the set of edges is defined by the condition:

$$g \sim h \Leftrightarrow \exists_{s \in S} h = s \cdot g$$
.

Cayley graph

$$\textit{G} \ = \ \mathbb{Z}_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$S = \{5, 2, 8\}$$

Cayley graph

$$G = D_5 = \langle x, y : x^2 = e = y^5, xyx = y^{-1} \rangle$$

$$S = \{x, y, y^{-1}\}$$

Definition of the graph $\mathscr{G}_m(G)$

Definition

Let G - a finite group and $m \in \mathbb{N}$. The generic graph of G of degree m, is the Cayley graph

$$\mathscr{G}_m(G) = Cay(G^m, S),$$

where

$$G^m = \underbrace{G \times G \times \cdots \times G}_{m},$$

$$S = \left\{ \mathbf{x}_{[k,l)} : \ x \in G^{\times}, 1 \leqslant k < l \leqslant m+1 \right\}$$

$$\mathbf{x}_{[k,l)} = (\underbrace{e, e, \dots, e}_{k-1 \text{ times}}, \underbrace{x, x, \dots, x}_{l-k \text{ times}}, e, e, \dots, e).$$

Definition of the graph $\mathscr{G}_m(G)$

Definition

An interval of G^m is the set

$$G_{[k,l)} = \{\mathbf{x}_{[k,l)} : x \in G \setminus \{e\}\}.$$

Hence

$$S = \bigcup_{1 \le k < l \le m+1} G_{[k,l)}.$$

Therefore for vertices $\mathbf{g}=(g_1,\ldots,g_m)$, $\mathbf{h}=(h_1,\ldots,h_m)$ of $\mathscr{G}_m(G)$,

$$\mathbf{g} \sim \mathbf{h} \Leftrightarrow \exists_{\mathbf{x} \in G^{\times}} \mathbf{h} = \mathbf{x}_{[k,l)} \cdot \mathbf{g} \text{ for some } 1 \leqslant k < l \leqslant m+1.$$

Definition of the graph $\mathscr{G}_m(G)$

Lemma 1.

- (a) The graph $\mathscr{G}_m(G)$ has $|G|^m$ vertices.
- (b) Every vertex of the graph $\mathcal{G}_m(G)$ has degree

$$d = |S| = {m+1 \choose 2} (|G|-1).$$

Definition of the graph $\mathcal{G}_m(G)$

Lemma 1.

- (a) The graph $\mathcal{G}_m(G)$ has $|G|^m$ vertices.
- (b) Every vertex of the graph $\mathscr{G}_m(G)$ has degree

$$d = |S| = {m+1 \choose 2}(|G|-1).$$

Example

m	$\binom{m+1}{2}$	G	V	d = S
2	3	60	3600	177
3	6	60	216 000	354
6	21	6	46 656	105

Motivation

Suppose, that a finite group G acts on a non-commutative ring R by automorphisms

$$G \to \mathbf{Aut}(R), \quad r \mapsto r^{\mathbf{g}}.$$

The subring of fixed points

$$R^G = \{ r \in R \mid r^g = r \text{ for all } g \in G \}.$$

A natural way to construct fixed points of the action is to use the trace map $\mathbf{tr}_G \colon R \to R$ defined by

$$\operatorname{tr}_G(r) = \sum_{g \in G} r^g.$$

The image

$$T = \mathbf{tr}_G(R)$$

is an ideal of R^G .

Motivation

Theorem (Bergman - Isaacs)

Let G be a finite group of automorphisms of the ring R with no additive |G|-torsion. If $T = \mathbf{tr}_G(R)$ is nilpotent of index d, then R is nilpotent of index at most $f(|G|)^d$, where

$$f(m) = \prod_{k=1}^{m} \left(\binom{m}{k} + 1 \right).$$

In particular, if $\mathbf{tr}_G(R) = 0$, then

$$R^{f(|G|)}=0.$$

Function f

$$f(1) = 2$$
, $f(3) = 6$, $f(10) = 84447578671097576$

Function f

$$f(1) = 2$$
, $f(3) = 6$, $f(10) = 84447578671097576$

Conjecture

Under assumtions of the Bergman-Isaacs theorem the nilpotency index of R is not bigger than $|G|^d$.

(It was proved for solvable groups.)

Motywacje

$$f(60) =$$

Motywacje

f(60) =

Motivation

For a given group *G* and a set *I* let

$$Z_G = \mathbb{Z}\langle \zeta_{i,g} \mid g \in G, i \in I \rangle$$
 and $Q_G = \mathbb{Q}\langle \zeta_{i,g} \mid g \in G, i \in I \rangle$

be algebras without 1 over \mathbb{Z} and \mathbb{Q} respectively. The group G acts on both algebras:

$$(\zeta_{i,g})^{\mathsf{x}} = \zeta_{i,\mathsf{x}^{-1}g}.$$

For an arbitrary ring A, acted upon by G, one can take a sufficiently large set I, such that there exists a G-epimorphism θ of Z_G onto A with

$$\theta(\mathsf{tr}_G(Z_G)) = \mathsf{tr}_G(A).$$

This allows to reduce the investigation of Conjecture to combinatorial properties of the graph $\mathcal{G}_m(G)$.

Motivations

Proposition 2.

Let A be the adjacency matrix of $\mathcal{G}_m(G)$. If for every eigenvalue λ of A (m+1)

 $\lambda > -\binom{m+1}{2},$

then, under the assumptions of the Bergman-Isaacs theorem, the nilpotency index of R is not bigger than m.

Proposition 3.

Let G be a finite abelian group. If $m \geqslant |G|$, then every eigenvalue λ of A satisfies the inequality

$$\lambda > -\binom{m+1}{2}$$

In particular the nilpotency index of R is not bigger than m.

Theorem 4.

If G = Cay(G, S) is a Cayley graph, then the set \mathbf{T} of functions of the form

$$T_g: G \to G, \quad x^{T_g} = xg$$

is a vertex transitive group of automorphisms of $\mathcal G$ (isomorphic with G).

Corollary.

For every $g \in G$ the subgraph $\mathcal{V}(g)$ of $\mathscr{G}_m(G)$, whose set of vertices is equal to the set of all neighbours of g is isomorphic to $\mathcal{V}(e)$.

Example¹

Let a, b, c be different elements of G^{\times} and let

$$\mathbf{g} = (e, a, a, b, b, c, e, e), \ \mathbf{h} = (e, a, e, e, b, b, c, c, e).$$

Then they have the following decompositions, which we call weight decompositions; the number of components we call the weight:

$$\mathbf{g} = \mathbf{a}_{[2,4)} \mathbf{b}_{[4,7)} \mathbf{c}_{[7,8)} \text{ and } \vartheta(\mathbf{g}) = 3$$

$$\mathbf{h} = \mathbf{a}_{[2,3)} \mathbf{e}_{[3,5)} \mathbf{b}_{[5,7)} \mathbf{c}_{[7,9)} \text{ and } \vartheta(\mathbf{h}) = 4.$$

Lemma 5.

Let G be a group and m > 1. For every $\mathbf{g} \in G^m \setminus \{\mathbf{e}\}$ there exist a sequence $1 \le i_1 < i_2 < \cdots < i_k < i_{k+1} \le m+1$

and elements

$$x_1,\ldots,x_k\in G,$$

such that

- ② $x_i \neq x_{i+1}$ for i = 1, 2, ..., k-1;

The presentation of \mathbf{g} in this form is unique.

Definition.

The number $\vartheta(\mathbf{g}) = k$ we call the weight of an element \mathbf{g} . It is clear that $1 \leq \vartheta(\mathbf{g}) \leq m$ for every $\mathbf{g} \neq \mathbf{e}$.

Lemma 6.

If $\mathbf{g}, \mathbf{h} \in G^m \setminus \{\mathbf{e}\}$ are adjacent vertices in $\mathscr{G}_m(G)$, then $|\vartheta(\mathbf{g}) - \vartheta(\mathbf{h})| \leq 2$.

For $\mathbf{g} \in G^m$ let $V(\mathbf{g})$ be the set of all neighbours of \mathbf{g} in $\mathscr{G}_m(G)$.

Proposition 7.

For everey element $\mathbf{g} \in G^m \setminus \{\mathbf{e}\}$:

- (a) $\mathbf{g} \in V(\mathbf{e})$ iff $\vartheta(g) = 1$. In this case we have $|V(\mathbf{e}) \cap V(\mathbf{g})| = |G| + 2m 4$;
- (b) if $\vartheta(\mathbf{g}) = 2$, then $|V(\mathbf{e}) \cap V(\mathbf{g})| = 6$;
- (c) if $\vartheta(\mathbf{g}) = 3$, then $|V(\mathbf{e}) \cap V(\mathbf{g})|$ belongs to $\{0, 1, 2, 4, 6\}$;
- (d) if $\vartheta(\mathbf{g}) \geqslant 4$, then $V(\mathbf{e}) \cap V(\mathbf{g}) = \emptyset$.

Corollary 8.

A group G is nonabelian if and only if for $m \ge 3$ there exist two vertices in $\mathcal{G}_m(G)$ which have exactly one common neighbour.

Definition

A k-regular graph X on n vertices is called edge regular

if there exists a parameter a such that every two adjcent vertices have exactly a common neighbours. In this case we say that X is edge regular with the parameters

$$(n, k, a)$$
.

Corollary 9.

The graph $\mathcal{G}_m(G)$ is edge regular r with parameters:

$$(|G|^m, {m+1 \choose 2}(|G|-1), |G|+2m-4).$$

Definition

A graph X is called

strongly regular

with parameters (n, k, a, c) when it is edge regular with parameters (n, k, a) and every two of non-adjacent vertices have c common neighbours.

Corollary 10.

- (a) The graph $\mathcal{G}_m(G)$ is strongly regular if and only if m=2.
- (b) For a given group G the graph $\mathcal{G}_2(G)$ is strongly regular with parameters

$$(|G|^2,3(|G|-1),|G|,6).$$

The eigenvalues of the adjacency matrix of $\mathscr{G}_2(G)$ are equal

$$3(|G|-1), |G|-3, -3$$

with multiplicities

1,
$$3(|G|-1)$$
, $|G|^2-3|G|+2$

respectively.

Definition

Ву

$$\mathscr{V}_m(g) = \mathscr{V}_m(g,G)$$

we denote a subgraph of $\mathscr{G}_m(G)$ whose set of vertices is equal to V(g).

For an element $x \in G^{\times}$ by

$$\mathscr{I}_m(x) = \mathscr{I}_m(x,G)$$

we denote a subgraph of $\mathscr{V}_m(e,G)$, whose set of vertices is equal

$$\{\mathbf{x}_{[k,l)}:\ 1 \leq k < l \leq m+1\} \cup \{\mathbf{x}_{[k,l)}^{-1}:\ 1 \leq k < l \leq m+1\}.$$

Lemat 11.

(a) The number of vertices of $\mathscr{I}_m(x)$ is equal to

$$\binom{m+1}{2}$$

when x has order 2 and twice more, when x has order bigger than 2.

- (b) For a fixed interval [k, l), in the graph $\mathscr{I}_m(x)$ the vertex $\mathbf{x}_{[k, l)}$ is adjacent to
 - m k + l 2 vertices of the form $\mathbf{x}_{[i,j)}$ (where k = i, k < j and $l \neq j$ or l = j, i < l and $k \neq i$),
 - m + k l vertices of the form $\mathbf{x}_{[i,j)}^{-1}$ (where k = j + 1 and i < k or l = i and l < j),
 - $\mathbf{x}_{[k,l)}^{-1}$ (for o(x) > 2 only).

Lemma 12.

Let m>1. For nontrivial groups G and H end elements $x\in G^{\times}$ and $y\in H^{\times}$

$$\mathscr{I}_m(x,G)\simeq \mathscr{I}_m(y,H) \ \ \mathrm{iff} \ \ o(x)=2=o(y) \ \ \mathrm{or} \ \ o(x)\neq 2\neq o(y).$$

Proposition 13.

Let G and H be groups such that |G| = |H|. If G and H have the same numbers of elements of order 2, then for all $g \in G$ and $h \in H$

$$\mathscr{V}_m(g,G) \simeq \mathscr{V}_m(h,H).$$

Definition

Let \mathscr{B}_m be a graph whose vertices are intervals

$$G_{[k,l)}$$

 $1 \leqslant k < l \leqslant m + 1$. Two intervals are adjacent

$$G_{[k,l)} \sim G_{[i,j)},$$

if there exist $\mathbf{x}_{[k,l)} \in G_{[k,l)}$ and $\mathbf{y}_{[i,j)} \in G_{[i,j)}$ which are adjacent in $\mathscr{G}_m(G)$.

Note that \mathscr{B}_m is isomorphic to the graph $\mathscr{I}_m(x,G)$, where x is an element of order 2. \mathscr{B}_m can be obtained also from $\mathscr{I}_m(x,G)$, where x has order bigger than 2, by removing the edges $\mathbf{x}_{[k,l)} \sim \mathbf{x}_{[k,l)}^{-1}$, with simultaneous merging of ends and identifying suitable edges to avoid multiple edges.

Proposition 14.

The complement $\overline{\mathcal{B}}_m$ of the graph \mathcal{B}_m is isomorphic to the Kneser graph $KG_{m+1,2}$.

$$m=4, \quad \mathsf{graf} \ \overline{\mathcal{B}}_4 = \mathit{KG}_{5,2}$$

Elementary properties of the graph $\mathscr{G}_m(G)$

Proposition 15.

The maximal number of vertices in a clique of the graph $\mathscr{G}_m(G)$ is equal to

$$\left\{ \begin{array}{ccc} \max\{m+1,|G|\}\} & \text{if} & m\geqslant 3 \text{ or } |G|>2,\\ 4 & \text{if} & m=2 \text{ and } |G|=2, \end{array} \right.$$

Elementary properties of the graph $\mathcal{G}_m(G)$

Proposition 16.

Let $F: \mathscr{G}_m(G) \to \mathscr{G}_m(H)$ be an isomorphism of graphs such that $F(\mathbf{e}_G) = \mathbf{e}_H$, where G and H are finite groups and let $\mathcal Q$ be a clique in $\mathscr{G}_m(G)$. Then $F(\mathcal Q)$ is a maximum interval (resp. maximum dispersed) clique in $\mathscr{G}_m(H)$ if and only if $\mathcal Q$ is a maximum interval (resp. maximum dispersed) clique in $\mathscr{G}_m(G)$, with the exception of the case where |G| = 3 and m = 2. In particular, if $(m, |G|) \neq (2, 3)$, then any automorphism of the graph $\mathscr{G}_m(G)$ fixing \mathbf{e} preserves the type of a maximum clique.

Homogeneous homomorphisms

Definition

If X and Y are graphs with sets of vertices V(X) and V(Y) respectively, then the function $F\colon V(X)\to V(Y)$ is called a homomorphism if

$$x \sim_X y \Rightarrow F(x) \sim_Y F(y)$$
.

Let G i H be groups, with units \mathbf{e}_G and \mathbf{e}_H respectively. A homomorphism of graphs

$$F: \mathscr{G}_m(G) \to \mathscr{G}_m(H)$$

is called homogeneous if

$$F(\mathbf{e}_G) = \mathbf{e}_H i F(G_{[k,l)}) \subseteq H_{[k,l)},$$

for all $1 \le k < l \le m+1$.

Homomorfizmy jednorodne

Theorem 17.

Let G, H be groups and m > 1. Then every homogeneous graph homomorphism (isomorphism) $F : \mathscr{G}_m(G) \to \mathscr{G}_m(H)$ is induced by a group monomorphism (isomorphism), that is

$$F(g_1, g_2, \ldots, g_m) = (f(g_1), f(g_2), \ldots, f(g_m))$$

for some monomorphism (isomorphism) of groups $f: G \rightarrow H$.

Homomorfizmy jednorodne

Corollary 18.

Let G, H be groups and $m \ge 2$. Then the graph $\mathcal{G}_m(G)$ and $\mathcal{G}_m(H)$ are isomorphic with respect to some homogeneous isomorphism iff the groups G and H are isomorphic.

In every Cayley graph right transfers create vertex transitive group of automorphisms of the graph:

$$\mathbf{T}_m(G) = \{ T_{\mathbf{g}} : \mathbf{g} \in G^m \}, \ T_{\mathbf{g}} : G^m \to G^m, \ \mathbf{x}^{T_{\mathbf{g}}} = \mathbf{x}\mathbf{g}, \ \text{for } \mathbf{x} \in G^m.$$

What is the stabilizer of an arbitrary vertex (e)? The homogeneous automorphisms stabilize e:

$$Aut_m(G)$$

If
$$f \in \operatorname{Aut}(G)$$
 and $\mathbf{x} = (x_1, \dots, x_m) \in G^m$,

$$\mathbf{x}^f = (f(x_1), \ldots, f(x_m)).$$

It is clear that for every $\mathbf{g} \in G^m$ i $f \in \mathbf{Aut}_m(G)$

$$f^{-1}T_{\mathbf{g}}f = T_{\mathbf{g}^f}$$

which means that $\mathbf{Aut}_m(G)$ normalizes $\mathbf{T}_m(G)$.

Automorfizmy

Lemma 19.

Let G be an abelian group and $m \ge 2$. For i = 1, 2, ..., m let $\gamma_i : G^m \to G^m$ be the mappings given by

$$(g_1,g_2,\ldots,g_m)^{\gamma_i}=(g_1,\ldots,g_{i-1},g_{i-1}g_i^{-1}g_{i+1},g_{i+1},\ldots,g_m),$$

(we asume $g_0 = g_{m+1} = e$). Then

- **1** all γ_i are automorphisms of the group G^m of order 2, satisfying the condition $S^{\gamma_i} = S$ and then all they are automorphism of the graph $\mathscr{G}_m(G)$.
- ② for |i-j| > 1, $(1 \leqslant i, j \leqslant m)$, we have $\gamma_i \gamma_j = \gamma_j \gamma_i$.
- for all i, j, $(1 \le i, j \le m, i+j \le m)$, $\gamma_i \gamma_{i+1} \dots \gamma_{i+j}$ is an automorphism of $\mathscr{G}_m(G)$ of order j+2, in particular the automorphisms $\gamma_i \gamma_{i+1}$ have order 3 and $\gamma_1 \dots \gamma_m = \omega$ has order m+1.
- **1** the subgroup $\Gamma_m = \langle \gamma_1, \gamma_2, \dots, \gamma_m \rangle$ of $\operatorname{Aut}(\mathscr{G}_m(G))$ is isomorphic to the symmetric group S_{m+1} of degree m+1.

Automorfizmy

Theorem 20.

Let G be an abelian group. If either

- (a) m > 3, or
- (b) m = 3 and G is of exponent bigger than 2, or
- (c) m = 2 and $|G| \neq 3$,

then

• the stabilizer of $\mathbf{e} \in G^m$ in the automorphism group $\mathbf{Aut}(\mathscr{G}_m(G))$ is equal to

$$\operatorname{\mathsf{Aut}}_m(G) \times \Gamma_m \simeq \operatorname{\mathsf{Aut}}(G) \times S_{m+1};$$

② the group of all automorphisms of the graph $\mathscr{G}_m(G)$ is equal to

$$\operatorname{\mathsf{Aut}}(\mathscr{G}_m(G)) = \operatorname{\mathsf{T}}_m \rtimes \left(\operatorname{\mathsf{Aut}}_m(G) \times \operatorname{\mathsf{\Gamma}}_m\right) \simeq G^m \rtimes \left(\operatorname{\mathsf{Aut}}(G) \times S_{m+1}\right).$$

Lemma 21.

Let G be a group and $m \ge 2$. Then

1 the map $\tau \colon G^m \to G^m$ given by

$$(g_1, g_2, \ldots, g_m)^{\tau} = (g_m, g_{m-1}, \ldots, g_2, g_1)$$

is an automorphism of order two of $\mathscr{G}_m(G)$,

2 The map $\omega \colon G^m \to G^m$ given by

$$(g_1, g_2, \ldots, g_m)^{\omega} = (g_1^{-1}g_2, g_1^{-1}g_3, \ldots, g_1^{-1}g_m, g_1^{-1})$$

is an automorphism of order m+1 of $\mathscr{G}_m(G)$,

1 the subgroup $\Delta_m = \langle \tau, \omega \rangle$ of $\operatorname{Aut}(\mathscr{G}_m(G))$ is isomorphic to the dihedral group D_{m+1} .

Similarly as in the abelian case

 $\mathbf{Aut}_m(G)$ normalizes \mathbf{T}_m

but for nonabelian groups the automorphism ω z $\Delta_m(G)$ does not normalize T_m . In fact

$$\begin{split} &(x_1,x_2,\ldots,x_m)^{\omega^{-1}T_{\mathsf{g}}\omega} = \\ &= (x_m^{-1},x_m^{-1}x_1,x_m^{-1}x_2,\ldots,x_m^{-1}x_{m-2},x_m^{-1}x_{m-1})^{T_{\mathsf{g}}\omega} \\ &= (x_m^{-1}g_1,x_m^{-1}x_1g_2,x_m^{-1}x_2g_3,\ldots,x_m^{-1}x_{m-2}g_{m-1},x_m^{-1}x_{m-1}g_m)^\omega \\ &= (g_1^{-1}x_1g_2,g_1^{-1}x_2g_3,g_1^{-1}x_3g_4,\ldots,g_1^{-1}x_{m-1}g_m,g_1^{-1}x_m) \\ &= (x_1^{g_1}(g_1^{-1}g_2),x_2^{g_1}(g_1^{-1}g_3),x_3^{g_1}(g_1^{-1}g_4),\ldots,x_{m-1}^{g_1}(g_1^{-1}g_m),x_m^{g_1}g_1^{-1}) \\ &= (x_1,x_2,x_3,\ldots,x_{m-1},x_m)^{f_{g_1}T_{\mathsf{g}}\omega}, \end{split}$$

Thus

$$\omega^{-1} T_{\mathbf{g}} \omega = f_{\mathbf{g}_1} T_{\mathbf{g}^{\omega}},$$

where f_{g_1} is an internal automorphism induced by $g_1 \in G$.

Theorem 22.

Let G be a non-abelian group. Then

• the stabilizer of $\mathbf{e} \in G^m$ in the automorphism group $\mathbf{Aut}(\mathscr{G}_m(G))$ is equal to

$$\operatorname{\mathsf{Aut}}_m(G) \times \operatorname{\Delta}_m \simeq \operatorname{\mathsf{Aut}}(G) \times D_{m+1};$$

② the group of all automorphisms of the graph $\mathscr{G}_m(G)$ is equal

$$\operatorname{\mathsf{Aut}}(\mathscr{G}_m(G)) = (\mathsf{T}_m \rtimes \operatorname{\mathsf{Aut}}_m(G)) \rtimes \Delta_m \simeq (G^m \rtimes \operatorname{\mathsf{Aut}}(G)) \rtimes D_{m+1}.$$

Theorem 23.

Let G and H be groups and m > 1. Then the graphs $\mathcal{G}_m(G)$ and $\mathcal{G}_m(H)$ are isomorphic if and only if the groups G and H are isomorphic.

Theorem 24.

Let G be a group, Z(G) its center i $m \ge 3$. Let also k and I be such that $1 \le k < l \le m+1$, l-k > 1. Then

• If $x \notin Z(G)$ then for every $y \in G$, such that $xy \neq yx$, the vertex $\mathbf{x}_{[k,l)}$ is the unique vertex $V(\mathbf{e}) \cap V(\mathbf{g})$, where

$$\mathbf{g} = \mathbf{y}_{[i,k)}(\mathbf{y}\mathbf{x})_{[k,j)}\mathbf{x}_{[j,l)}, \ (1 \leqslant i < k) \ \text{or}$$

$$\mathbf{g} = \mathbf{x}_{[k,i)}(\mathbf{y}\mathbf{x})_{[i,l)}\mathbf{y}_{[l,j)}, \ (l < j \leqslant m+1).$$

② If for some $\mathbf{a} \in \mathscr{G}_m(G)$, either $\mathbf{x}_{[k,k+1)} \in V(\mathbf{e}) \cap V(\mathbf{a})$ " or $\mathbf{x}_{[1,m+1)} \in V(\mathbf{e}) \cap V(\mathbf{a})$, then $|V(\mathbf{e}) \cap V(\mathbf{a})| > 1$.

Let G be a group, Z(G) its center i $m \ge 3$. Let also k and l be such that $1 \le k < l \le m+1$, l-k > 1. Let A be the adjacency matrix of $\mathcal{G}_m(G)$. Then the (\mathbf{g},\mathbf{h}) -entry of A^2 is equal to the number of paths of length 2 from \mathbf{g} to \mathbf{h} . Hence in the row (column) of A^2 labeled by $\mathbf{x}_{[k,l)}$ there are entries equal to 1 if and only if $x \notin Z(G)$.

Theorem 25.

There exists a subgraph \mathscr{Z} of the graph $\mathscr{G}_m(G)$ with the set of vertices equal to G^m , determined by the combinatorial structure of $\mathscr{G}_m(G)$ such that

- **1** All connected components of \mathscr{Z} are isomorphic to $\mathscr{G}_m(Z(G))$.
- ② One can define adjacency relation on the set of connected components giving the graph isomorphic to $\mathcal{G}_m(G/Z(G))$.

Definition

Let $\mathscr{D}_m(G)$ be a subgraph of $\mathscr{G}_m(G)$ with the set of vertices G^m . Two vertices are adjacent $(\mathbf{g} \sim \mathbf{h})$ in $\mathscr{D}_m(G)$, if there exists $\mathbf{x} \in S'$, such that $\mathbf{sg} = \mathbf{h}$, where

$$S' = \bigcup_{k=1}^{m-1} G_{[k,k+2)}.$$

Proposition 26.

For $m \geqslant 3$ the number of connected components of $\mathcal{D}_m(G)$ is equal |G/G'|. In particular $\mathcal{D}_m(G)$ is connected if and only if G' = G.

Proof.

$$(x^{-1}y^{-1}xy, e, e, e, \dots, e) =$$

$$= (x^{-1}y^{-1}, x^{-1}y^{-1}, e, e, \dots, e) \cdot (e, y, y, e, \dots, e) \cdot$$

$$(xy, xy, e, e, \dots, e) \cdot (e, y^{-1}, y^{-1}, e, \dots, e),$$

$$(e, x^{-1}y^{-1}xy, e, e, \dots, e) =$$

$$= (x^{-1}y^{-1}, x^{-1}y^{-1}, e, e, \dots, e) \cdot (e, x, x, e, \dots, e) \cdot$$

$$(yx, yx, e, e, \dots, e) \cdot (e, x^{-1}, x^{-1}, e, \dots, e),$$

$$(e, e, x^{-1}y^{-1}xy, e, \dots, e) =$$

$$= (x, x, e, e, \dots, e) \cdot (e, x^{-1}y^{-1}, x^{-1}y^{-1}, e, \dots, e) \cdot$$

$$(x^{-1}, x^{-1}, e, e, \dots, e) \cdot (e, xy, xy, e, \dots, e).$$

Proof c.d.

Then

$$(G')^m \leqslant \langle S' \rangle$$

On the other hand, if G' < G then the functio $\varphi: G^n \to G/G'$ defined by the formula

$$\varphi(x_1,\ldots,x_m)=x_1x_2^{-1}x_3x_4^{-1}\cdots x_m^{(-1)^{m-1}}G'.$$

is a homomorphism of groups and

$$\langle S' \rangle \leqslant \operatorname{Ker}(\varphi).$$

Moreover, if $\varphi(x_1,\ldots,x_m)=e_{G/G'}$ Therefore

$$x_1x_2^{-1}x_3x_4^{-1}\cdots x_m^{(-1)^{m-1}}\in G'$$
. But

$$(x_1, x_2, \dots, x_m) = = (\mathbf{x}_1)_{[1,3)} (\mathbf{x}_1^{-1} \mathbf{x}_2)_{[2,4)} (\mathbf{x}_2^{-1} \mathbf{x}_1 \mathbf{x}_3)_{[3,5)} (\mathbf{x}_3^{-1} \mathbf{x}_1^{-1} \mathbf{x}_2 \mathbf{x}_4)_{[4,6)} \dots,$$