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Let A = (A,+, [−,−]) be a Lie ring. A left-normed product

[x1, . . . , xn, xn+1],

where n is a positive integer and x1, . . . , xn, xn+1 ∈ A, is defined
recursively

[x1, . . . , xn, xn+1] := [[x1, . . . , xn], xn+1].

A Lie ring A is said to be nilpotent if there is a positive integer n

such that
[x1, x2, . . . , xn] = 0

is true for any sequence {xi}
∞

i=1 in A.



Earlier, the possible structures of finite-dimensional Lie algebras A

over a field F all of whose proper subalgebras are nilpotent have
been studied by E.L. Stitzinger (1971), A.G. Gein, S.V. Kuznecov
and Ju.N. Mukhin (1972), D. Towers (1980), A.G. Gein (1984, 1985,
1989), A. Elduque (1986) and others.
In this way A.A. Lashkhi and I. Zimmermann (2006), P. Zusmanovich
(2014) and others have investigated Lie algebras with many nilpotent
subalgebras. In particular, D. Towers has proved:

• if F is algebraically closed and A is minimal non-nilpotent,
then A must be two-dimensional non-abelian,

• there are non-nilpotent soluble finite-dimensional Lie algebras
of arbitrary dimension over the rational numbers field, and
over any finite field, having all proper subalgebras nilpotent.



Thus a finitely generated minimal non-nilpotent Lie ring (i.e., a non-
nilpotent Lie ring such that all of its proper subrings are nilpotent)
exists. If a Lie ring A is not finitely generated and its any proper
subring is nilpotent, then A is locally nilpotent (i.e., every finitely
generated subring of A is nilpotent). In the case of Lie rings we
obtain the following



Lemma.
If A is a minimal non-nilpotent Lie ring, then A+ is a p-group.

Lemma.
A minimal non-nilpotent Lie ring A is countable.

∗ ∗ ∗
By [A,A] we denote the ideal of a Lie ring A generated by all
commutators [a, b], where a, b ∈ A. If A 6= [A,A], then A is called
non-perfect.



Let Z1(A) := Z (A) and

• Zα+1(A)/Zα(A) = Z1(A/Zα(A)) if α is ordinal,
• Zλ(Z ) = ∪α<λZα(A) if λ is limit ordinal.

If A = Zβ(A) for some ordinal β, then we say that A is hypercentral.

Lemma.
Let A be a non-perfect minimal non-nilpotent Lie ring. Then A is
not finitely generated if and only if A is hypercentral.

Lemma.
Let A be a non-perfect minimal non-nilpotent Lie ring. Then the
following statements hold:

(i) if Z (A) = 0, then A is finite and A′ is a minimal ideal of A,

(ii) if A is finitely generated, then A′ is abelian or Z (A) is nonzero.



We prove

Theorem.
A non-perfect Lie ring A is minimal non-nilpotent if and only if it is
of one of the following types:

(i) A = A′ ∝ 〈x〉lrg , pA′ = 0, 〈x〉+
lrg

∼= Zpm (m ≥ 1 is an integer),

A′ =
∑

∞

n=1
⊕〈an〉lrg is abelian, [a1, x ] = 0, [an+1, x ] = an

(n ∈ N),

(ii) A = A′ ∝ 〈x〉lrg , pA′ = 0, 〈x〉+lrg
∼= Zpm (m ≥ 1 is an integer),

A′ = A′′ ⊕ 〈e1, . . . , en〉gr is an additive group direct sum, adx

acts nilpotent on A′′ and either A′ is a minimal ideal of A or
A′′ = Z (A).



In the sequel R is an associative ring (not necessary with unity).
Every associative ring R = (R ,+, ·) can be viewed as a Lie ring
RL = (R ,+, [−,−]) via the Lie multiplication [a, b] = a · b − b · a.
By [U,V ] we will denote the additive subgroup of R generated by
all [u, v ], where u ∈ U and v ∈ V .
If the Lie ring RL is nilpotent, then R is called Lie nilpotent.



An associative ring is called minimal non-(Lie nilpotent) if it is
not Lie nilpotent but all its proper subrings are Lie nilpotent.
A group is called minimal non-nilpotent if it is not nilpotent but
all its proper subgroups are nilpotent.



Lie nilpotent group algebras have been studied by I.B.S. Passi,
D.S. Passman and S.K. Sehgal (1973) and Lie T -nilpotent group
rings by A.A. Bovdi and I.I. Khripta (1986).
We establish that

Proposition.

If all proper subrings of a group ring F[G ] of a group G over a field
F are Lie nilpotent, then F[G ] is Lie nilpotent.

Lemma.
Every minimal non-(Lie nilpotent) ring R with unity is local of
power prime characteristic and R/J(R) is finite.

Recall that a unitary ring R is called local if R/J(R) is a skew field.



Examples.
Let F4 = {0, 1, a, b} be a field consists of 4 elements such that
ab = 1 = ba, a2 = b, a + b = 1 and σ : F4 3 w 7→ w2 ∈ F4 be a
non-trivial field automorphism.
a) We will consider the quotient ring of the skew polynomial ring
F4[X ;σ] (with a ring multiplication induced by the rule
Xw = wσX ) by the principal ideal 〈X 2〉

R := F4[X ;σ]/〈X 2〉 = F4 + F4u.

Then u2 = 0, R has 7 proper subrings:

0, F2, F4, F2u, F4u, F2 + F2u, F2 + F4u

and all those proper subrings are Lie nilpotent.



First we find that

[u, a] = ua − au = (aσ + a)u = u = [u, b]

and [[R ,R ],R ] 3 [u, a] = u and then we conclude that

γ3(R) = [[R ,R ],R ] = [R ,R ] = γ2(R).

Thus R is not Lie nilpotent. This means that R is minimal non-(Lie
nilpotent). Moreover, RL is a minimal non-nilpotent Lie ring and
the unit group U(R) is a minimal non-nilpotent group of order 12.
b) If

D := F4[X ;σ]/〈X 4〉 = F4 + F4t + F4t
2 + F4t

3,

where t4 = 0, then [t3, a] = (σ3(a) − a)t3 = t3 and, consequently,
the subring F4 + F4t

3 is not Lie nilpotent in D.



c) Assume that

B := F4[X ;σ]/〈X 3〉 = F4 + F4v + F4v
2,

where v3 = 0. Then [v , a] = v = [v , b], [av , bv ] = v2 and so the
commutator ideal C (B) = F4v + F4v

2 is non-commutative and of
the nilpotency index 3. Moreover, γ2(B) = γ3(B) and B is minimal
non-(Lie nilpotent).



Recall that I.S. Cohen (1949) first found that any commutative
complete (on the J(R)-adic topology) Noetherian local ring R contai-
ns a coefficient subring. W.E. Clark (1972) confirmed this it in the
case of (non-commutative) finite local ring, and T. Sumiyama (1995)
in the case when R is a local ring of characteristic pn with the nil-
potent Jacobson radical J(R) and the residue field R/J(R) algebraic
over the field Fp.

∗ ∗ ∗
Recall that a local ring R of characteristic pn has a coefficient
subring S if S is a commutative subring of R , R = J(R) + S ,
J(S) = S ∩ J(R) = pS and R/J(R) ∼= S/pS .



We prove

Theorem.
Let R be a finite ring. Then R is a minimal non-(Lie nilpotent) ring
if and only if it is a finite local ring of characteristic pn which
contains a coefficient subring S , its unit group
U(R) = (1 + J(R)) o 〈b〉 is a group semidirect product of a normal
p-subgroup 1 + J(R) and a cyclic subgroup 〈b〉 ∼= U(R/J(R)) of
order pqm

− 1 (that is subfields of R/J(R) are linearly ordered),
M := J(R)2 + pS = CJ(R)(b) is an ideal of R such that J(R)/M is

a minimal ideal of R/M, |J(R)/M| = pqm

and bs ∈ Z (U(R)),

where s = pqm
−1

pqm−1
−1

, p, q are primes, n,m ≥ 1 are integers and one

of the following holds:

(i) J(R)2 = 0,

(ii) J(R) is of the nilpotency index 3 and q = 2.



In particular case we have the following

Corollary.

Let R be a finite ring of prime characteristic p and J(R)2 = 0.
Then the following conditions are equivalent:

(1) R is a minimal non-(Lie nilpotent) ring,

(2) R = J(R)⊕ S is a group direct sum, where S ∼= Fqpn , q and q

are primes, n,m ≥ 1 are integers and J(R) is a minimal ideal
of R ,

(3) R ∼= Fqpn [X ;σ]/〈X 2〉, where p and q are primes, n,m ≥ 1 are
integers and σ : Fqpn → Fqpn is a non-trivial automorphism of
Fqpn .



Remark.
Notice that if R is a minimal non-(Lie nilpotent) ring with the
torsion unit subgroup U(R) which satisfies one of the following
conditions:

(a) R is right Artinian,

(b) R is right Goldie,

(c) R satisfies the ascending chain condition on both left and right
annihilators,

then R is finite.



An associative ring R is a monoid with respect to a circle multipli-
cation “◦" defined by the rule a◦b = a+b+a ·b for all a, b ∈ R . The
set R◦ = {a ∈ R | there exists b ∈ B such that a ◦ b = 0 = b ◦ a}
is a group (so-called the adjoint group of R). If R◦ = R , then R is
called a (Jacobson) radical ring. We also study radical rings with
Lie nilpotent proper subrings and prove the following theorem.

Theorem.
Let R be a radical ring and its every proper subring be Lie
nilpotent. Then the following conditions are true:

(i) if R is 2-torsion-free and [R ,R ] is proper in R , then R is Lie
nilpotent,

(ii) if R = [R ,R ], then all its one-sided ideals are nilpotent and RL

is a minimal non-nilpotent Lie ring.



In the case when all subgroups are nilpotent in the adjoint group of
a radical ring we obtain the following

Corollary.

Let R be a 2-torsion-free radical ring. If all proper subgroups of the
adjoint group R◦ are nilpotent, then either R is Lie nilpotent or R◦

is perfect (i.e., its derived subgroup is not proper); if, moreover, R◦

is torsion (respectively locally graded), then R is a Lie nilpotent nil
ring.



I.L. Hmel’nickĭı (1971) has proved that an associative ring with nil-

potent proper subrings is either nilpotent or it is isomorphic to Zpk .



A field F satisfies the Brauer condition if there exists a function ψ(d)
with positive integer values such that, for every integer d > 0 and
any nonzero elements a1, . . . , aψ(d), there are x1, . . . , xψ(d) (some of
which are nonzero) satisfying

a1x
d
1 + a2x

d
2 + · · · + aψ(d)x

d
ψ(d) = 0.

∗ ∗ ∗
Every algebraically field and every finite field satisfies the Brauer
condition. The rational numbers field not satisfies the Brauer condi-
tion.

∗ ∗ ∗
I.V. L’vov (1971) has proved: Let F be a field satisfying the Brauer

condition. If R is an associative F -algebra with every proper subalgebra

to be nilpotent, then either R is nilpotent or it is an one-dimensional

F -algebra.



As it is well known, there exist (commutative) non-nilpotent algebras
with nilpotent proper subalgebras). But it is true the following

Theorem.
Let R be an associative algebra over a field F of characteristic 0
with nilpotent proper subalgebras. Then R contains a nilpotent
ideal I such that R/I is commutative (and so R is Lie soluble). If,
moreover, R is not finitely generated, then it is Lie nilpotent.



Corollary.

An associative algebra over a field F of characteristic 0 with
nilpotent proper subalgebras is nilpotent if and only if is nilpotent
every commutative F-algebra with nilpotent proper subalgebras.



Thank you!


